1. (JPE, May 1997). Compute the condition numbers κ_1 , κ_2 and κ_{∞} for the matrix

$$A = \left(\begin{array}{cc} 1 & 2\\ 1.01 & 2 \end{array}\right)$$

2. (JPE, May 1992). Compute the condition number κ_{∞} for the matrix

$$A_n = \left(\begin{array}{cc} 1 & 2\\ 2 & 4+n^{-2} \end{array}\right)$$

Now, suppose that the systems $A_n x = b$, n = 1, 2, ..., are being solved for some $b \in \mathbb{R}^2$ on a computer employing binary floating point arithmetic with a 23 digit mantissa, and using chopped arithmetic. For which values of n can the computed solution be trusted? (Hint: first write down the unit roundoff (machine precision) **u**).

3. Let $x, y \in \mathbb{R}^n$ be such that $x \neq y$ and $||x||_2 = ||y||_2 \neq 0$. Show that there is a unique reflector matrix P such that Px = y. Is this true for vectors $x, y \in \mathbb{C}^n$?