1. Prove properties 1, 4, 6, and 8 of condition numbers listed in Proposition 12.8.

2. (JPE, September 1997). Show that, given a matrix $A \in \mathbb{R}^{n \times n}$, one can choose vectors b and Δb so that if

$$Ax = b$$
$$A(x + \Delta x) = b + \Delta b$$

then

$$\frac{||\Delta x||_2}{||x||_2} = \kappa_2(A) \frac{||\Delta b||_2}{||b||_2}$$

Explain the significance of this result for the 'optimal' role of condition numbers in the sensitivity analysis of linear systems.

(Hint: use the SVD theorem to show that it is enough to consider the case where A is a diagonal matrix.)

3. (JPE, September 2002). Consider a linear system Ax = b. Let x^* be the exact solution, and let x_c be some computed approximate solution. Let $e = x^* - x_c$ be the error and $r = b - Ax_c$ the residual for x_c . Show that

$$\frac{1}{\kappa(A)}\,\frac{\|r\|}{\|b\|} \leq \frac{\|e\|}{\|x^*\|} \leq \kappa(A)\,\frac{\|r\|}{\|b\|}$$

Interpret the above inequality for $\kappa(A)$ close to 1 and for $\kappa(A)$ large.

4. (JPE, combined May 1997 and May 2008)

(a) Compute the condition numbers κ_1 , κ_2 and κ_{∞} for the matrix

$$A = \left(\begin{array}{cc} 1 & 2\\ 1.01 & 2 \end{array}\right)$$

(b) Show that for every non-singular 2×2 matrix A we have $\kappa_1(A) = \kappa_{\infty}(A)$.