1. (JPE, September 1997) Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Let $A = Q_1 R_1$ be a QR decomposition of A and for $k \geq 1$ define inductively $AQ_k = Q_{k+1}R_{k+1}$ a QR decomposition of AQ_k . Prove that there exists an upper triangular matrix U_k such that $Q_k = A^k U_k$ and a lower triangular matrix L_k such that $Q_k = (A^*)^{-k} L_k$.

2. (combined from JPE, October 1990 and May 1997) Let $A \in \mathbb{C}^{n \times n}$ be a normal matrix. (a) Prove that $A - \lambda I$ is normal for any $\lambda \in \mathbb{C}$. Prove that $||Ax|| = ||A^*x||$ for all x. (b) Prove that (λ, x) is an eigenpair of A if and only if $(\bar{\lambda}, x)$ is an eigenpair of A^* . (Hence, A and A^* have the same eigenvectors.)

3. (JPE, May 1996). Let T be a linear operator on a finite dimensional complex inner product space V, and let T^* be the adjoint of T. Prove that $T = T^*$ if and only if $T^*T = T^2$. (Hint: reduce the problem to complex matrices and use the Schur decomposition.)