
Numerical Linear Algebra
Nikolai Chernov

1 Review of Linear Algebra

1.1 Matrices and vectors
The set of m× n matrices (m rows, n columns) with entries in a field F

is denoted by Fm×n. We will only consider two fields: complex (F = C) and
real (F = R). For any matrix A ∈ Fm×n, we denote its entries by

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .
The vector space Fn consists of column vectors with n components:

x =

x1
...
xn

 ∈ Fn.

The product y = Ax is a vector in Fm:

y = Ax =

a1

∣∣∣∣∣∣∣a2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣an

x1

...
xn

 = x1

a1

+ x2

a2

+ · · ·+ xn

an

where a1, . . . , an denote the columns of the matrix A. Note that Ax is a
linear combination of the columns of A. Every matrix A ∈ Fm×n defines a
linear transformation

A : Fn → Fm by x 7→ Ax.

The range of A is a vector subspace of Fm defined by

RangeA = {Ax : x ∈ Fn} ⊂ Fm.

The range of A is a subspace of Fm spanned by the columns of A:

RangeA = span{a1, . . . , an}.

1

The rank of A is defined by

rankA = dim(RangeA).

The kernel (also called the nullspace) of A is a vector subspace of Fn:

KerA = {x : Ax = 0} ⊂ Fn.

Note that
dim(RangeA) + dim(KerA) = n.

◦ The transformation A is surjective iff RangeA = Fm.
◦ The transformation A is injective iff KerA = {0}.
◦ If A is bijective, then m = n and we call A an isomorphism.

1.2 Square matrices
Every square matrix A ∈ Fn×n defines a linear transformation Fn → Fn,

called an operator on Fn. The inverse of a square matrix A ∈ Fn×n is a
square matrix A−1 ∈ Fn×n uniquely defined by

A−1A = AA−1 = I (identity matrix).

A matrix A ∈ Fn×n is said to be invertible (nonsingular) iff A−1 exists, oth-
erwise the matrix is noninvertible (singular). The following are equivalent:

(a) A is invertible
(b) rankA = n
(c) RangeA = Fn
(d) KerA = {0}
(e) 0 is not an eigenvalue of A
(f) detA 6= 0

Note that
(AB)−1 = B−1A−1

A matrix is A upper triangular if aij = 0 for all i > j. A matrix A is lower
triangular if aij = 0 for all i < j. A matrix D is diagonal if dij = 0 for all
i 6= j, and in that case we write D = diag{d11, . . . , dnn}. Note: if A and
B are upper (lower) triangular, then so are AB and A−1 and B−1 (if the
inverses exist).

2

We say that λ ∈ F is an eigenvalue for a matrix A ∈ Fn×n with an
eigenvector x ∈ Fn if

Ax = λx and x 6= 0.

Eigenvalues are the roots of the characteristic polynomial

CA(λ) = det(λI − A) = 0.

By the fundamental theorem of algebra, every polynomial of degree n with
complex coefficients has exactly n complex roots λ1, . . . , λn (counting multi-
plicities). This implies

CA(λ) =
n∏
i=1

(λ− λi).

A square matrix A ∈ Fn×n is diagonalizable (over F) iff

A = XΛX−1,

where Λ = diag{λ1, . . . , λn} is a diagonal matrix and X ∈ Fn×n. In this case
λ1, . . . , λn are the eigenvalues of A and the columns x1, . . . , xn of the matrix
X are the corresponding eigenvectors. To see the latter, rewrite the above
equation in the form AX = XΛ and note that

AX =

 A

x1

∣∣∣∣∣∣∣x2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣xn
 =

Ax1

∣∣∣∣∣∣∣Ax2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣Axn

and

XΛ =

x1

∣∣∣∣∣∣∣x2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣xn

λ1

. . .

λn

 =

λ1x1

∣∣∣∣∣∣∣λ2x2

∣∣∣∣∣∣∣· · ·
∣∣∣∣∣∣∣λnxn

 ,
therefore Ax1 = λ1x1, Ax2 = λ2x2, . . ., Axn = λnxn.

Note that a real matrix A ∈ Rn×n may be diagonalizable over C but not
over R. This happens, for example, when A has distinct complex eigenvalues.

The trace of a matrix A ∈ Fn×n is defined by

trA =
n∑
i=1

aii

3

Trace has the following properties:
(a) trAB = trBA;
(b) if A = X−1BX, then trA = trB;
(c) trA = λ1 + · · ·+ λn (the sum of all complex eigenvalues).

1.3 Transposed and adjoint matrices
For any matrix A = (aij) ∈ Fm×n we denote by AT = (aji) ∈ Fn×m the

transpose of A. Note that

(AB)T = BTAT ,
(
AT
)T

= A.

If A is a square matrix, then

detAT = detA,
(
AT
)−1

=
(
A−1

)T
.

For any matrix A = (aij) ∈ Cm×n we denote by A∗ = (āji) ∈ Fn×m the
adjoint of A. Note that

(AB)∗ = B∗A∗,
(
A∗
)∗

= A.

If A is a square matrix, then

detA∗ = detA,
(
A∗
)−1

=
(
A−1

)∗
.

For A ∈ Rm×n, we have A∗ = AT .

1.4 Norms
A norm on a vector space V over C is a real valued function ‖ · ‖ on V

satisfying three axioms:

1. ‖v‖ ≥ 0 for all v ∈ V and ‖v‖ = 0 if and only if v = 0.

2. ‖cv‖ = |c| ‖v‖ for all c ∈ C and v ∈ V .

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V (triangle inequality).

If V is a vector space over R, then an inner product is a function V → R
satisfying the same axioms, except c ∈ R.

4

Some common norms on Cn and Rn are:

‖x‖1 =
n∑
i=1

|xi| (1-norm)

‖x‖2 =

(n∑
i=1

|xi|2
)1/2

(2-norm)

‖x‖p =

(n∑
i=1

|xi|p
)1/p

(p-norm, p ≥ 1)

‖x‖∞ = max
1≤i≤n

|xi| (∞-norm)

The 2-norm in Rn corresponds to the Euclidean distance.
Some norms on C[a, b], the space of continuous functions on [a, b]:

‖f‖1 =

∫ b

a

|f(x)| dx (1-norm)

‖f‖2 =

(∫ b

a

|f(x)|2 dx
)1/2

(2-norm)

‖f‖∞ = max
a≤x≤b

|f(x)| (∞-norm)

We define
S1 = {v ∈ V : ‖v‖ = 1} (unit sphere)

The vectors v ∈ S1 are called unit vectors. For any v 6= 0, the vector
u = v/‖v‖ is a unit vector.

The space Cm×n of matrices is isomorphic to Cmn, hence we can define
norms on it in a similar way. In particular, an analogue of the 2-norm

‖A‖F =

(∑
i

∑
j

|aij|2
)1/2

is known as Frobenius norm of a matrix. Note that

‖A‖2
F = tr (A∗A) = tr (AA∗).

However, most important are matrix norms induced by vector norms:

5

1.5 Induced matrix norms
Let A : Fn → Fm, and let the spaces Fn and Fm be equipped with certain

norms, ‖ · ‖. Then

‖A‖ : = sup
‖x‖=1

‖Ax‖ = sup
x6=0

‖Ax‖
‖x‖

defines the induced norm (also called operator norm) of A. Respectively, we
obtain ‖A‖2, ‖A‖1, and ‖A‖∞, if the spaces Fn and Fm are equipped with
‖ · ‖2, ‖ · ‖1, and ‖ · ‖∞.

The supremum here is always attained and can be replaced by maximum.
This follows from the compactness of S1 and the continuity of ‖ · ‖. For the
2-norm, this can be also proved by an algebraic argument, see Chapter 4.

There are norms on Cn×n that are not induced by any norm on Cn, for
example ‖A‖ = maxi,j |aij| (see Exercise 1.1).

We have simple rules for computing ‖A‖1 and ‖A‖∞:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij| (maximum column sum)

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij| (maximum row sum)

but there is no explicit formulas for ‖A‖2 in terms of the aij’s.
Any induced matrix norm satisfies

‖Ax‖ ≤ ‖A‖ ‖x‖ and ‖AB‖ ≤ ‖A‖ ‖B‖.

1.6 Inner products
Let V be a vector space over C. An inner product on V is a function on

V × V → C, denoted by 〈·, ·〉, satisfying four axioms:

1. 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

2. 〈cu, v〉 = c〈u, v〉 for all c ∈ C and u, v ∈ V .

3. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V .

4. 〈u, u〉 ≥ 0 for all u ∈ V , and 〈u, u〉 = 0 iff u = 0.

6

Note that 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 and 〈u, cv〉 = c̄〈u, v〉.
If V is a vector space over R, then an inner product is a function V ×V →

R satisfying the same axioms (except c ∈ R, and there is no need to take a
conjugate). A standard inner product in Cn is

〈x, y〉 =
n∑
i=1

xiȳi = xT ȳ = y∗x.

A standard inner product in Rn is

〈x, y〉 =
n∑
i=1

xiyi = xTy = yTx.

A standard inner product in C([a, b]), the space of continuous functions, is:

〈f, g〉 =

∫ b

a

f(x) ḡ(x) dx

1.7 Cauchy-Schwarz inequality
Let V be an inner product space. Then

|〈u, v〉| ≤ 〈u, u〉1/2〈v, v〉1/2

for all u, v ∈ V .
The equality holds if and only if u and v are linearly dependent.

Proof. If v = 0, then 〈u, v〉 = 0 and 〈v, v〉 = 0, so the claim is trivial. Assume
that v 6= 0. Consider the function

f(z) = 〈u− zv, u− zv〉
= 〈u, u〉 − z〈v, u〉 − z̄〈u, v〉+ |z|2〈v, v〉

of a complex variable z. Let z = reiθ and 〈u, v〉 = seiϕ be the polar forms of
the complex numbers z and 〈u, v〉, respectively. Set θ = ϕ and assume that
r varies from −∞ to ∞, then

0 ≤ f(z) = 〈u, u〉 − 2sr + r2〈v, v〉

Since this holds for all r ∈ R, the discriminant has to be ≤ 0, i.e. s2 −
〈u, u〉〈v, v〉 ≤ 0. The equality case in the theorem corresponds to the zero
discriminant, hence the above polynomial assumes a zero value, and hence
u = zv for some z ∈ C. �

7

1.8 Induced norms
If V is an inner product vector space, then

‖v‖ = 〈v, v〉1/2 (induced norm)

defines a norm on V (to verify the triangle inequality, one can use Theo-
rem 1.7). In vector spaces over R, a norm is induced by an inner product if
and only if the function

〈u, v〉 : = 1
4

(
‖u+ v‖2 − ‖u− v‖2

)
(polarization identity)

satisfies the axioms of inner products. (A similar but more complicated
polarization identity holds in vector spaces over C.)

1.9 Orthogonal vectors
Two vectors u, v ∈ V are said to be orthogonal if 〈u, v〉 = 0. In this case

‖u+ v‖2 = ‖u‖2 + ‖v‖2 (Pythagorean theorem)

Inductively, if u1, . . . , uk are mutually orthogonal, then

‖u1 + · · ·+ uk‖2 = ‖u1‖2 + · · ·+ ‖uk‖2

If nonzero vectors u1, . . . , uk are mutually orthogonal, then they are linearly
independent.

1.10 Orthonormal basis (ONB)
The set {u1, . . . , un} is an orthonormal basis (ONB) in V , if it is a basis

and all the vectors ui are mutually orthogonal and have unit length (i.e.,
‖ui‖ = 1 for all i). Note: 〈ui, uj〉 = δij (this is the Kronecker delta symbol
defined as follows: δij = 1 if i = j and δij = 0 if i 6= j).

If {u1, . . . , un} is an ONB, then for any vector v

v =
n∑
i=1

〈v, ui〉ui (Fourier expansion)

In other words, the numbers 〈v, ui〉 (Fourier coefficients) are the coordinates
of the vector v in this basis.

8

1.11 Orthogonal projection
Let u, v ∈ V , and u 6= 0. The orthogonal projection of v onto u is

Pruv =
〈v, u〉
‖u‖2

u

Note that the vector w : = v − Pruv is orthogonal to u. Therefore, v is the
sum of two vectors, Pruv (parallel to u), and w (orthogonal to u), see the
diagram below.

Figure 1: Orthogonal projection of u onto v

��
��

�
��

�
��

�
��

�
��*

-?
θ

v

u‖v‖ cos θ · (u/‖u‖)

In the real case, for any nonzero vectors u, v ∈ V let

cos θ =
〈v, u〉
‖u‖ ‖v‖

(angle)

By Section 1.7, we have cos θ ∈ [−1, 1]. Hence, there is a unique angle
θ ∈ [0, π] with this value of cosine. It is called the angle between u and v.

Note that cos θ = 0 (i.e., θ = π/2) if and only if u and v are orthogonal.
Also, cos θ = ±1 if and only if u, v are proportional, i.e. v = cu. In that case
the sign of c coincides with the sign of cos θ.

1.12 Gram-Schmidt orthogonalization
Let u1, . . . , uk be unit mutually orthogonal vectors. For v ∈ V , set

w = v −
k∑
i=1

〈v, ui〉ui.

9

Then the vectors u1, . . . , uk, w are mutually orthogonal, and

span{u1, . . . , uk, v} = span{u1, . . . , uk, w}.

In particular, w = 0 if and only if v ∈ span{u1, . . . , uk}.
Next, let {v1, . . . , vn} be a basis in V . Define

w1 = v1 and u1 = w1/‖w1‖,

and then inductively, for k ≥ 1,

wk = vk −
k−1∑
i=1

〈vk, ui〉ui, and uk = wk/‖wk‖ (GS)

This gives an orthogonal basis {u1, . . . , un}, which ‘agrees’ with the basis
{v1, . . . , vn} in the following sense:

span{v1, . . . , vk} = span{u1, . . . , uk} ∀ 1 ≤ k ≤ n

As a corollary, we conclude that every finite dimensional vector space with
an inner product has an ONB. Furthermore, every set of orthonormal vectors
{u1, . . . , uk} can be extended to an ONB.

1.13 Legendre polynomials
Let V = Pn(R), the space of real polynomials of degree ≤ n, with the

inner product given by 〈f, g〉 =
∫ 1

0
f(x)g(x) dx. Applying Gram-Schmidt

orthogonalization to the basis {1, x, . . . , xn} gives the first n + 1 of the so
called Legendre polynomials.

1.14 Orthogonal complement
Let S ⊂ V be a subset (not necessarily a subspace). Then

S⊥ : = {v ∈ V : 〈v, w〉 = 0 for all w ∈ S}

is called the orthogonal complement to S. Note that S⊥ is a vector subspace
of V . Also, (W⊥)⊥ ⊂ W , and if V is finite dimensional, then (W⊥)⊥ = W
(see Exercise 1.4).

If W is a finite dimensional subspace of V , then V = W ⊕W⊥. To prove
this, choose an ONB {u1, . . . , un} of W (by 1.12), and then for any v ∈ V

v −
n∑
i=1

〈v, ui〉ui ∈ W⊥.

10

Note: the condition dimW < ∞ is essential. Let V = C[a, b] with the
standard inner product and W ⊂ V be the set of real polynomials restricted
to the interval [a, b]. Then W⊥ = {0}, and at the same time V 6= W .

Note: if {u1, . . . , un} is an orthonormal subset of V , then

‖v‖2 ≥
n∑
i=1

|〈v, ui〉|2 (Bessel’s inequality)

If {u1, . . . , un} is an ONB, then

‖v‖2 =
n∑
i=1

|〈v, ui〉|2

and, more generally,

〈v, w〉 =
n∑
i=1

〈v, ui〉〈w, ui〉 (Parceval’s identity)

This follows from the Fourier expansion, see Section 1.10.
Parceval’s identity can be written as follows. Suppose

v =
n∑
i=1

aiui and w =
n∑
i=1

biui,

so that (a1, . . . , an) and (b1, . . . , bn) are the coordinates of the vectors v and
w, respectively, in the ONB {u1, . . . , un}. Then

〈v, w〉 =
n∑
i=1

aib̄i.

In particular,

‖v‖2 = 〈v, v〉 =
n∑
i=1

aiāi =
n∑
i=1

|ai|2.

Exercise 1.1. Show that the norm ‖A‖ = maxi,j |aij | on the space of n×n real matrices
is not induced by any vector norm in Rn. Hint: use inequalities from Section 1.5.

Exercise 1.2. Prove the Neumann lemma: if ‖A‖ < 1, then I−A is invertible. Here ‖ · ‖
is a norm on the space of n× n matrices induced by a vector norm.

11

Exercise 1.3. Let V be an inner product space, and ‖ · ‖ denote the norm induced by
the inner product. Prove the parallelogram law

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.

Based on this, show that the norms ‖ · ‖1 and ‖ · ‖∞ in C2 are not induced by any inner
products.

Exercise 1.4. Let W ⊂ V be a subspace of an inner product space V .

(i) Prove that W ⊂ (W⊥)⊥.

(ii) If, in addition, V is finite dimensional, prove that W = (W⊥)⊥.

Exercise 1.5. Let {u1, . . . , un} be an ONB in Cn. Assuming that n is even, compute

‖u1 − u2 + u3 − · · ·+ un−1 − un‖

12

2 Unitary matrices

2.1 Isometry (definition)
Let V and W be two inner product spaces (both real or both complex).

An isomorphism T : V → W is called an isometry if it preserves the inner
product, i.e.

〈Tv, Tw〉 = 〈v, w〉

for all v, w ∈ V . In this case V and W are said to be isometric.

2.2 Characterization of isometries - I
T is an isometry iff T preserves the induced norm, i.e. ‖Tv‖ = ‖v‖ for all

vectors v ∈ V .
(This follows from Polarization Identity; see Section 1.8.)

Moreover, T is an isometry iff ‖Tu‖ = ‖u‖ for all unit vectors u ∈ V .
(Because every non-zero vector v can be normalized by u = v/‖v‖.)

2.3 Characterization of isometries - II
Let dimV < ∞. A linear transformation T : V → W is an isometry if

and only if there exists an ONB {u1, . . . , un} in V such that {Tu1, . . . , Tun}
is an ONB in W .

(This follows from Parceval’s Identity; see Section 1.14.)

2.4 Identification of finite-dimensional inner product spaces
Finite dimensional inner product spaces V and W (over the same field)

are isometric if dimV = dimW .
(This follows from Section 2.3.)

As a result, we can make the following useful identifications:

c© All complex n-dimensional inner product spaces can be identified with
Cn equipped with the standard inner product 〈x, y〉 = y∗x.

R© All real n-dimensional inner product spaces can be identified with Rn

equipped with the standard inner product 〈x, y〉 = yTx.

These identifications allow us to focus on the study of the standard spaces
Cn and Rn equipped with the standard inner product. Isometries Cn → Cn

and Rn → Rn are operators that, in a standard basis {e1, . . . , en}, are given
by matrices of a special type, as defined below.

13

2.5 Unitary and orthogonal matrices (definition)
A matrix Q ∈ Cn×n is said to be unitary if Q∗Q = I, i.e., Q∗ = Q−1.
A matrix Q ∈ Rn×n is said to be orthogonal if QTQ = I, i.e., QT = Q−1.

Note:

Q is unitary⇔ Q∗ is unitary⇔ QT is unitary⇔ Q̄ is unitary

In the real case: Q is orthogonal⇔ QT is orthogonal.

2.6 Theorem

c© The linear transformation of Cn defined by a matrix Q ∈ Cn×n is an
isometry (preserves the standard inner product) iff Q is unitary.

R© The linear transformation of Rn defined by a matrix Q ∈ Rn×n is an
isometry (preserves the standard inner product) iff Q is orthogonal.

Proof. 〈Qx,Qy〉 = (Qy)∗Qx = y∗Q∗Qx = y∗x = 〈x, y〉. �

2.7 Group property
If Q1, Q2 ∈ Cn×n are unitary matrices, then so is Q1Q2 (as well as Q−1

1

and Q−1
2). Thus, unitary n× n matrices make a group, denoted by U(n).

Similarly, orthogonal n× n matrices make a group, denoted by O(n).

2.8 Examples of orthogonal matrices

Q =

[
0 1
1 0

]
defines a reflection across the diagonal line y = x;

Q =

[
cos θ − sin θ
sin θ cos θ

]
is a counterclockwise rotation by angle θ.

2.9 Characterizations of unitary and orthogonal matrices
A matrix Q ∈ Cn×n is unitary iff its columns make an ONB in Cn.
A matrix Q ∈ Cn×n is unitary iff its rows make an ONB in Cn.

A matrix Q ∈ Rn×n is orthogonal iff its columns make an ONB in Rn.
A matrix Q ∈ Rn×n is orthogonal iff its rows make an ONB in Rn.

14

2.10 Theorem
If Q is unitary/orthogonal, then |detQ| = 1.

Proof. 1 = det I = detQ∗Q = detQ∗· detQ = | detQ|2. �

Orthogonal matrices have determinant 1 or −1. Orthogonal n× n matrices
with determinant 1 make a subgroup of O(n), denoted by SO(n).

2.11 Theorem
If λ is an eigenvalue of a unitary/orthogonal matrix, then |λ| = 1.

Proof. If Qx = λx for some x 6= 0, then 〈x, x〉 = 〈Qx,Qx〉 = 〈λx, λx〉 =
λλ̄〈x, x〉 = |λ|2〈x, x〉, so that |λ|2 = 1.

Note: orthogonal matrices Q ∈ Rn×n may not have any real eigenvalues; see
the rotation matrix in Example 2.8.

2.12 Theorem
Let T : V → V be an isometry and dimV <∞. If a subspace W ⊂ V is

invariant under T , i.e. TW ⊂ W , then so is its orthogonal complement W⊥,
i.e. TW⊥ ⊂ W⊥.

Proof. Since KerT = {0}, we have TW = W , hence ∀w ∈ W ∃w′ ∈
W : Tw′ = w. Now, if v ∈ W⊥, then ∀w ∈ W we have 〈w, Tv〉 = 〈Tw′, T v〉 =
〈w′, v〉 = 0, hence Tv ∈ W⊥.

2.13 Corollary
For any isometry T of a finite dimensional complex space V there is an

ONB of V consisting of eigenvectors of T .

Proof. Use induction on the dimension of the space and Theorem 2.12.

Note: the above corollary is not true for real vector spaces.

2.14 Lemma
Every operator T : V → V on a finite dimensional real space V has either

a one-dimensional or a two-dimensional invariant subspace W ⊂ V .

Proof. Let T be represented by a matrix A ∈ Rn×n in some basis. If A has a
real eigenvalue, then Ax = λx with some x 6= 0, and we get a one-dimensional

15

invariant subspace span{x}. If A has no real eigenvalues, then the matrix A,
considered as a complex matrix, has a complex eigenvalue λ = a + ib, with
a, b ∈ R and i =

√
−1, and a complex eigenvector x + iy, with x, y ∈ Rn.

The equation

A(x+ iy) = (a+ ib)(x+ iy) = (ax− by) + (bx+ ay)i

can be written as

Ax = ax− by
Ay = bx+ ay

Thus, the two-dimensional space span{x, y} is invariant. �

Note: x and y are linearly dependent iff b = 0, i.e. λ ∈ R.

2.15 Theorem
Let T : V → V be an isometry of a finite dimensional real space V . Then

V = V1 ⊕ · · · ⊕ Vm, where Vi are mutually orthogonal subspaces, each Vi is
T -invariant, and either dimVi = 1 or dimVi = 2.

Proof. Use induction on dimV and apply Sections 2.12 and 2.14.

Note: the restriction of the operator T to each of the two-dimensional invari-
ant subspaces is simply a rotation by some angle (as in Example 2.8); this
follows from Exercises 2.3 and 2.4.

Recall that two n × n matrices A and B are similar (usually denoted
by A ∼ B) if there exists an invertible matrix C such that B = C−1AC.
Two matrices are similar if they represent the same linear operator on an
n-dimensional space, but under two different bases. In that case C is the
change of basis matrix.

2.16 Unitary and orthogonal equivalence

c© Two complex matrices A,B ∈ Cn×n are said to be unitary equivalent
if B = P−1AP for some unitary matrix P . This can be also written as
B = P ∗AP .

R© Two real matrices A,B ∈ Rn×n are said to be orthogonally equivalent
if B = P−1AP for some orthogonal matrix P . This can be also written
as B = P TAP .

16

Two complex/real matrices are unitary/orthogonally equivalent if they
represent the same linear operator on a complex/real n-dimensional inner
product space, but under two different orthonormal bases (ONBs). Then P
is the change of basis matrix, which must be unitary/orthogonal, because it
changes an ONB to another ONB.

In this course we will mostly deal with ONBs, thus unitary/orthogonal
equivalence will play the same major role as similarity in Linear Algebra.
In particular, for any type of matrices we will try to find simplest matrices
which are unitary/orthogonal equivalent to matrices of the given type.

2.17 Unitary matrices in their simples form
Any unitary matrix Q ∈ Cn×n is unitary equivalent to a diagonal matrix

D = diag{d1, . . . , dn}, whose diagonal entries belong to the unit circle, i.e.
|di| = 1 for 1 ≤ i ≤ n.

(This follows from Theorem 2.13.)

2.18 Orthogonal matrices in their simples form
Any orthogonal matrix Q ∈ Rn×n is orthogonally equivalent to a block-

diagonal matrix

B =

R11 0 · · · 0
0 R22 · · · 0
...

...
. . .

...
0 0 · · · Rmm

where Rii are 1× 1 and 2× 2 diagonal blocks. Furthermore, all 1× 1 blocks
are either Rii = +1 or Rii = −1, and the 2× 2 blocks are rotation matrices

Rii =

[
cos θi − sin θi
sin θi cos θi

]
(This follows from Theorem 2.15.)

Exercise 2.1. Let A ∈ Cm×n. Show that

‖UA‖2 = ‖AV ‖2 = ‖A‖2

for any unitary matrices U ∈ Cm×m and V ∈ Cn×n.

17

Exercise 2.2. Let A ∈ Cm×n. Show that

‖UA‖F = ‖AV ‖F = ‖A‖F

for any unitary matrices U ∈ Cm×m and V ∈ Cn×n. Here ‖ · ‖F stands for the Frobenius
norm.

Exercise 2.3. Let Q be a real orthogonal 2× 2 matrix and detQ = 1.
Show that

Q =

[
cos θ − sin θ
sin θ cos θ

]
for some θ ∈ [0, 2π).

In geometric terms, Q represents a rotation of R2 by angle θ.

Exercise 2.4. Let Q be a real orthogonal 2× 2 matrix and detQ = −1.
Show that

Q =

[
cos θ sin θ
sin θ − cos θ

]
for some θ ∈ [0, 2π).
Also prove that λ1 = 1 and λ2 = −1 are the eigenvalues of Q.

In geometric terms, Q represents a reflection of R2 across the line spanned by the
eigenvector corresponding to λ1 = 1.

18

3 Adjoint and self-adjoint matrices

Beginning with this chapter, we will always deal with finite dimensional in-
ner product spaces (unless stated otherwise). Recall that all such spaces
can be identified with Cn or Rn equipped with the standard inner product
(Section 2.4). Thus we will mostly deal with these standard spaces.

3.1 Adjoint matrices
Recall that every complex matrix A ∈ Cm×n defines a linear transforma-

tion Cn → Cm. The adjoint matrix A∗ ∈ Cn×m defines a linear transforma-
tion Cm → Cn. Furthermore, for any x ∈ Cn and y ∈ Cm we have

〈Ax, y〉 = y∗Ax = (A∗y)∗x = 〈x,A∗y〉

Likewise, 〈y, Ax〉 = 〈A∗y, x〉. In plain words, A can be moved from one
argument of the inner product to the other, but must be changed to A∗.

Every real matrix A ∈ Rm×n defines a linear transformation Rn → Rm.
The transposed matrix AT ∈ Rn×m defines a linear transformation Rm → Rn.
Furthermore, for any x ∈ Rn and y ∈ Rm we have

〈Ax, y〉 = yTAx = (ATy)Tx = 〈x,ATy〉

Thus in the real case, too, A can be moved from one argument of the inner
product to the other, but must be changed to A∗ = AT .

3.2 Adjoint transformations
More generally, for any linear transformation T : V → W of two inner

product vector spaces V and W (both real or both complex) there exists a
unique linear transformation T ∗ : W → V such that ∀v ∈ V, ∀w ∈ W

〈Tv, w〉 = 〈v, T ∗w〉.

T ∗ is called the adjoint of T .
The existence and uniqueness of T ∗ can be proved by a general argument,

avoiding identification of the spaces V and W with Cn or Rn. The argument
is outlined below, in Sections 3.3 to 3.6. (This part of the course can be
skipped.)

19

3.3 Riesz representation theorem
Let f ∈ V ∗, i.e. f is a linear functional on V . Then there is a unique vector u ∈ V

such that
f(v) = 〈v, u〉 ∀v ∈ V

Proof. Let B = {u1, . . . , un} be an ONB in V . Then for any v =
∑
ciui we have

f(v) =
∑
cif(ui) by linearity. Also, for any u =

∑
diui we have 〈v, u〉 =

∑
cid̄i. Hence,

the vector u =
∑
f(ui)ui will suffice. To prove the uniqueness of u, assume 〈v, u〉 = 〈v, u′〉

for all v ∈ V . Setting v = u− u′ gives 〈u− u′, u− u′〉 = 0, hence u = u′.

3.4 Corollary
The identity f ↔ u established in the previous theorem is “quasi-linear” in the follow-

ing sense: f1 + f2 ↔ u1 + u2 and cf ↔ c̄u. In the real case, it is perfectly linear, though,
and hence it is an isomorphism between V ∗ and V .

3.5 Remark
If dimV = ∞, then Theorem 3.3 fails. Consider, for example, V = C[0, 1] (real

functions) with the inner product 〈F,G〉 =
∫ 1

0
F (x)G(x) dx. Pick a point t ∈ [0, 1]. Let

f ∈ V ∗ be a linear functional defined by f(F) = F (t). It does not correspond to any G ∈ V
so that f(F) = 〈F,G〉. In fact, the lack of such functions G has led mathematicians to
the concept of delta-functions: a delta-function δt(x) is “defined” by three requirements:

δt(x) ≡ 0 for all x 6= t, δt(t) =∞ and
∫ 1

0
F (x)δt(x) dx = F (t) for every F ∈ C[0, 1].

3.6 Adjoint transformation
Let T : V →W be a linear transformation. Then there is a unique linear transforma-

tion T ∗ : W → V such that ∀v ∈ V and ∀w ∈W

〈Tv,w〉 = 〈v, T ∗w〉.

Proof. Let w ∈ W . Then f(v) : = 〈Tv,w〉 defines a linear functional f ∈ V ∗. By the

Riesz representation theorem, there is a unique v′ ∈ V such that f(v) = 〈v, v′〉. Then we

define T ∗ by setting T ∗w = v′. The linearity of T ∗ is a routine check. Note that in the

complex case the conjugating bar appears twice and thus cancels out. The uniqueness of

T ∗ is obvious. �

We return to our main course.

3.7 Theorem
Let T : V → W be a linear transformation. Then

KerT ∗ = (RangeT)⊥

In particular, W = RangeT ⊕ KerT ∗.
Proof is a routine check.

Next we will focus on the case V = W , in which T is an operator.

20

3.8 Selfadjoint operators and matrices
A linear operator T : V → V is said to be selfadjoint if T ∗ = T .
A square matrix A is said to be selfadjoint if A∗ = A.

In the real case, this is equivalent to AT = A, i.e. A is a symmetric matrix.
In the complex case, selfadjoint matrices are called Hermitian matrices.

3.9 Examples
The matrix [1 3

3 2] is symmetric. The matrix
[

1 3+i
3−i 2

]
is Hermitian.

The matrices
[

1 3+i
3+i 2

]
and

[
1+i 3+i
3−i 2

]
are not Hermitian (why?).

Note: the diagonal components of a Hermitian matrix must be real numbers!

3.10 Unitary/orthogonal equivalence for self-adjoint matrices

c© If A is a complex Hermitian matrix unitary equivalent to B, then B is
also a complex Hermitian matrix.

R© If A is a real symmetric matrix orthogonally equivalent to B, then B
is also a real symmetric matrix.

3.11 Theorem
Let T be a selfadjoint operator and a subspace W be T -invariant, i.e.

TW ⊂ W . Then W⊥ is also T -invariant, i.e. TW⊥ ⊂ W⊥.

Proof. If v ∈ W⊥, then for any w ∈ W we have 〈Tv, w〉 = 〈v, Tw〉 = 0, so
Tv ∈ W⊥.

3.12 Spectral theorem
Let T : V → V be a selfadjoint operator. Then there is an ONB consisting

of eigenvectors of T , and all the eigenvalues of T are real numbers.

Proof. First let V be a complex space. Then we use induction on n = dimV
and apply Theorem 3.11 to construct an ONB of eigenvectors, as we did in
Corollary 10.11.

Now T is represented in the canonical basis {e1, . . . , en} by a Hermitian
matrix A. In the (just constructed) ONB of eigenvectors, T is represented by
a diagonal matrix D = diag{d1, . . . , dn}, and d1, . . . , dn are the eigenvalues
of T . Since A and D are unitary equivalent, D must be Hermitian, too
(by Section 3.10), hence its components d1, . . . , dn are real numbers. This
completes the proof of Spectral Theorem for complex spaces.

21

Before we proceed to real spaces, we need to record a useful fact about
complex Hermitian matrices. Every Hermitian matrix A ∈ Cn×n defines
a selfadjoint operator on Cn. As we just proved, there exists an ONB of
eigenvectors. Hence A is unitary equivalent to a diagonal matrix D =
diag{d1, . . . , dn}. Since D is Hermitian, its diagonal entries d1, . . . , dn are
real numbers. Therefore

Every Hermitian matrix has only real eigenvalues

Now let V be a real space. Now in the canonical basis {e1, . . . , en} the self-
adjoint operator T : V → V is represented by a real symmetric matrix A.
The latter, considered as a complex matrix, is Hermitian, thus it has only real
eigenvalues (see above). Hence the construction of an ONB of eigenvectors,
as done in Corollary 10.11, works again. The proof is now complete. �

Note: For every real symmetric matrix A, the characteristic polynomial
is CA(x) =

∏
i(x− λi), where all λi’s are real numbers.

3.13 Corollary

c© A complex matrix is Hermitian iff it is unitary equivalent to a diagonal
matrix with real diagonal entries.

R© A real matrix is symmetric iff it is orthogonally equivalent to a diagonal
matrix (whose entries are automatically real).

More generally: if an operator T : V → V has an ONB of eigenvectors, and
all its eigenvalues are real numbers, then T is self-adjoint.

3.14 Remark
Let A = QDQ∗, where Q is a unitary matrix and D is a diagonal matrix.

Denote by qi the ith column of Q and by di the ith diagonal entry of D.
Then

Aqi = diqi, 1 ≤ i ≤ n

i.e. the columns of Q are the eigenvectors of A, whose eigenvalues are the
corresponding diagonal components of D (see Section 1.2).

22

3.15 Theorem
If an operator T is selfadjoint and invertible, then so is T−1. If a matrix

A is selfadjoint and nonsingular, then so is A−1.

Proof. By Spectral Theorem 3.12, there is an ONB consisting of eigenvectors
of T , and the eigenvalues of T are real numbers. Now T−1 has the same
eigenvectors, and its eigenvalues are the reciprocals of those of T , hence they
are real numbers, too. Therefore, T−1 is selfadjoint.

3.16 Projections
Let V = W1 ⊕W2, i.e., a vector space is a direct sum of two subspaces.

Recall that for each v ∈ V there is a unique decomposition v = w1 +w2 with
w1 ∈ W1 and w2 ∈ W2.

The operator P : V → V defined by

Pv = P (w1 + w2) = w2

is called projection (or projector) of V on W2 along W1.
Note that KerP = W1 and RangeP = W2. Also note that P 2 = P .

3.17 Projections (alternative definition)
An operator P : V → V is a projection iff P 2 = P .

Proof. P 2 = P implies that for every v ∈ V we have P (v − Pv) = 0, so

w1 : = v − Pv ∈ KerP

Denoting w2 = Pv we get v = w1 + w2 with w1 ∈KerP and w2 ∈ RangeP .
Furthermore,

Pv = Pw1 + Pw2 = 0 + P (Pv) = P 2v = Pv = w2

We also note that KerP ∩ RangeP = {0}. Indeed, for any v ∈ RangeP
we have Pv = v (as above) and for any v ∈ KerP we have Pv = 0. Thus
v ∈ KerP ∩ RangeP implies v = 0. Hence V = KerP ⊕ RangeP . �

An extra note: if V = W1 ⊕ W2, then there is a unique projection P1

on W1 along W2 and a unique projection P2 on W2 along W1, and we have
P1 + P2 = I.

23

3.18 Orthogonal projections
Let V be an inner product vector space (not necessarily finite dimen-

sional) and W ⊂ V a finite dimensional subspace. Then the projection on
W along W⊥ is called the orthogonal projection on W .

Note: the assumption dimW <∞ is made to ensure that V = W ⊕W⊥,
recall Section 1.14.

3.19 Theorem
Let P be a projection. Then P is an orthogonal projection if and only if

P is selfadjoint.

Proof. By definition, P be a projection on W2 along W1, and V = W1⊕W2.
For any vectors v, w ∈ V we have v = v1 + v2 and w = w1 + w2 with some
vi, wi ∈ Wi, i = 1, 2. Now, if P is orthogonal, then 〈Pv, w〉 = 〈v2, w〉 =
〈v2, w2〉 = 〈v, w2〉 = 〈v, Pw〉. If P is not orthogonal, then there are v1 ∈ W1,
w2 ∈ W2 so that 〈v1, w2〉 6= 0. Then 〈v1, Pw2〉 6= 0 = 〈Pv1, w2〉.

Exercise 3.1. Let V be an inner product space and W ⊂ V a finite dimensional subspace
with ONB {u1, . . . , un}. For every x ∈ V define

P (x) =

n∑
i=1

〈x, ui〉ui

(i) Prove that x− P (x) ∈W⊥, hence P is the orthogonal projection onto W .
(ii) Prove that ‖x− P (x)‖ ≤ ‖x− z‖ for every z ∈ W , and that if ‖x− P (x)‖ = ‖x− z‖
for some z ∈W , then z = P (x).

Exercise 3.2. (JPE, May 1999) Let P ∈ Cn×n be a projector. Show that ‖P‖2 ≥ 1 with
equality if and only if P is an orthogonal projector.

24

4 Positive definite matrices

4.1 Bilinear forms
A bilinear form on a complex vector space V is a mapping f : V ×V → C

such that

f(u1 + u2, v) = f(u1, v) + f(u2, v)

f(cu, v) = cf(u, v)

f(u, v1 + v2) = f(u, v1) + f(u, v2)

f(u, cv) = c̄f(u, v)

for all vectors u, v, ui, vi ∈ V and scalars c ∈ C. In other words, f is linear
in the first argument and conjugate linear in the second.

A bilinear form on a real vector space is a mapping f : V × V → R that
satisfies the same properties, except c is a real scalar and so c̄ = c.

4.2 Theorem
Let V be a finite dimensional inner product space. Then for every bilinear

form f on V , then there is a unique linear operator T : V → V such that

f(u, v) = 〈Tu, v〉 ∀u, v ∈ V

Proof. For every v ∈ V the function g(u) = f(u, v) is linear in u, so by
the Riesz representation theorem 3.3 there is a vector w ∈ V such that
f(u, v) = 〈u,w〉. Define a map S : V → V by Sv = w. It is then a routine
check that S is linear. Setting T = S∗ proves the existence. The uniqueness
is obvious. �

4.3 Corollary

c© Every bilinear form on Cn can be represented by f(x, y) = 〈Ax, y〉 with
A ∈ Cn×n.

R© Every bilinear form on Rn can be represented by f(x, y) = 〈Ax, y〉 with
A ∈ Rn×n.

Bilinear forms generalize the notion of an inner product. In order for a bilin-
ear form to become an inner product, though, it needs two additional prop-
erties: conjugate symmetry f(x, y) = f(y, x) and the positivity f(x, x) > 0
for all x 6= 0. We will see next what this means in terms of the matrix A
that defines the bilinear form (in Cn or Rn).

25

4.4 Hermitian/symmetric forms
A bilinear form f on a complex (real) vector space V is called Hermitian

(resp., symmetric) if

f(u, v) = f(v, u) ∀u, v ∈ V

In the real case, the bar can be dropped.

4.5 Quadratic forms
For a Hermitian bilinear form f , the function q : V → R defined by

q(u) : = f(u, u) is called the quadratic form associated with f . Note that
q(u) ∈ R even in the complex case, because f(u, u) = f(u, u).

4.6 Theorem
A linear operator T : V → V is selfadjoint if and only if the bilinear form

f(u, v) = 〈Tu, v〉 is Hermitian (in the real case, symmetric).

Proof. If T is selfadjoint, then f(u, v) = 〈Tu, v〉 = 〈u, Tv〉 = 〈Tv, u〉 =
f(v, u). If f is Hermitian, then 〈u, Tv〉 = 〈Tv, u〉 = f(v, u) = f(u, v) =
〈Tu, v〉 = 〈u, T ∗v〉, hence T = T ∗. �

Therefore, Hermitian bilinear forms on Cn are defined by Hermitian matrices.

4.7 Positive definite forms and matrices
A Hermitian (symmetric) bilinear form f on a vector space V is said to

be positive definite if f(u, u) > 0 for all u 6= 0.
A selfadjoint operator T : V → V is said to be positive definite if 〈Tu, u〉 >

0 for all u 6= 0.
A selfadjoint matrix A is said to be positive definite if 〈Ax, x〉 > 0 for all

x 6= 0 (equivalently, x∗Ax > 0 for all x 6= 0).

By replacing “> 0” with “≥ 0”, one gets positive semi-definite bilinear forms,
operators, and matrices.

4.8 Theorem
The following are equivalent:

(a) a bilinear form f(u, v) is an inner product.

(b) f(u, v) = 〈Tu, v〉, where T is a positive definite operator.

(c) in Cn and Rn, f(x, y) = 〈Ax, y〉 with a positive definite matrix A.

26

4.9 Lemma
Let A ∈ Cn×n be a Hermitian matrix with eigenvalues λ1, . . . , λn. Then

‖x‖2
2 min

1≤i≤n
λi ≤ 〈Ax, x〉 ≤ ‖x‖2

2 max
1≤i≤n

λi

for any x ∈ Cn. Furthermore, the left/right inequality turns into an equal-
ity if and only if x is an eigenvector corresponding to the smallest/largest
eigenvalue, respectively.

Proof. Let us denote

λmin = min
1≤i≤n

λi and λmax = max
1≤i≤n

λi.

By Spectral Theorem 3.12, there is an ONB {u1, . . . , un} consisting of eigen-
vectors of A. Then for any vector x =

∑
ciui we have Ax =

∑
λiciui and

〈Ax, x〉 = λ1|c1|2 + · · ·+ λn|cn|2

Therefore
〈Ax, x〉 ≥ λmin

(
|c1|2 + · · ·+ |cn|2

)
= λmin‖x‖2

2

where we used the formula ‖x‖2
2 =

∑n
i=1 |ci|2 derived in the end of Sec-

tion 1.14. We also see that

〈Ax, x〉 − λmin‖x‖2
2 =

n∑
i=1

|ci|2(λi − λmin)

where all the terms are nonnegative because λi ≥ λmin. Thus, the left in-
equality in the lemma turns into an equality if and only if ci = 0 for all i’s
such that λi > λmin, which means that x is an eigenvector corresponding to
the smallest eigenvalue λmin.

Similarly,

〈Ax, x〉 ≤ λmax

(
|c1|2 + · · ·+ |cn|2

)
= λmax‖x‖2

2

and

λmax‖x‖2
2 − 〈Ax, x〉 =

n∑
i=1

|ci|2(λmax − λi)

Thus, the right inequality in the lemma turns into an equality if and only if
ci = 0 for all i’s such that λmax > λi, which means that x is an eigenvector
corresponding to the largest eigenvalue λmax. �

27

4.10 Lemma
Let A ∈ Cn×n be a Hermitian matrix with eigenvalues λ1, . . . , λn. Then

‖A‖2 = max
1≤i≤n

|λi|.

Proof. In the notation of the previous proof

‖Ax‖2
2 = 〈Ax,Ax〉 = λ2

1|c1|2 + · · ·+ λ2
n|cn|2

(remember that λi ∈ R, but ci ∈ C). Denote

λ̄ = max
1≤i≤n

|λi|

the largest absolute value of the eigenvalues of A. Then

‖Ax‖2
2 ≤

[
max
1≤i≤n

λ2
i

] n∑
j=1

|cj|2 = λ̄2 ‖x‖2
2.

Taking the square root and assuming x 6= 0 we get

‖Ax‖2/‖x‖2 ≤ λ̄

Now there exists k ∈ [1, n] such that |λk| = λ̄. If x is an eigenvector corre-
sponding to λk, then ci = 0 for all i 6= k, hence

‖Ax‖2
2 = λ2

k |ck|2 = λ̄2 ‖x‖2
2

Thus
‖A‖2 = max

x 6=0
‖Ax‖2/‖x‖2 = λ̄

4.11 Theorem
A Hermitian matrix A ∈ Cn×n is positive definite iff all its eigenvalues

are positive.

Proof. This follows from Lemma 4.9. �

Similarly, A is positive-semidefinite iff it is Hermitian and all its eigenvalues
are nonnegative.

28

4.12 Corollary
If a matrix A is positive definite, then so is A−1. If an operator T is

positive definite, then so is T−1.

Interestingly, the condition 〈Ax, x〉 > 0 for all x ∈ Cn implies that the matrix
A is Hermitian! We will show this in a few steps.

4.13 Lemma
Let A,B be complex matrices. If 〈Ax, x〉 = 〈Bx, x〉 for all x ∈ Cn, then

A = B. (Proof: see exercises.)

Note: This lemma holds in complex spaces, but it fails in real spaces.

4.14 Corollary
If A is a complex matrix such that 〈Ax, x〉 ∈ R for all x ∈ Cn, then A

is Hermitian. In particular, if 〈Ax, x〉 > 0 for all x ∈ Cn, then A is positive
definite.

Proof. 〈Ax, x〉 = 〈Ax, x〉 = 〈x,Ax〉 = 〈A∗x, x〉, henceA = A∗ by Lemma 4.13.
Now the condition 〈Ax, x〉 > 0 implies that all the eigenvalues of A are pos-
itive, thus A is positive definite by Theorem 4.11. �

4.15 Theorem
A matrix A ∈ Cn×n is positive definite iff there is a nonsingular matrix

B such that A = B∗B.

Proof. “⇐” If A = B∗B, then A∗ = B∗(B∗)∗ = A and 〈Ax, x〉 = 〈Bx,Bx〉 >
0 for any x 6= 0, because B is nonsingular.
“⇒” By Sections 3.13 and 4.11, A = P−1DP , where D is a diagonal matrix
with positive diagonal entries and P a unitary matrix. IfD = diag {d1, . . . , dn},
then denoteD1/2 = diag {

√
d1, . . . ,

√
dn}. NowA = B2 whereB = P−1D1/2P ,

and B is selfadjoint by Section 3.13. �

Remark. A matrix A ∈ Cn×n is positive semi-definite if and only if there is
a matrix B (not necessarily nonsingular) such that A = B∗B.

4.16 Definition
A matrix A ∈ Cm×n is said to have full rank if

rankA = min{m,n}

Otherwise, A is said to be rank deficient.

29

4.17 Theorem
Let A be a rectangular m× n matrix. Then the matrices A∗A and AA∗

are Hermitian and positive semi-definite. If m 6= n and A has full rank, then
the smaller of the two matrices A∗A and AA∗ is positive definite.

Proof. First we verify the Hermitian property:

(A∗A)∗ = A∗(A∗)∗ = A∗A

and similarly (AA∗)∗ = AA∗. Next we verify positive semidefiniteness:

〈A∗Ax, x〉 = 〈Ax,Ax〉 ≥ 0

for any x ∈ Cn and similarly

〈AA∗y, y〉 = 〈A∗y, A∗y〉 ≥ 0

for any y ∈ Cm.
Now let A have full rank. If m ≥ n, then Ker(A) = {0}, hence Ax 6= 0

for any 0 6= x ∈ Cn, so that 〈A∗Ax, x〉 = 〈Ax,Ax〉 > 0, which implies that
A∗A is positive definite. If m < n, then Range(A) = Cm, hence for any
0 6= y ∈ Cm there is 0 6= x ∈ Cn such that y = Ax. Therefore

〈A∗y, x〉 = 〈y, Ax〉 = 〈y, y〉 > 0

which implies A∗y 6= 0 (i.e., Ker(A∗) = {0}). Therefore

〈AA∗y, y〉 = 〈A∗y, A∗y〉 > 0

which implies that AA∗ is positive definite. �

4.18 Theorem
For any A ∈ Cm×n we have

‖A‖2
2 = ‖A∗‖2

2 = ‖A∗A‖2 = ‖AA∗‖2 = λmax

where λmax is the largest eigenvalue of both A∗A and AA∗.

Remark: this theorem gives a practical method to compute ‖A‖2 for small
matrices (when m = 2 or n = 2), since one of the two matrices A∗A and AA∗

is 2× 2, thus its eigenvalues are easily computable.

30

Proof of Theorem 4.18 is long and will be done step by step. In the proof,
‖ · ‖ will always denote the 2-norm.

Lemma. For every vector z ∈ Cn we have ‖z‖ = max‖y‖=1 |〈y, z〉|.
Proof. Indeed, by the Cauchy-Schwarz inequality

|〈y, z〉| ≤ 〈y, y〉1/2〈z, z〉1/2 = ‖z‖

and the equality is attained whenever y is parallel to z. So we can set
y = ± z

‖z‖ and achieve the maximum. �

Step 1. To prove that ‖A‖ = ‖A∗‖ we write

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

sup
‖y‖=1

|〈y, Ax〉| = sup
‖x‖=1

sup
‖y‖=1

|〈A∗y, x〉|

= sup
‖y‖=1

sup
‖x‖=1

|〈x,A∗y〉| = sup
‖y‖=1

‖A∗y‖ = ‖A∗‖

Step 2. To prove that ‖A‖2 = ‖A∗A‖ we write

‖A∗A‖ = sup
‖x‖=1

‖A∗Ax‖ = sup
‖x‖=1

sup
‖y‖=1

|〈y, A∗Ax〉| = sup
‖x‖=1

sup
‖y‖=1

|〈Ay,Ax〉|

Then again by the Cauchy-Schwarz inequality

|〈Ay,Ax〉| ≤ ‖Ax‖ ‖Ay‖ ≤ ‖A‖ ‖A‖ = ‖A‖2

hence ‖A∗A‖ ≤ ‖A‖2. On the other hand,

‖A∗A‖ = sup
‖x‖=1

sup
‖y‖=1

|〈Ay,Ax〉| ≥ sup
‖x‖=1

|〈Ax,Ax〉| = ‖A‖2.

Therefore, ‖A∗A‖ = ‖A‖2.

Step 3. Using an obvious symmetry we conclude that ‖A∗‖2 = ‖AA∗‖
Step 4. By Lemma 4.10, we have

‖A∗A‖2 = max |λi(A∗A)|

Recall that A∗A is a positive-semidefinite matrix, so its eigenvalues λi(A
∗A)

are real and ≥ 0, hence max |λi(A∗A)| = λmax(A∗A), the largest eigenvalue
of A∗A. The same argument applies to AA∗. In particular, we see that

λmax(A∗A) = λmax(AA∗).

This completes the proof of Theorem 4.18. �

31

4.19 Example

Let A =

[
3
4

]
∈ C2×1. For any unit vector x ∈ C1 we can write x = [eiθ],

therefore Ax =

[
3eiθ

4eiθ

]
and

‖Ax‖ =
√
|3eiθ|2 + |4eiθ|2 =

√
32 + 42 = 5

which implies ‖A‖ = 5. Now let us find the norm of A∗ =
[
3 4

]
∈ C1×2,

i.e., ‖A∗‖ = sup‖y‖=1 ‖A∗y‖. For simplicity, we will only use real unit vectors

y ∈ C2, which can be described by y =

[
cosϕ
sinϕ

]
for ϕ ∈ [0, 2π]. We have

A∗y = 3 cosϕ+4 sinϕ, thus ‖A∗y‖ = |3 cosϕ+4 sinϕ|. Finding the maximum
of this function (over the interval 0 ≤ ϕ ≤ 2π) is a Calculus-I problem: the
maximum is achieved at cosϕ = ±3/5 and sinϕ = ±4/5, and we get

‖A∗‖ = max
‖y‖=1

‖A∗y‖ =
9

5
+

16

5
=

25

5
= 5

We see that, indeed, ‖A‖ = ‖A∗‖. Note that A∗A = [25] ∈ C1×1, so obviously
‖A∗A‖ = 25, in full agreement with Theorem 4.18.

4.20 Corollary
If λmax again denotes the largest eigenvalue of A∗A, then

‖Ax‖2 = ‖A‖2‖x‖2 ⇐⇒ A∗Ax = λmaxx.

Hence, the supremum in Section 1.5 is attained (on the eigenvectors of A∗A
corresponding to λmax) and can be replaced by maximum. Moreover, this
implies that the 2-norm of a real matrix is the same, whether it is computed
in the complex space or in the real space.

Proof. On the one hand

‖Ax‖2
2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉

and on the other hand
‖A‖2 = λmax,

so for any vector x with ‖x‖ = 1 we have

‖Ax‖2
2 = ‖A‖2

2 ⇐⇒ 〈A∗Ax, x〉 = λmax.

Then we use Lemma 4.9. �

32

Exercise 4.1. Let A ∈ Cn×n satisfy A∗ = −A. Show that the matrix I −A is invertible.
Then show that the matrix (I −A)−1(I +A) is unitary.

Exercise 4.2. Let A = (aij) be a complex n× n matrix. Assume that 〈Ax, x〉 = 0 for all
x ∈ Cn. Prove that
(a) aii = 0 for 1 ≤ i ≤ n by substituting x = ei
(b) aij = 0 for i 6= j by substituting x = pei +qej then using (a) and putting p, q = ±1,±i
(here i =

√
−1) in various combinations.

Conclude that A = 0.

Exercise 4.3. Let A,B be complex n × n matrices such that 〈Ax, x〉 = 〈Bx, x〉 for all
x ∈ Cn. Prove that A = B.

Exercise 4.4. Find a real 2× 2 matrix A 6= 0 such that 〈Ax, x〉 = 0 for all x ∈ R2. Thus
find two real 2 × 2 matrices A and B such that 〈Ax, x〉 = 〈Bx, x〉 for all x ∈ R2, but
A 6= B.

Exercise 4.5. Find a real 2× 2 matrix A such that 〈Ax, x〉 > 0 for all x ∈ R2, but A is
not positive definite.

33

5 Singular value decomposition (SVD)

A matrix A ∈ Cm×n defines a linear transformation T : Cn → Cm. If B is
an ONB in Cn and B′ an ONB in Cm, then T is represented in the bases B
and B′ by the matrix U∗AV , where U ∈ Cm×m and V ∈ Cn×n are unitary
matrices. The following theorem shows that one can always find bases B and
B′ so that the matrix U∗AV will be diagonal.

Note: D ∈ Cm×n is said to be diagonal if Dij = 0 for i 6= j. It has exactly
p = min{m,n} diagonal entries and can be denoted by D = diag{d1, . . . , dp}.

5.1 Singular value decomposition (SVD)
Let A ∈ Cm×n have rank r and let p = min{m,n}. Then there are

unitary matrices U ∈ Cm×m and V ∈ Cn×n and a real diagonal matrix
D = diag{σ1, . . . , σp} such that

A = UDV ∗ (SVD)

On the diagonal of D, exactly r elements are positive and the other p − r
elements are zero. If we require, additionally, that σ1 ≥ · · · ≥ σr > 0 and
σr+1 = · · · = σp = 0, then the matrix D is unique.

Proof. Observe that (SVD) is equivalent to A∗ = V DTU∗, hence A has an
SVD if and only if A∗ does. Without loss of generality, we assume that
m ≥ n, then fix l = m− n and use the induction on n (taking m = n+ l).

Let σ1 = ‖A‖2. There is a unit vector v1 ∈ Cn such that ‖Av1‖2 = ‖A‖2,
see 4.20, and a unit vector u1 ∈ Cm such that Av1 = σ1u1. Extend v1 to an
ONB {v1, . . . , vn} in Cn and extend u1 to an ONB {u1, . . . , um} in Cm. Let
V1 denote the matrix whose columns are v1, . . . , vn and U1 denote the matrix
whose columns are u1, . . . , um. Then we have

U∗1AV1 = S =

[
σ1 w∗

0 B

]
(∗)

If n = 1, then S = [σ10] is diagonal yielding an SVD. For n > 1, observe that

‖S‖2 = ‖S∗‖2 ≥
∥∥∥∥[σ1 0

w B∗

] [
1
0

]∥∥∥∥
2

=

∥∥∥∥[σ1

w

]∥∥∥∥
2

=
√
σ2

1 + w∗w.

34

On the other hand, the matrices U1 and V1 are unitary, hence ‖S‖2 = ‖A‖2 =
σ1, thus w = 0. By our inductive assumption the matrix B has an SVD
B = ÛD̂V̂ ∗. Now it is easily verified that

A = U1

[
1 0

0 Û

] [
σ1 0

0 D̂

] [
1 0

0 V̂ ∗

]
V ∗1

is an SVD of A.
To prove the uniqueness, observe that

A∗A = V DTDV ∗ and AA∗ = UDDTU∗

hence σ2
1, . . . , σ

2
p are the eigenvalues of both A∗A and AA∗ (hence, these

matrices have common non-zero eigenvalues). Note also that the columns of
U are the eigenvectors of AA∗ and the columns of V are the eigenvectors of
A∗A, see 3.14. �

Note: if A ∈ Rm×n, then
A = UDV T (Real SVD)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices.

5.2 Singular values and vectors
The positive numbers σ1, . . . , σr are called the singular values of A. The

columns v1, . . . , vn of the matrix V (not those of V ∗) are called the right
singular vectors for A, and the columns u1, . . . , um of the matrix U are called
the left singular vectors for A.

5.3 Corollary
For 1 ≤ i ≤ r we have

Avi = σiui, A∗ui = σivi

We also have

KerA = span{vr+1, . . . , vn}, KerA∗ = span{ur+1, . . . , um}
RangeA = span{u1, . . . , ur}, RangeA∗ = span{v1, . . . , vr}

and
rankA = rankA∗ = r.

35

Here is a diagram illustrating the previous relations:

A A∗

v1
σ1−→ u1

σ1−→ v1

v2
σ2−→ u2

σ2−→ v2
...

...
...

...
...

vr
σr−→ ur

σr−→ vr
vr+1 → 0 ur+1 → 0
...

...
...

...
vn → 0 um → 0

5.4 Remarks
For any matrix A ∈ Cm×n

‖A‖2 = ‖A∗‖2 = ‖D‖2 = σ1.

If A is a square invertible matrix, then

A−1 = V D−1U∗

and
‖A−1‖2 = ‖D−1‖2 = σ−1

n .

If A ∈ Cn×n is Hermitian with eigenvalues λ1, . . . , λn, then its singular values
are |λ1|, . . . , |λn| (this follows from Corollary 3.13).

5.5 Computing SVD
In practice, to compute an SVD of a m × 2 matrix, find the eigenvalues

λ1 ≥ λ2 and the corresponding unit eigenvectors v1, v2 of the matrix A∗A,
then compute σ1 =

√
λ1, σ2 =

√
λ2 and u1 = σ−1

1 Av1, u2 = σ−1
2 Av2, and

lastly extend {u1, u2} to an ONB in Cm arbitrarily.

5.6 Reduced SVD
Let A ∈ Cm×n with m > n and rankA = r. Then there is a matrix

Û ∈ Cm×n with orthonormal columns, a unitary matrix V ∈ Cn×n and a
square diagonal matrix D̂ = diag{σ1, . . . , σn} such that

A = ÛD̂V ∗ (reduced SVD)

36

For m < n, the reduced SVD is similar.

Proof. Use the (full) SVD A = UDV ∗ given by Section 5.1 and then erase
the last m− n columns of U and the bottom m− n rows of D.

5.7 Rank-one expansion
We have the following:

A =
r∑
i=1

σiuiv
∗
i (SVD expansion)

Proof. It is enough to observe that for every vj(r∑
i=1

σiuiv
∗
i

)
vj = σjuj = Avj

because v∗i vj = δij.

5.8 Remarks
Recall the Frobenius norm of a matrix, cf. Section 1.4. We have

‖A‖2
F = (Exercise 2.2) = ‖D‖2

F = σ2
1 + · · ·+ σ2

r .

In particular we see that ‖A‖2 ≤ ‖A‖F , cf. Section 5.4.
The value of ‖A‖2

F can be interpreted as the energy of the matrix A. The
energy is conserved under multiplication by unitary matrices, and the SVD
pulls all the energy of a matrix onto its diagonal.

Now, for any unit vectors u and v we have

‖uv∗‖F = 1

hence the SVD expansion presents A as a sum of rank-one matrices so that
each partial sum captures as much energy of A as possible.

5.9 Low-rank approximation
For any 1 ≤ k ≤ r, define

Ak =
k∑
i=1

σiuiv
∗
i

37

Then
σk+1 = ‖A− Ak‖2 = inf

B∈Cm×n

rankB≤k

‖A−B‖2

(with the convention σr+1 = 0). Thus, Ak gives the best approximation to A
by rank k matrices.

Proof. Suppose there is some matrix B with rankB ≤ k such that ‖A−B‖2 <
σk+1. Then dim(KerB) ≥ n− k, and for any nonzero vector v ∈ KerB

‖Av‖2 = ‖(A−B)v‖2 ≤ ‖A−B‖2‖v‖2 < σk+1‖v‖2

On the other hand, there is a (k+1)-dimensional subspace span{v1, . . . , vk+1}
on which ‖Av‖2 ≥ σk+1‖v‖2. Since (n − k) + (k + 1) > n, these two spaces
have a common nonzero vector, a contradiction.

5.10 Corollary
Let A ∈ Cn×n be a nonsingular matrix. Then

min {‖A− As‖2 : As is singular} = σn

Proof. Recall: As is singular iff rankAs ≤ n− 1, then use the previous fact.

5.11 Rank with tolerance ε
The rank of A ∈ Cm×n with tolerance ε > 0 (also called numerical rank)

is defined by
rank(A, ε) = min

‖E‖2≤ε
rank(A+ E)

Note: rank(A, ε) ≤ rankA. The rank with tolerance ε gives the minimum
rank of A under perturbations by small matrices having 2-norm ≤ ε. If A
has full rank, but rank(A, ε) < p = min{m,n} for a small ε, then A is ‘nearly
rank deficient’.

5.12 Corollary
rank(A, ε) equals the number of singular values of A (counted with mul-

tiplicity) that are greater than ε.

Note: rank(A∗, ε) = rank(A, ε), since A and A∗ have the same singular values.

38

5.13 Definition
The vector space Cm×n with the distance between matrices defined by

dist(A,B) = ‖A−B‖2

is a metric space. Then topological notions, like open sets, dense sets, etc.,
apply. Note that if a matrix E ∈ Cm×n has small components, say |eij| < ε
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, then its 2-norm is bounded by

‖E‖2 ≤ ‖E‖F ≤ ε
√
mn.

Thus if we perturb every component of a matrix A ∈ Cm×n by less than ε,
then the perturbed matrix will be within distance < ε

√
mn from A.

5.14 Theorem
Full rank matrices make an open and dense subset of Cm×n.

Openness means that for any full rank matrix A there is an ε > 0 such that
A + E has full rank whenever ‖E‖2 ≤ ε. Denseness means that if A is rank
deficient, then for any ε > 0 there is E, ‖E‖2 ≤ ε, such that A + E has full
rank.

Proof. To prove denseness, let A be a rank deficient matrix and A = UDV ∗

its SVD. For ε > 0, put Dε = εI and E = UDεV
∗. Then ‖E‖2 = ‖Dε‖2 = ε

and

rank(A+ E) = rank(U(D +Dε)V
∗) = rank(D +Dε) = min{m,n}

Openness follows from Section 5.12. Indeed, if σmin > 0 is the smallest
singular value of a full rank matrix A, then every matrix B such that

‖A−B‖2 < σmin

also has full rank.

5.15 Theorem
Diagonalizable matrices make a dense subset of Cn×n.

Proof. See Exercise 6.3.

Exercise 5.1. Let x ∈ Cn and y ∈ Cm. Consider the m× n matrix defined by A = yx∗.

39

(a) Show that rankA = 1.

(b) Show that ‖A‖2 = ‖x‖2‖y‖2.

(c) Show that ‖A‖F = ‖x‖2‖y‖2.

Exercise 5.2. (JPE, September 1996) Compute the singular values of

A =

0 −1.6 0.6
0 1.2 0.8
0 0 0
0 0 0

Exercise 5.3. (JPE, May 2003) Determine the singular value decomposition for the ma-
trix

A =

 3 2
2 3
2 −2

Exercise 5.4. Find the numerical rank with tolerance 0.9 of the matrix

A =

(
3 2
−4 −5

)

Exercise 5.5. Let Q ∈ Cn×n be unitary. Find all singular values of Q.

Exercise 5.6. Show that if two matrices A,B ∈ Cn×n are unitary equivalent, then they
have the same singular values. Is the converse true? (Prove or give a counterexample.)

40

6 Schur decomposition

Recall that every complex matrix A ∈ Cn×n is equivalent to a Jordan matrix.
In other words, for any linear operator T : Cn → Cn there exists a basis in
which T is represented by a Jordan matrix. What if we restrict our interests
to orthonormal bases in Cn? In other words, to what extend one can simplify
a complex matrix by using unitary equivalence?

6.1 Schur decomposition
Any matrix A ∈ Cn×n is unitary equivalent to an upper triangular matrix

T . Moreover, one can find T is such a way that the eigenvalues of A appear
in any given order on the diagonal of T .

Note: the unitary equivalence means thatQ∗AQ = T for some unitary matrix
Q. The columns of the matrix Q are called Schur vectors.

Proof. We use induction on n. The theorem is obvious for n = 1. Assume
that it holds for matrices of order less than n. Let λ be an eigenvalue of
A and let x be a unit eigenvector for λ. Let Q1 be a unitary matrix whose
first column is x (note: such a matrix exists, because there is an ONB in Cn

whose first vector is x, by Section 1.12, and then Q1 can be constructed so
that the vectors of that ONB are the columns of Q1). Note that Q1e1 = x,
and hence Q∗1x = e1, since Q−1

1 = Q∗1. Hence, we have

Q∗1AQ1e1 = Q∗1Ax = λQ∗1x = λe1

so e1 is an eigenvector of the matrix Q∗1AQ1 for the eigenvalue λ. Thus,

Q∗1AQ1 =

[
λ w∗

0 B

]
with some w ∈ Cn−1 and B ∈ C(n−1)×(n−1). By the inductive assumption,
there is a unitary matrix Q̂ ∈ C(n−1)×(n−1) such that Q̂∗BQ̂ = T̂ , where T̂ is
upper triangular. Let

Q = Q1

[
1 0

0 Q̂

]

41

which is a unitary matrix. Next,

Q∗AQ =

[
1 0

0 Q̂∗

] [
λ w∗

0 B

] [
1 0

0 Q̂

]
=

[
λ w∗Q̂

0 Q̂∗BQ̂

]
=

[
λ w∗Q̂

0 T̂

]
which is upper triangular, as required.

6.2 Normal matrices
A matrix A ∈ Cn×n is said to be normal if AA∗ = A∗A.

Note: unitary and Hermitian matrices are normal.

6.3 Lemma
If A is normal and Q unitary, then B = Q∗AQ is also normal (i.e., the

class of normal matrices is closed under unitary equivalence).

Proof. Note that B∗ = Q∗A∗Q and BB∗ = Q∗AA∗Q = Q∗A∗AQ = B∗B.

6.4 Lemma
If A is normal and upper triangular, then A is diagonal.

Proof. We use induction on n. For n = 1 the theorem is trivial. Assume
that it holds for matrices of order less than n. Compute the top left element
of the matrix AA∗ = A∗A. On the one hand, it is

n∑
i=1

a1iā1i =
n∑
i=1

|a1i|2

On the other hand, it is just |a11|2. Hence, a12 = · · · = a1n = 0, and

A =

[
a11 0
0 B

]
One can easily check that AA∗ = A∗A implies BB∗ = B∗B. By the inductive
assumption, B is diagonal. �

Note: Any diagonal matrix is obviously normal.

42

6.5 Theorem
A matrix A ∈ Cn×n is normal if and only if it is unitary equivalent to a

diagonal matrix. In that case the Schur decomposition takes form

Q∗AQ = D

where D is a diagonal matrix, and the columns of Q (Schur vectors) become
eigenvectors of A

Proof. It follows from Sections 6.1–6.4 and 3.14. �

6.6 Remark
Three classes of complex matrices have the same property: they are uni-

tary equivalent to a diagonal matrix (i.e., admit an ONB consisting of eigen-
vectors). The difference between those classes lies in restrictions on the
eigenvalues: unitary matrices have eigenvalues on the unit circle (|λ| = 1),
Hermitian matrices have real eigenvalues (λ ∈ R), and now normal matrices
have arbitrary complex eigenvalues.

6.7 Real Schur decomposition
If A ∈ Rn×n, then there exists an orthogonal matrix Q such that

QTAQ =

R11 R12 · · · R1m

0 R22 · · · R2m
...

...
. . .

...
0 0 · · · Rmm

where each diagonal block Rii is either a 1× 1 matrix or a 2× 2 matrix.

Proof. We use the induction on n. If the matrix A has a real eigenvalue,
the we can reduce the dimension and use induction just like in the proof of
Schur Theorem 6.1. If A has no real eigenvalues, then by Lemma 2.14 there
is a two-dimensional subspace W ⊂ R2 invariant under A. Let {x1, x2} be
an ONB of W . The invariance under A implies

Ax1 = r11 x1 + r21 x2

Ax2 = r12 x1 + r22 x2

43

with some rij ∈ R. We now extend {x1, x2} to an ONB {x1, . . . , xn} in Rn

and denote by Q̃ the orthogonal matrix with columns x1, . . . , xn. Observe
that Q̃e1 = x1 and Q̃e2 = x2, hence Q̃Tx1 = e1 and Q̃Tx2 = e2. Therefore,

Q̃TAQ̃e1 = Q̃TAx1 = Q̃T (r11 x1 + r21 x2) = r11 e1 + r21 e2

and similarly

Q̃TAQ̃e2 = Q̃TAx2 = Q̃T (r12 x1 + r22 x2) = r12 e1 + r22 e2

Thus,

Q̃TAQ̃ =

[
R11 R̃12

0 R̃22

]
where

R11 =

[
r11 r12

r21 r22

]
R̃12 is some 2× (n−2) matrix and R̃22 is some (n−2)× (n−2) matrix. Now
we can apply our inductive assumption to the (n− 2)× (n− 2) matrix R̃22.

Exercise 6.1. (combined from JPE, October 1990 and May 1997) Let A ∈ Cn×n be a
normal matrix.

(a) Prove that A− λI is normal for any λ ∈ C.

(b) Prove that ‖Ax‖ = ‖A∗x‖ for all x.

(c) Prove that (λ, x) is an eigenpair of A if and only if (λ̄, x) is an eigenpair of A∗.
(Hence, A and A∗ have the same eigenvectors.)

Exercise 6.2. (JPE, September 2002) A matrix A ∈ Cn×n is said to be skew Hermitian
if A∗ = −A.

(a) Prove that if A is skew Hermitian and B is unitary equivalent to A, then B is also
skew Hermitian.

(b) Prove that the eigenvalues of a skew Hermitian matrix are purely imaginary, i.e.
they satisfy λ̄ = −λ.

(c) What special form does the Schur decomposition take for a skew Hermitian matrix
A?

Exercise 6.3. (JPE, September 1998). Show that diagonalizable complex matrices make
a dense subset of Cn×n. That is, for any A ∈ Cn×n and ε > 0 there is a diagonalizable
B ∈ Cn×n such that ‖A−B‖2 < ε.

44

Exercise 6.4 (Bonus). (JPE, May 1996). Let T be a linear operator on a finite dimen-
sional complex inner product space V , and let T ∗ be the adjoint of T . Prove that T = T ∗

if and only if T ∗T = T 2.

45

7 Gaussian elimination and LU decomposition

7.1 Gaussian Elimination
Let A ∈ Cn×n be a matrix with a11 6= 0. Denote A(1) = A and a

(1)
ij = aij.

We define multipliers

mi1 = a
(1)
i1 /a

(1)
11 for i = 2, . . . , n

and replace the i-th row a′i of the matrix A with a′i−mi1a
′
1 for all i = 2, . . . , n.

This creates zeros in the first column of A(1), which then takes the form

A(2) =

a

(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2n

...
...

. . .
...

0 a
(2)
n2 · · · a

(2)
nn

where

a
(2)
ij = a

(1)
ij −mi1a

(1)
1j for 2 ≤ i, j ≤ n

Next, assume that a
(2)
22 6= 0. Then we can continue this process and define

multipliers
mi2 = a

(2)
i2 /a

(2)
22 for i = 3, . . . , n

and replace the i-th row a′i of the matrix A(2) with a′i − mi2a
′
2 for all i =

3, . . . , n. This creates a matrix, A(3), with zeros in the second column below
the main diagonal, and so on. If all the numbers a

(i)
ii , 1 ≤ i ≤ n − 1, are

different from zero, then one ultimately obtains an upper triangular matrix

A(n) = U =

a11 a12 a13 · · · a1n

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n

0 0 a
(3)
33 · · · a

(3)
3n

...
...

.
...

0 0 · · · 0 a
(n)
nn

The elements a

(i)
ii , 1 ≤ i ≤ n, are called pivots.

The above procedure has to stop prematurely if (and only if) one of the

pivots a
(i)
ii , 1 ≤ i ≤ n − 1, happens to be zero. In that case we say that the

Gaussian elimination fails.

46

7.2 Principal minors
Let A ∈ Cn×n. For 1 ≤ k ≤ n, the k-th principal minor of A is the k × k

matrix formed by the entries in the first k rows and the first k columns of A
(i.e., the top left k× k block of A). We denote the k-th principal minor of A
by Ak.

7.3 Theorem (Criterion of failure)
Gaussian elimination fails if and only if detAk = 0 for some k = 1, . . . , n−

1. This is because for each k = 1, . . . , n

detAk = a
(1)
11 · · · a

(k)
kk

7.4 Gauss matrices
Assume that A ∈ Cn×n has non-singular principal minors up to the order

n− 1, so that the Gaussian elimination works. For each j = 1, . . . , n− 1 the
Gauss matrix Gj is defined by

Gj =

1 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0
. . . 1 · · · ...

...
...

...
. . . −mj+1,j

. . .
...

...
...

...
. . .

...
... 1 0

0 0 · · · −mn,j · · · 0 1

Note that Gj = I −m(j)e∗j where

m(j) =

0
...
0

mj+1,j
...

mn,j

7.5 Lemma

For each j = 1, . . . , n− 1 we have GjA
(j) = A(j+1), and therefore

U = A(n) = Gn−1 · · ·G2G1A

47

7.6 Lemma
For each j = 1, . . . , n− 1 we have

Lj := G−1
j = I +m(j)e∗j

so that

Lj =

1 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0
. . . 1 · · · ...

...
...

...
. . . mj+1,j

. . .
...

...
...

...
. . .

...
... 1 0

0 0 · · · mn,j · · · 0 1

and

L := (I +m(1)e∗1)(I +m(2)e∗2) · · · (I +m(n−1)e∗n−1) = I +
n−1∑
k=1

m(k)e∗k

so that

L =

1 0 0 · · · 0
m21 1 0 · · · 0

...
.

...
mn−1,1 mn−1,2 · · · 1 0
mn1 mn2 · · · mn,n−1 1

is a unit lower triangular matrix (see below).

7.7 Remarks
A matrix L is said to be unit lower triangular if it is lower triangular and

has ones on its diagonal. Note that detL = 1. Also, L−1 is also a unit lower
triangular matrix (this follows from Cramer’s rule). If L1 and L2 are both
unit lower triangular matrices, then so it L1L2. In a similar way we define
unit upper triangular matrices.

7.8 Theorem (LU decomposition)
Let A ∈ Cn×n have non-singular principal minors up to the order n− 1.

Then there is a decomposition

A = LU

48

where L is a unit lower triangular matrix and U is an upper triangular matrix.
In that case

detA = detU = u11 · · ·unn
If in addition, A is non-singular, then the LU decomposition is unique.

Proof. The existence is the result of Gaussian elimination. To prove unique-
ness, we argue by way of contradiction. Let A = L̃Ũ = LU . As A is non-
singular, it follows that Ũ is also non-singular, and hence L−1L̃ = UŨ−1.
Now, L−1 is unit lower triangular, so that L−1L̃ is also unit lower triangular.
On the other hand, UŨ−1 is upper triangular. The only matrix that is both
unit lower triangular and upper triangular is the identity matrix I, hence
L−1L̃ = UŨ−1 = I. This implies L̃ = L and Ũ = U .

7.9 Forward and backward substitutions
Assume that A ∈ Cn×n is nonsingular and is decomposed as A = LU ,

where L is lower triangular and U upper triangular. To solve a system of
equations Ax = b, one writes it as LUx = b and then solves it in two steps:

Step 1. Denote Ux = y and solve the lower triangular system Ly = b for y
via “forward substitution” (finding y1, . . . , yn subsequently).

Step 2. Solve the system Ux = y for x via “backward substitution” (finding
xn, . . . , x1 subsequently).

7.10 Cost of computation
The cost of computation is measured in “flops”, where a flop (floating

point operation) is an arithmetic operation (addition, subtraction, multipli-
cation, division, or a root extraction). Let us estimate the cost of the LU
decomposition. The cost of computation of A(2) is n−1 divisions to compute
the multipliers and 2n(n − 1) flops (n − 1 rows with 2n flops per row) to
make the zeros in the first column, i.e. total of approximately 2n2 flops. The
computation of A(3) then takes 2(n − 1)2 flops, and so on. Thus the total
computational cost for the LU factorization is

2
(
n2 + (n− 1)2 + · · ·+ 12

)
=

2n(n+ 1)(2n+ 1)

6
≈ 2n3

3

flops.
If one solves a system Ax = b, then the LU decomposition is followed by

solving two triangular systems (Section 7.9). The cost to solve one triangular

49

system is about n2 flops. So there is an additional cost of 2n2 flops, which is
negligible compared to 2n3/3. Hence, the total cost is still ≈ 2n3/3.

Note that the LU decomposition takes most of the computations required
for solving a system Ax = b. Thus, this method is particularly well suited to
very common situations in which one is solving systems Ax = b for more than
one vector b, but with the same matrix A. In that case the LU decomposition
is done just once, and then each additional b will require ≈ 2n2 flops.

7.11 Computation of A−1

Assume that A ∈ Cn×n is non-singular and has non-singular principal
minors up to the order n−1, so that the Gaussian elimination works. One can
find the matrix X = A−1 by solving the system AX = I for X ∈ Cn×n. This
amounts to solving n systems of linear equations Axk = ek, for k = 1, . . . , n,
where xk stands for the k-th column of the matrix X. The computational
cost of this procedure is 2n3/3 + n× 2n2 = 8n3/3. As a matter of fact, this
is the fastest way of computing the inverse A−1.

7.12 Diagonally dominant matrices
A matrix A ∈ Cn×n such that

|aii| >
∑
j 6=i

|aij|

for all i is said to be strictly row diagonally dominant. If

|ajj| >
∑
i 6=j

|aij|

for all j the matrix is said to be strictly column diagonally dominant.

7.13 Theorem
If a matrix A is strictly row (or column) diagonally dominant, then

detAk 6= 0 for all 1 ≤ k ≤ n. Hence, no zero pivots will be encountered
during Gaussian elimination.

Note that if A is strictly column diagonally dominant, then all the multipliers
(i.e., the elements of Lj) have absolute value less than one.

50

7.14 Remarks
It is easy to find matrices for which Gaussian elimination does not work.

For example, if A = [0 1
1 0], then the method fails instantly. (Furthermore,

for this A there is no decomposition A = LU with L lower triangular and U
upper triangular; see Exercise 7.2.)

In practice, when a pivot is close to zero, then multipliers become very
large, and numerical computations tend to become very inaccurate. One
tries to avoid this problem by using an appropriate pivoting strategy.

7.15 Partial pivoting
The idea is to avoid small (in absolute value) pivots by interchanging

rows, if necessary. At any step of Gaussian elimination, one looks for the
largest (in absolute value) element in the pivot column (at or below the
main diagonal). For a non-singular matrix, it cannot happen that all of
those elements in that column are zero. Then the row containing the largest
element is interchanged with the current row. Now the largest element is on
the main diagonal. After that the usual elimination step is performed.

7.16 Remarks
Partial pivoting ensures that all the multipliers (i.e., the elements of Lj)

have absolute value less than or equal to one.
If a matrix A is strictly column diagonally dominant, then the Gaussian

elimination with no pivoting is equivalent to Gaussian elimination with par-
tial pivoting (i.e., no row interchanges are necessary).

7.17 Complete pivoting
The method of complete pivoting involves both row and column inter-

changes to make use of the largest pivot available. This method provides
additional insurance against buildup of computational errors.

Exercise 7.1. Find a nonzero matrix A ∈ R2×2 that admits at least two LU decompo-
sition, i.e. A = L1U1 = L2U2, where L1 and L2 are two distinct unit lower triangular
matrices and U1 and U2 are two distinct upper triangular matrices.

Exercise 7.2. Show that the matrix

[
0 1
1 0

]
admits no LU decomposition, even if we only

require that L be lower triangular (not necessarily unit lower triangular).

51

Exercise 7.3. The spectral radius of a matrix A ∈ Cn×n is defined by

ρ(A) = max{|λ| : λ eigenvalue of A}.

(a) Show that ρ(A) ≤ ‖A‖2.

(b) Give an example of a 2× 2 matrix A such that ρ(A) < 1 but ‖A‖2 > 100.

(c) Show that if
lim
n→∞

‖An‖2 = 0,

then ρ(A) < 1.

Exercise 7.4 (Bonus). In the notation of the previous problem, show that if ρ(A) < 1,
then

lim
n→∞

‖An‖2 = 0.

Hint: use Jordan decomposition.

52

8 Cholesky factorization

8.1 LDM∗ Decomposition
Assume that A ∈ Cn×n has non-singular principal minors up to the order

n. Then there are unique matrices L,D,M such that L,M are unit lower
triangular and D is diagonal, and

A = LDM∗

Proof. Let A = LU be the LU decomposition of A and u11, . . . , unn denote
the diagonal entries of U . Set D = diag{u11, . . . , unn}. Then the matrix
M∗ : = D−1U is unit upper triangular, and A = LDM∗.

To establish uniqueness, let A = LDM∗ = L1D1M
∗
1 . By the uniqueness

of the LU decomposition, we have L = L1. Hence, (D−1
1 D)M∗ = M∗

1 . Since
both M∗ and M∗

1 are unit upper triangular, the diagonal matrix D−1
1 D must

be the identity matrix. Hence, D = D1, and then M = M1.

8.2 Corollary
If, in addition, A is Hermitian, then there exist a unique unit lower tri-

angular matrix L and a unique diagonal matrix D such that

A = LDL∗

Moreover, the matrix D has real diagonal entries.

Proof. By the previous theorem A = LDM∗. Then A = A∗ = MD∗L∗, and
by the uniqueness of the LDM∗ decomposition we have L = M and D = D∗.

8.3 Sylvester’s Theorem
Let A ∈ Cn×n be a Hermitian matrix. Then A is positive definite if and

only if detAk > 0 for all k = 1, . . . , n.

Proof. Let A be positive definite. By Section 4.15, A = B∗B, hence

detA = detB × detB∗ = detB × detB = | detB|2 > 0.

Any principal minor Ak is also a Hermitian positive definite matrix, there-
fore by the same argument detAk > 0. Conversely, let detAk > 0. By
Corollary 8.2 we have A = LDL∗. Denote by Lk and Dk the k-th prin-
cipal minors of L and D, respectively. Then Ak = LkDkL

∗
k. Note that

53

detDk = detAk > 0 for all k = 1, . . . , n, therefore all the diagonal entries
of D are real and positive. Lastly, 〈Ax, x〉 = 〈DL∗x, L∗x〉 = 〈Dy, y〉 > 0
because y = L∗x 6= 0 whenever x 6= 0. �

8.4 Corollary
Let A be a positive definite matrix. Then aii > 0 for all i = 1, . . . , n.

Furthermore, let 1 ≤ i1 < i2 < · · · < ik ≤ n, and let A′ be the k × k matrix
formed by the intersections of the rows and columns of A with numbers
i1, . . . , ik. Then detA′ > 0.

Proof. Just reorder the coordinates in Cn so that A′ becomes a principal
minor.

8.5 Cholesky Factorization
Let A ∈ Cn×n be Hermitian and positive definite. Then there exists a

unique lower triangular matrix G with real positive diagonal entries such that

A = GG∗

Proof. By Corollary 8.2 we have A = LDL∗. Let D = diag{d1, . . . , dn}. As
it was shown in the proof of 8.3, all di are real and positive. Let D1/2 =
diag{

√
d1, . . . ,

√
dn}. Then D = D1/2D1/2 and setting G = LD1/2 gives

A = GG∗. The diagonal entries of G are
√
d1, . . . ,

√
dn, so they are positive.

To establish uniqueness, let A = GG∗ = G̃G̃∗. Then G̃−1G = G̃∗(G∗)−1.
Since this is the equality of a lower triangular matrix and an upper triangular
one, then both matrices are diagonal:

G̃−1G = G̃∗(G∗)−1 = D′ = diag{d′1, . . . , d′n}.

Hence, G̃ = G(D′)−1 and G̃∗ = D′G∗ ⇒ G̃ = G(D′)∗. Thus the diagonal
components of G̃ are g̃ii = gii/d

′
i = giid̄

′
i. This gives us d′id̄

′
i = |di|2 = 1, and

on the other hand d′i = gii/g̃ii must be a real positive number. Therefore
d′i = 1 for each i = 1, . . . , n, hence D′ = I, and so G̃ = G. �

8.6 Algorithm for Cholesky factorization
Here we outline the algorithm for computing the matrix G = (gij) from

the matrix A = (aij), in the real case, A ∈ Rn×n. Note that G is lower

54

triangular, so gij = 0 for i < j. Hence,

aij =

min{i,j}∑
k=1

gikgjk

Setting i = j = 1 gives a11 = g2
11, so g11 =

√
a11. Next, for 2 ≤ i ≤ n we

have ai1 = gi1g11, hence

gi1 = ai1/g11 i = 2, . . . , n

This gives the first column of G. Now, inductively, assume that we already
have the first j − 1 columns of G. Then ajj =

∑j
k=1 g

2
jk, hence

gjj =

√√√√ajj −
j−1∑
k=1

g2
jk

Next, for j + 1 ≤ i ≤ n we have aij =
∑j

k=1 gikgjk, hence

gij =
1

gjj

(
aij −

j−1∑
k=1

gikgjk

)

8.7 Cost of computation
The computation of gij takes ≈ 2j flops for each i = j, . . . , n, so the total

is
n∑
j=1

2j(n− j) ≈ 2n
n2

2
− 2

n3

3
=
n3

3

Recall that the LU decomposition takes about 2n3/3 flops, so the Cholesky
factorization is nearly twice as fast. It is also more stable than the LU
decomposition, see Chapter 12.

8.8 Remark
The above algorithm can be used to verify that a given real symmetric

matrix, A, is positive definite. Whenever all the square root extractions in
Section 8.6 are possible and give non zero numbers, i.e. whenever

a11 > 0 and ajj −
j−1∑
k=1

g2
jk > 0 ∀j ≥ 2

the matrix A is positive definite.

55

Exercise 8.1. (JPE, May 1994) Let A ∈ Rn×n be given, symmetric and positive definite.
Define A0 = A, and consider the sequence of matrices defined by

Ak = GkG
t
k and Ak+1 = Gt

kGk

where Ak = GkG
t
k is the Cholesky factorization for Ak. Prove that the Ak all have the

same eigenvalues.

56

9 QR decomposition

9.1 Gram-Schmidt orthogonalization (revisited)
Let v1, . . . , vn ∈ Cn be a basis. The Gram-Schmidt orthogonalization, see

Section 1.12, gives an ONB {u1, . . . , un} in Cn such that

v1 = r11u1,

v2 = r12u1 + r22u2,

v3 = r13u1 + r23u2 + r33u3,

. . .

vn = r1nu1 + r2nu2 + · · ·+ rn−1,nun−1 + rnnun

where rik = 〈vk, ui〉 for i < k ≤ n and rkk = ‖wk‖. Note that rkk > 0.

9.2 QR decomposition
For any A ∈ Cm×n with m ≥ n there exist a unitary matrix Q ∈ Cm×m

and an upper triangular matrix R ∈ Cm×n such that

A = QR

In addition, if A has full rank (i.e., rankA = n), then Q can be chosen so
that the diagonal entries of R are real and positive.

Proof. First, assume that m = n and A is nonsingular. Let v1, . . . , vn be the
columns of A. Since they make a basis in Cn, we can apply Gram-Schmidt
orthogonalization and obtain a system of equations 9.1. Let Q be the matrix
whose columns are u1, . . . , un and

R =

r11 r12 · · · r1n

0 r22 · · · r2n
...

...
. . .

...
0 0 · · · rnn

Then the above equations can be rewritten in a matrix form

A = QR

Since the columns of Q make an ONB, it is a unitary matrix.

57

Next, assume that m = n but the matrix A is singular, so that its columns
v1, . . . , vn are linearly dependent. Then the Gram-Schmidt algorithm 1.12
can be adjusted accordingly. In that case, for some k we may have vk ∈
span{v1, . . . , vk−1}, and then wk = 0, in the notation of Section 1.12. Now
the vector uk = wk/‖wk‖ cannot be determined. Instead, we need to set uk
to an arbitrary unit vector orthogonal to u1, . . . , uk−1, and then continue the
calculations as described in Section 1.12. In that case, in the equations of
Section 1.12 we get rk,k = 0, but the procedure goes through.

Now let m > n. We extend the matrix A on the right by adding m − n
columns consisting of zeroes. Denote by A′ the resulting m×m matrix with
columns

v1, v2, . . . , vn−1, vn, vn+1 = 0, . . . , vm = 0

This is a square matrix, so it has a QR decomposition

A′ = Q′R′

The last m− n columns of the matrix A are zeroes, so we obtain

0 = vk =
k∑
i=1

r′1ku
′
k

for all k = n + 1, . . . ,m. Since u′1, . . . , u
′
m are basis vectors, r′ik = 0 for all

k > n and 1 ≤ i ≤ m, hence the last m− n columns of R′ are zeroes.
Now we erase the last m−n columns of the matrices A′ and R′ to obtain

the desired QR decomposition

A = QR

Theorem 9.2 is proved. �

Note: if A is a real matrix, then the matrices Q and R are also real, and so
Q is orthogonal.

9.3 Reduced (“skinny”) QR decomposition
Let A ∈ Cm×n with m ≥ n. Then there is a matrix Q̂ ∈ Cm×n with

orthonormal columns and an upper triangular matrix R̂ ∈ Cn×n such that

A = Q̂R̂

Proof. By Theorem 9.2, A = QR. Let Q̂ be the left m×n rectangular block
of Q (the first n columns of Q). Let R̂ be the top n × n square block of R
(note that the remainder of R is zero). Then A = Q̂R̂. �

58

9.4 Corollary
If, in addition, A has full rank (rankA = n), then

(a) The columns of Q̂ make an ONB in the column space of A (this is the
subspace in Cn spanned by the columns of A).

(b) One can find Q̂ so that the diagonal entries of R̂ will be real and positive
(rii > 0).

(c) The Q̂ and R̂ described in part (b) are unique.

Proof. (a) and (b) follow from Section 9.2. To prove (c), let A = Q̂R̂ = Q̂1R̂1.
Then A∗A = R̂∗R̂ = R̂∗1R̂1. Since A∗A is positive definite, we can use
the uniqueness of Cholesky factorization and obtain R̂ = R̂1. Then also
Q̂1 = Q̂R̂R̂−1

1 = Q̂. �

9.5 Cost of computation
In order to compute the reduced QR decomposition 9.3, one needs to

apply Gram-Schmidt orthogonalization to the n columns of the matrix A
and compute the n columns u1, . . . , un of the matrix Q̂. The vector uk is
found by

wk = vk −
k−1∑
i=1

〈vk, ui〉ui, and uk =
wk
‖wk‖

,

see Section 1.12. Here each scalar product 〈vk, ui〉 requires m multiplications
and m additions, and then subtracting every term 〈vk, ui〉ui from vk requires
m multiplication and m subtractions, for each i = 1, . . . , k. The total is 4mk
flops. The subsequent computation of ‖wk+1‖ and then uk+1 requires 3m
flops, which is a relatively small number, and we ignore it. The total flop
count is

n∑
k=1

4mk ≈ 2mn2

9.6 Modified Gram-Schmidt orthogonalization
The algorithm 1.12 is often called classical Gram-Schmidt orthogonaliza-

tion, as opposed to the modified Gram-Schmidt orthogonalization we present
next. Given a basis {v1, . . . , vn} in V , we denote v

(1)
i = vi for i = 1, . . . , n,

then compute
u1 = v

(1)
1 /‖v(1)

1 ‖,

59

and then modify all the remaining vectors by the rule

v
(2)
i = v

(1)
i − 〈v

(1)
i , u1〉u1 for 1 < i ≤ n.

After that, inductively, for each k ≥ 2 we compute

uk = v
(k)
k /‖v(k)

k ‖,

and then modify all the remaining vectors by the rule

v
(k+1)
i = v

(k)
i − 〈v

(k)
i , uk〉uk for k < i ≤ n.

The modified and classical Gram-Schmidt methods produce the same or-
thonormal basis {u1, . . . , un} (i.e., these two methods are mathematically
equivalent). They are based on a different logic, though.

The classical Gram-Schmidt computes uk by making the current vector
vk orthogonal to all the previously constructed vectors u1, . . . , uk−1, without
touching the remaining vectors vk+1, . . . , vn. The amount of work increases
as k grows from 1 to n. This is a “lazy man schedule” - do as little as possible
and leave the rest of the work “for later”.

The modified Gram-Schmidt computes uk and makes all the remaining
vectors vk+1, . . . , vn orthogonal to it. Once this is done, the remaining vectors
will be in the orthogonal complement to the subspace span{u1, . . . , uk} and
there is no need to involve the previously constructed vectors anymore. The
amount of work decreases as k grows from 1 to n. This is an “industrious
man schedule” - do as much as possible now and reduce the workload.

Overall, both methods require the same amount of flops. But the mod-
ified Gram-Scmidt has an important advantage that it gives more accurate
numerical results in computer calculations; see programming assignment.

9.7 Computation of SVD
We note that there is no finite algorithms for the computation of SVD

decomposition 5.1 or its reduced version 5.6 (except for small matrices, see
Remark 5.5). The reason will be discussed in Chapter 16. In practice, SVD
is computed by special iterative algorithms. The computation of reduced
SVD requires approximately

2mn2 + 11n3 flops.

60

Classical Gram-Schmidt:

w1= v1 u1 = w1

‖w1‖

w2 =v2−〈v2, u1〉u1 u2 = w2

‖w2‖

w3 =v3−〈v3, u1〉u1−〈v3, u2〉u2 u3 = w3

‖w3‖

w4 =v4−〈v4, u1〉u1−〈v4, u2〉u2−〈v4, u3〉u3 u4 = w4

‖w4‖

...
...

...

wk=vk−〈vk, u1〉u1−〈vk, u2〉u2 − · · · −〈vk, uk−1〉uk−1 uk = wk

‖w4‖

...
...

...
...

The amount of work increases at each step (the red rows grow longer)

Modified Gram-Schmidt:

w1= v1 u1 = w1

‖w1‖

w2 =v2−〈v2, u1〉u1 u2 = w2

‖w2‖

w3 =v3−〈v3, u1〉u1−〈v3, u2〉u2 u3 = w3

‖w3‖

w4 =v4−〈v4, u1〉u1−〈v4, u2〉u2−〈v4, u3〉u3 u4 = w4

‖w4‖

...
...

...

wk=vk−〈vk, u1〉u1−〈vk, u2〉u2 − · · · −〈vk, uk−1〉uk−1 uk = wk

‖w4‖

...
...

...
...

The amount of work decreases at each step (the red columns get shorter)

61

Exercise 9.1. (JPE, September 2002) Consider three vectors

v1 =

1
ε
0
0

 , v2 =

1
0
ε
0

 , v3 =

1
0
0
ε

 .

where ε� 1.

(a) Use the classical Gram-Schmidt method to compute 3 orthonormal vectors q1, q2, q3,
making the approximation that 1 + ε2 ≈ 1 (that is, replace any term containing ε2

or smaller with zero, but retain terms containing ε). Are qi (i = 1, 2, 3) pairwise
orthogonal? If not, why not?

(b) Repeat (a) using the modified Gram-Schmidt orthogonalization process. Are the
qi(i = 1, 2, 3) pairwise orthogonal? If not, why not?

62

10 Overdetermined linear systems

10.1 Definition

A system of linear equations Ax = b with A ∈ Cm×n, x ∈ Cn and b ∈ Cm,
is said to be overdetermined if m > n. Since there are more equations than
unknowns, the system usually has no solutions; so we will write it as Ax ≈ b.

Recall that the matrix A defines a linear transformation Cn → Cm. It is
clear that Ax = b has a solution if and only if b ∈ RangeA. In the latter
case the solution is unique if and only if KerA = {0}, i.e. rankA = n.

10.2 Least squares solution

Let Ax ≈ b be an overdetermined linear system. A vector x ∈ Cn that
minimizes the function

E(x) = ‖b− Ax‖2

is called a least squares solution of Ax ≈ b. The vector r = b− Ax is called
the residual vector and ‖r‖2 the residual norm.

10.3 Normal equations

Let Ax ≈ b be an overdetermined linear system. Then the linear system

A∗Ax = A∗b

is called the system of normal equations associated with Ax ≈ b.

10.4 Theorem

Let Ax ≈ b be an overdetermined linear system. Then

(a) A vector x minimizes E(x) = ‖b − Ax‖2 if and only if it is an exact
solution of the system Ax = b̂, where b̂ is the orthogonal projection of
b onto RangeA.

(b) A vector x minimizing E(x) always exists. It is unique if and only if A
has full rank, i.e., if and only if KerA = {0}.

(c) A vector x minimizes E(x) if and only if it is a solution of the system
of normal equations A∗Ax = A∗b.

63

Proof. Denote W = RangeA. We have an orthogonal decomposition Cm =
W ⊕W⊥, in particular b = b̂ + r, where b̂ ∈ W and r ∈ W⊥ are uniquely
determined by b. Now Pythagorean Theorem gives

[E(x)]2 = ‖b− Ax‖2
2 = ‖ b− b̂︸︷︷︸

r∈W⊥

+ b̂− Ax︸ ︷︷ ︸
∈W

‖2

= ‖r‖2
2 + ‖b̂− Ax‖2

2 ≥ ‖r‖2
2

Hence, minxE(x) = ‖r‖2 is attained whenever Ax = b̂. Since b̂ ∈ RangeA,
there is always an x ∈ Cn such that Ax = b̂. The vector x is unique whenever
the map A : Cn → Cm is injective, i.e., whenever KerA = {0}, i.e., whenever
A has full rank. This proves (a) and (b).
To prove (c), recall that (RangeA)⊥ = KerA∗, by Section 3.7, therefore
r = b − b̂ ∈ KerA∗. Moreover, b − Ax ∈ KerA∗ if and only if Ax = b̂,
because b̂ and r are uniquely determined by b. Now

x minimizes E(x) ⇔ Ax = b̂ ⇔ Ax− b ∈ KerA∗ ⇔ A∗Ax = A∗b

The proof is complete. �

Cn

b

b̂

r

W = RangeA

W⊥

Cm

A

Next we give examples that lead to overdetermined systems and least squares
problems.

64

10.5 Linear least squares fit

Let (xi, yi), 1 ≤ i ≤ m, be points in the xy plane. For any straight line
y = a0 + a1x one defines the “combined distance” of that line from the given
points by

E(a0, a1) =

[m∑
i=1

(a0 + a1xi − yi)2

]1/2

The line y = a0 +a1x that minimizes the function E(a0, a1) is called the least
squares fit to the points (xi, yi). This is a basic tool in statistics. Let

A =

1 x1

1 x2
...

...
1 xm

 x =

[
a0

a1

]
b =

y1

y2
...
ym

Then

E(a0, a1) = ‖b− Ax‖2

Hence the least squares fit is equivalent to the least squares problem Ax = b.

10.6 Polynomial least squares fit

Generalizing 10.5, one can fit a set of data points (xi, yi), 1 ≤ i ≤ m, by a
polynomial y = p(x) = a0 + a1x + · · · + anx

n with n + 1 ≤ m. The least
squares fit is based on minimizing the function

E(a0, . . . , an) =

[m∑
i=1

(
a0 + a1xi + · · ·+ anx

n
i − yi

)2
]1/2

This is equivalent to the least squares problem for an overdetermined linear
system

a0 + a1xi + · · ·+ anx
n
i = yi 1 ≤ i ≤ m

in which a0, . . . , an are unknowns.

65

10.7 Continuous least squares fit

Instead of fitting a discrete data set (xi, yi) one can fit a continuous function
y = f(x) on [0, 1] by a polynomial y = p(x) ∈ Pn(R). The least squares fit is
based on minimization of

E(a0, . . . , an) =

[∫ 1

0

|f(x)− p(x)|2 dx
]1/2

The solution of this problem is the orthogonal projection of f(x) onto Pn(R).
To find the solution, consider a basis {1, x, . . . , xn} in Pn(R). Then a0, . . . , an
can be found by solving the system of equations (analogous to normal equa-
tions)

n∑
j=0

aj〈xj, xi〉 = 〈f, xi〉 1 ≤ i ≤ n

The matrix of coefficients here is

〈xj, xi〉 =

∫ 1

0

xi+j dx =
1

1 + i+ j

for 0 ≤ i, j ≤ n.

Next we present three methods for solving the least square problem.

10.8 Algorithm 1, based on normal equations

This is the simplest one:

1. Form the matrix A∗A and the vector A∗b.
2. Compute the Cholesky factorization A∗A = GG∗.
3. Solve the lower-triangular system Gz = A∗b for z.
4. Solve the upper-triangular system G∗x = z for x.

The cost of this algorithm is dominated by steps 1 and 2. Because of sym-
metry, the computation of A∗A requires mn(n + 1) ≈ mn2 flops. The com-
putation of A∗b requires only 2mn flops, a relatively small amount which we
ignore. The Cholesky factorization takes n3/3 flops (see 8.7), a total of

≈ mn2 + 1
3
n3 flops

66

10.9 Algorithm 2, based on QR decomposition

Using the reduced QR decomposition (Section 9.3) allows us to rewrite the
system of normal equations as

R̂∗Q̂∗Q̂R̂x = R̂∗Q̂∗b

If A has full rank, the matrix R̂∗ is nonsingular and we cancel it out. Also,
since the columns of Q̂ are orthonormal vectors, Q̂∗Q̂ = I. Hence

R̂x = Q̂∗b

This suggests the following algorithm:

1. Compute the reduced QR decomposition A = Q̂R̂
2. Compute the vector Q̂∗b.
3. Solve the upper-triangular system R̂x = Q̂∗b for x.

The cost of this algorithm is dominated by step 1, the reduced QR factor-
ization, which requires

≈ 2mn2 flops

see 9.5. This is approximately twice as much as Algorithm 1 requires.

67

10.10 Algorithm 3, based on SVD decomposition

Using the reduced SVD decomposition 5.6 allows us to rewrite the system of
normal equations as

V D̂Û∗ÛD̂V ∗x = V D̂Û∗b

The matrix V is unitary and we cancel it out. If A has full rank, the matrix
D̂ is nonsingular and we cancel it out, too. Since the columns of Û are
orthonormal vectors, Û∗Û = I. Hence

D̂V ∗x = Û∗b

This suggests the following algorithm:

1. Compute the reduced SVD decomposition A = ÛD̂V ∗

2. Compute the vector Û∗b.
3. Solve the diagonal system D̂z = Û∗b for z.
4. Set x = V z.

The cost of this algorithm is dominated by step 1, the reduced SVD decom-
position, which requires

≈ 2mn2 + 11n3 flops

see Section 9.7. This is approximately the same amount as in Algorithm 2
for m� n, but for n ≈ m this algorithm is much more expensive.

Algorithm 1 is the simplest and the cheapest, but it often gives inaccurate
results in numerical calculations. Algorithms 2 and 3 are more complicated
and expensive (in terms of flops), but usually give more accurate numerical
results, for the reasons we learn in the next chapters.

68

10.11 The case of a rank deficient A

If rankA < n, then the least squares solution is not unique: the set of
solutions is {x ∈ Cn : Ax = b̂}, which is a line or a plane parallel to KerA.
In this case the “best” solution is the one of minimal norm:

Axbest = b̂ and ‖xbest‖2 ≤ ‖x‖2 ∀x : Ax = b̂

Algorithms 1 and 2 fail to find any solution for a rank deficient matrix A. On
the contrary, Algorithm 3 easily finds the minimal norm solution as follows.
When solving the diagonal system D̂z = Û∗b for z, we just set zi = 0
whenever dii = 0 (in that case (Û∗b)i = 0 automatically). This obviously
gives a minimal norm vector z. Since ‖x‖2 = ‖V z‖2 = ‖z‖2, we get a
minimal norm vector x as well.

Exercise 10.1. (JPE, September 1997) Let

A =

 3 3
0 4
4 −1

 , and b =

 2
−2

1

Use the Gram-Schmidt process to find an orthonormal basis for the column space of
A. Factor A into a product QR where Q ∈ R3×2 has an orthonormal set of column
vectors and R ∈ R2×2 is upper triangular. Solve the least squares problem Ax = b.
Compute the norm of the residual vector, ‖r‖.

Exercise 10.2. (JPE, May 1998) Given the data (0,1), (3,4) and (6,5), use a QR
factorization technique to find the best least squares fit by a linear function. Also,
solve the problem via the system of normal equations.

69

11 Machine arithmetic

11.1 Decimal number system
In our decimal system, natural numbers are represented by a sequence of

digits
N = (an · · · a1a0)10 = 10nan + · · ·+ 10a1 + a0

where ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} are digits. Fractional numbers require an
additional fractional part:

f = .d1d2 . . . dt . . . = 10−1d1 + 10−2d2 + · · ·+ 10−tdt + · · ·

which may be finite or infinite.

11.2 Floating point representation
Alternatively, any real number can be written as a product of a fractional

part with a sign and a power of ten:

r =
(
±.d1d2 . . . dt . . .

)
× 10e

where di are decimal digits and e ∈ Z is an integer. For example, 18.2 =
0.182 × 102 = 0.0182 × 103, etc. This is called floating point representation
of decimal numbers. The part .d1 . . . dt is called mantissa and e is called
exponent. By changing the exponent e with a fixed mantissa .d1 . . . dt we
can move (“float”) the decimal point, for example 0.182 × 102 = 18.2 and
0.182× 101 = 1.82.

11.3 Normalized floating point representation
To avoid unnecessary multiple representations of the same number (as

that of 18.2 by 0.182× 102 and 0.0182× 103 above), we require that d1 6= 0.
We say the floating point representation is normalized if d1 6= 0. Then
0.182× 102 is the only normalized representation of the number 18.2.

For every positive real r > 0 there is a unique integer e ∈ Z such that
f : = 10−er ∈ [0.1, 1). Then r = f × 10e is the normalized representation
of r. For most of real numbers, the normalized representation is unique,
however, there are exceptions, such as(

.9999 . . .
)
× 100 =

(
.1000 . . .

)
× 101,

which admit dual normalized representations. In such cases one of the two
representation has a finite fractional part, and the other – infinite.

70

11.4 Binary number system
In the binary number system, the base is 2 (instead of 10), and there

are only two digits: 0 and 1. Any natural number N can be written, in the
binary system, as a sequence of binary digits:

N = (an · · · a1a0)2 = 2nan + · · ·+ 2a1 + a0

where ai ∈ {0, 1}. For example, 5 = 1012, 11 = 10112, 64 = 10000002, etc.
Binary system, due to its simplicity, is used by all computers. In the modern
computer world, a bit means a binary digit.

11.5 Other number systems
Now suppose we are working in a number system with base β ≥ 2. By

analogy with Sections 11.1 and 11.4, any natural number N can be written,
in that system, as a sequence of digits:

N = (an · · · a1a0)β = βnan + · · ·+ βa1 + a0

where ai ∈ {0, 1, . . . , β − 1} are digits. Fractional numbers require an addi-
tional fractional part:

f = .d1d2 . . . dt . . . = β−1d1 + β−2d2 + · · ·+ β−tdt + · · ·

which may be finite or infinite. The floating point representation of real
numbers in the system with base β is given by

r =
(
±.d1d2 . . . dt . . .

)
× βe

where .d1 . . . dt is called mantissa and e ∈ Z is called exponent. Again, we say
that the above representation is normalized if d1 6= 0, this ensures uniqueness
for almost all real numbers.

11.6 Machine floating point numbers
Every computer can only handle a certain number of bits in its mem-

ory or in its processor. Hence, the number of digits di’s in the mantissa
must be fixed, and possible values of the exponent e are limited to a certain
fixed interval. Assume that the length of the mantissa is set to t digits and
the exponent is bounded by L ≤ e ≤ U . Then the four integers β, t, L, U
completely characterize the set of real numbers

r =
(
±.d1d2 . . . dt

)
× βe, L ≤ e ≤ U

71

that a given machine system can handle. Note that zero cannot be rep-
resented in the above format, since d1 6= 0. Every real machine systems
includes a few special numbers, like zero, that require a different form of rep-
resentation. We also note that any real computer can usually adopt many
possible machine systems, with different values of t, L, U , see Section 11.8.

11.7 Remark
The maximal (in absolute value) number that a machine system can han-

dle is M = βU(1− β−t). The minimal positive number is m = βL−1.

11.8 Examples
Most modern computers conform to the IEEE floating-point standard

(ANSI/IEEE Standard 754-1985), which provides two machine systems:

I© Single precision is characterized by t = 24, L = −125 and U = 128.

II© Double precision is characterized by t = 53, L = −1021 and U = 1024.

11.9 Relative errors
How can real numbers be represented in a machine system characterized

by β, t, L, U? Let x 6= 0 be a real number with a normalized floating point
representation

x =
(
±0.d1d2 . . .

)
× βe

where the number of digits may be finite or infinite. If e > U or e < L,
then x cannot be correctly represented in the machine system (it is either
“too large” or “too small”). If e ∈ [L,U] is within the right range, then the
mantissa has to be reduced to t digits (if it is longer or infinite). There are
two standard ways to do such a reduction:

(a) keep the first t digits and chop off the rest;

(b) round off to the nearest available, i.e. use the rules{
.d1 . . . dt if dt+1 < β/2
.d1 . . . dt + .0 . . . 01 if dt+1 ≥ β/2

Denote the obtained number by xc (the computer representation of x). The
relative error in this representation can be estimated as

xc − x
x

= ε or xc = x(1 + ε)

72

where the maximal possible value of ε is

u =

{
β1−t for chopped arithmetic (a)

1
2
β1−t for rounded arithmetic (b)

The number u is called the unit round off or the machine precision.

11.10 Examples
a) For the IEEE floating-point single precision standard with chopped

arithmetic u = 2−23 ≈ 1.2× 10−7. In other words, approximately 7 decimal
digits are accurate.

b) For the IEEE floating-point double precision standard with chopped
arithmetic u = 2−52 ≈ 2.2×10−16. In other words, approximately 16 decimal
digits are accurate.

11.11 Example
Consider the system of equations[

0.01 2
1 3

] [
x
y

]
=

[
2
4

]
The exact solution is x = 200

197
≈ 1.015 and y = 196

197
≈ 0.995.

Let us solve this system by using chopped arithmetic with base β = 10
and t = 2 (i.e. working with a two digit mantissa). If we use the Gaussian
elimination without pivoting, then the computed solution will be xc = 0.0 and
yc = 1.0. The value of x is 100% off! Increasing the length of the mantissa
to t = 3 gives xc = 2.0 and yc = 0.994, not much of improvement, since xc is
still about 100% off. We postpone the explanation until Section 13.7.

On the other hand, if we apply the partial pivoting (interchanging rows),
then the computed solution with t = 2 will be xc = 1.0, yc = 1.0, and with
t = 3 it will be xc = 1.02, yc = 0.994, which is good. The table below shows
that the relative error of the numerical solutions is proportional to minimal
round-off error 10−t, with a factor of about 2 to 5.

relative error min. error factor
t = 2 1.5× 10−2 10−2 1.5
t = 3 4.8× 10−3 10−3 4.8
t = 4 2.2× 10−4 10−4 2.2

73

Conclusion: Gaussian elimination without pivoting may lead to catastrophic
errors and unreliable numerical solutions. Pivoting is more reliable... but see
the next example:

11.12 Example
Consider another system of equations:[

3 1
1 0.35

] [
x
y

]
=

[
5
1.7

]
The exact solution here is x = 1 and y = 2. The largest coefficient is at the
top left corner already, so there is no need for pivoting.

Solving this system in chopped arithmetic with β = 10 and t = 2 gives
xc = 0 and yc = 5, which is 150% off. Increasing the length of the mantissa
to t = 3 gives xc = 0.883 and yc = 2.35, so the relative error is 17%. With
t = 4, we obtain xc = 0.987 and yc = 2.039, now the relative error is 2%.
The table below shows that the relative error of the numerical solutions is
proportional to the minimal round-off error 10−t, with a factor of about 150
to 200.

relative error min. error factor
t = 2 1.5× 10−0 10−2 150
t = 3 1.7× 10−1 10−3 170
t = 4 2.0× 10−2 10−4 200

We postpone a complete analysis of these two examples until Section 13.9.

11.13 Computational errors
Let x, y be two real numbers represented in a machine system by xc, yc.

An arithmetic operation x ∗ y, where ∗ is one of +,−,×,÷, is performed
by a computer in the following way. The computer finds xc ∗ yc exactly
and then represents that number by the machine system. The result is z =
(xc∗yc)c. Note that, generally, z is different from (x∗y)c, which is the machine
representation of the exact result x ∗ y. Hence, z is not necessarily the best
representation for x∗y. In other words, the computer makes additional round
off errors during at each computation. Assuming that xc = x(1 + ε1) and
yc = y(1 + ε2) we have

(xc ∗ yc)c = (xc ∗ yc) (1 + ε3) = [x(1 + ε1)] ∗ [y(1 + ε2)] (1 + ε3)

where |ε1|, |ε2|, |ε3| ≤ u.

74

11.14 Multiplication and division
For multiplication, we have

z = xy(1 + ε1)(1 + ε2)(1 + ε3) ≈ xy(1 + ε1 + ε2 + ε3)

(here we ignore higher order terms), so the relative error is (approximately)
bounded by 3u. A similar estimate can be made in the case of division:

z =
x(1 + ε1)(1 + ε3)

y(1 + ε2)
≈ x

y
(1 + ε1 − ε2 + ε3)

(here we use Taylor expansion for (1 + ε2)−1 and ignore higher order terms).
Hence, machine multiplication and machine division increase relative errors
by a factor of three, at most.

11.15 Addition and subtraction
For addition, we have

z = (x+ y + xε1 + yε2)(1 + ε3) = (x+ y)

(
1 +

xε1 + yε2

x+ y

)
(1 + ε3)

The relative error is now small if |x| and |y| are not much bigger than |x+y|.
Again ignoring higher order terms, we can bound the relative error of z by

|x|+ |y|
|x+ y|

u + u

Thus, the operation of addition increases relative errors by a factor of

|x|+ |y|
|x+ y|

+ 1

Similar estimates can be made in the case of subtraction x− y: it increases
relative errors by a factor

|x|+ |y|
|x− y|

+ 1

We see that the addition and subtraction increase relative errors by a variable
factor which depends on x and y. This factor may be arbitrarily large if
x + y ≈ 0 for addition or x − y ≈ 0 for subtraction. This phenomenon is
known as catastrophic cancelation. It occurred in our Example 11.11, where
we attempted to solve the system without pivoting.

75

Exercise 11.1. (JPE, September 1993). Solve the system(
0.001 1.00
1.00 2.00

)(
x
y

)
=

(
1.00
3.00

)
using the LU decomposition with and without partial pivoting and chopped arithmetic
with base β = 10 and t = 3 (i.e., work with a three digit mantissa). Obtain computed
solutions (xc, yc) in both cases. Find the exact solution, compare, make comments.

Exercise 11.2. (JPE, May 2003). Consider the system(
ε 1
2 1

)(
x
y

)
=

(
1
0

)
Assume that |ε| � 1. Solve the system by using the LU decomposition with and with-
out partial pivoting and adopting the following rounding off models (at all stages of the
computation!):

a+ bε = a (for a 6= 0),

a+ b/ε = b/ε (for b 6= 0).

Find the exact solution, compare, make comments.

76

12 Conditioning

12.1 Condition number of a function
Let V and W be two normed vector spaces, and f : V → W a function.

The condition number κ of f at a point x ∈ V is defined by

κ = κ(f, x) = lim
δ→0

sup
‖∆x‖≤δ

(
‖∆f‖
‖f‖

/
‖∆x‖
‖x‖

)
where ∆f = f(x+ ∆x)− f(x). This is the maximal factor by which relative
errors are magnified by f in the vicinity of the point x. The condition number
characterizes the sensitivity of f(x) to small perturbations of x.

12.2 Lemma
Let Cn → Cn be a linear operator defined by a nonsingular matrix A ∈

Cn×n, and let ‖ · ‖ be a norm on Cn. Then for every x ∈ Cn

κ(A, x) ≤ ‖A‖ ‖A−1‖ and sup
x
κ(A, x) = ‖A‖ ‖A−1‖

where ‖A‖ denotes the induced matrix norm.

Proof. Let y = Ax. Since ∆y = A(∆x), then

κ(A, x) = sup
∆x 6=0

‖A(∆x)‖
‖∆x‖

‖x‖
‖Ax‖

= ‖A‖ ‖x‖
‖Ax‖

and supx ‖x‖/‖Ax‖ = supy ‖A−1y‖/‖y‖ = ‖A−1‖. �

12.3 Condition number of a matrix
For a nonsingular matrix A ∈ Cn×n, the condition number with respect

to a given matrix norm ‖ · ‖ is defined by

κ(A) = ‖A‖ ‖A−1‖

We denote by κ1(A), κ2(A), κ∞(A) the condition numbers with respect to
the 1-norm, 2-norm, and ∞-norm, respectively.

77

12.4 Theorem
Let A ∈ Cn×n be a nonsingular matrix and

Ax = b (1)

(A+ ∆A)(x+ ∆x) = b+ ∆b (2)

Assume that ‖∆A‖ is small so that ‖∆A‖ ‖A−1‖ < 1. Then

‖∆x‖
‖x‖

≤ κ(A)

1− κ(A)‖∆A‖‖A‖

(
‖∆A‖
‖A‖

+
‖∆b‖
‖b‖

)

Proof. Expanding out the second equation (2), subtracting the first equation
(1), and multiplying by A−1 gives

∆x = −A−1∆A(x+ ∆x) + A−1∆b

Taking norms and using the triangle inequality gives

‖∆x‖ ≤ ‖A−1‖ ‖∆A‖
(
‖x‖+ ‖∆x‖

)
+ ‖A−1‖ ‖∆b‖

Using ‖b‖ ≤ ‖A‖ ‖x‖, the above inequality rearranges to(
1− ‖A−1‖ ‖∆A‖

)
‖∆x‖ ≤

(
‖A−1‖ ‖∆A‖+ ‖A−1‖ ‖A‖‖∆b‖

‖b‖

)
‖x‖

Recall that ‖∆A‖ ‖A−1‖ < 1, so the first factor above is positive. The
theorem now follows immediately. �

Note: The smaller the condition number κ(A), the tighter (better) estimate
on ‖∆x‖/‖x‖ we get. The value of κ(A) thus characterizes the sensitivity of
the solution of the linear system Ax = b to small perturbations of A and b.

Interpretation. Let Ax = b be a system of linear equations to be solved
numerically. A computer represents A by Ac = A + ∆A and b by bc =
b+∆b. Assume that the computer finds the exact solution xc of the perturbed
system, i.e., xc satisfies Acxc = bc. Denote by ∆x = xc − x the resulting
error, where x denotes the exact solution of the true system Ax = b. Then
the relative error ‖∆x‖/‖x‖ can be estimated by Theorem 12.4.

78

12.5 Corollary
Consider the problem of solving a system of linear equations Ax = b with

a nonsingular matrix A. Then:

(a) If we fix A and vary b, we get a map fA : b 7→ x. The condition number
of fA satisfies

κ(fA, b) ≤ κ(A) and sup
b∈Cn

κ(A, b) = κ(A)

(b) If we fix b and vary A, we get a map fb : A 7→ x. The condition number
of fb satisfies

κ(fb, A) ≤ κ(A)

Proof. Both inequalities immediately follow from Theorem 12.4. To prove
the equality in (a), note that x = A−1b and apply Lemma 12.2. �

Remark. In the part (b), we actually have equality κ(fb, A) = κ(A), but the
proof is beyond the scope of our course (it can be found in the textbook).

12.6 Corollary
Assume that in Theorem 12.4 we have ‖∆A‖ ≤ u‖A‖ and ‖∆b‖ ≤ u‖b‖,

i.e. the matrix A and the vector b are represented with the best possible
machine accuracy. Then

‖∆x‖
‖x‖

≤ 2uκ(A)

1− uκ(A)

12.7 Remark
Assume that u ≈ 10−l, i.e. the machine system provides l accurate digits.

Then if κ(A) ≈ 10k with k < l, then ‖∆x‖/‖x‖ ≤ 10−(l−k), i.e. the numerical
solution provides l − k accurate digits.

In most practical considerations (as above) only the order of magnitude of
κ(A) matters, not its exact value. For instance, there is little difference
between κ(A) = 100 and κ(A) = 200, it is still about 102.

Linear systems Ax = b with small κ(A) (∼ 1, 10, 102) are often called
well-conditioned. Those with large κ(A) (∼ 103, 104, etc.) are called ill-
conditioned. Their numerical solutions are unreliable and should be avoided.

79

12.8 Proposition

1. We have

κ(A) =
sup‖x‖=1 ‖Ax‖
inf‖x‖=1 ‖Ax‖

In other words, κ(A) shows how much the linear map A : Cn → Cn

distorts the unit sphere.

2. If aj denotes the j-th column of A, then κ(A) ≥ ‖aj‖/‖ai‖

3. κ(A) ≥ 1 and κ(I) = 1

4. κ2(A) = 1 if and only if A is a multiple of a unitary matrix.

5. For any unitary matrix Q,

κ2(QA) = κ2(AQ) = κ2(A)

6. If D = diag{d1, . . . , dn} then

κ2(D) = κ1(D) = κ∞(D) =
max1≤i≤n |di|
min1≤i≤n |di|

7. If A is Hermitian with eigenvalues λ1, . . . , λn, then

κ2(A) =
maxi |λi|
mini |λi|

8. If σ1 ≥ σ2 ≥ · · · ≥ σn denote the singular values of A, then

κ2(A) = σ1/σn

9. We have

[κ2(A)]2 = κ2(A∗A) = κ2(AA∗) =
λmax(A∗A)

λmin(A∗A)

10. We have κ2(A) = κ2(A∗).

80

12.9 Remark
Another way to look at the condition number κ(A) is the following:

min

{
‖A− As‖2

‖A‖2

: As is singular

}
=

1

κ2(A)

hence 1/κ2(A) is the relative distance from A to the nearest singular matrix.
This follows from Section 5.10.

12.10 Remark
Here is yet another way to look at the condition number κ(A). Since in

practice the exact solution x of the system Ax = b is rarely known, one can
find its numerical solution xc and compute the residual vector r = b − Axc.
If it is small, the numerical solution xc is good. But how small should it be?

Since Axc = b+ r, Theorem 12.4 with ∆A = 0 implies that

‖xc − x‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

If A is well conditioned, the smallness of ‖r‖/‖b‖ ensures the smallness of the
relative error ‖xc − x‖/‖x‖. If A is ill-conditioned, such a conclusion cannot
be made: the smallness of r does not guarantee a good accuracy of xc.

12.11 Definition
The condition number of a rectangular m × n matrix A with m > n is

defined by

κ(A) : =
sup‖x‖=1 ‖Ax‖
inf‖x‖=1 ‖Ax‖

,

motivated by Proposition 12.8 (1). Under this definition, the property 8 of
12.8 still holds, and the property 9 must be shortened to

[κ2(A)]2 = κ2(A∗A) =
λmax(A∗A)

λmin(A∗A)
.

The above definition emphasizes the geometric interpretation of κ2(A): it is
the maximum distortion factor of the map A : Cn → Cm.

Exercise 12.1. (JPE, September 1997). Show that, given a matrix A ∈ Rn×n, one can
choose vectors b and ∆b so that if

Ax = b

81

A(x+ ∆x) = b+ ∆b

then
||∆x||2
||x||2

= κ2(A)
||∆b||2
||b||2

Explain the significance of this result for the ‘optimal’ role of condition numbers in the
sensitivity analysis of linear systems.
(Hint: use SVD to show that it is enough to consider the case where A is a diagonal
matrix.)

Exercise 12.2. (JPE, combined May 1997 and May 2008)

(a) Compute the condition numbers κ1, κ2 and κ∞ for the matrix

A =

(
1 2

1.01 2

)
(b) Show that for every non-singular 2× 2 matrix A we have κ1(A) = κ∞(A).

Exercise 12.3. (JPE, September 2002). Consider a linear system Ax = b. Let x∗ be the
exact solution, and let xc be some computed approximate solution. Let e = x∗ − xc be
the error and r = b−Axc the residual for xc. Show that

1

κ(A)

‖r‖
‖b‖
≤ ‖e‖
‖x∗‖

≤ κ(A)
‖r‖
‖b‖

Interpret the above inequality for κ(A) close to 1 and for κ(A) large.

Exercise 12.4. Prove properties 7 and 8 of condition numbers listed in Proposition 12.8.

Exercise 12.5. Suppose the condition number of a rectangular matrix A ∈ Cm×n with
m > n is defined by

κ(A) : =
sup‖x‖=1 ‖Ax‖
inf‖x‖=1 ‖Ax‖

.

Prove that

[κ2(A)]2 = κ2(A∗A) =
λmax(A∗A)

λmin(A∗A)

82

13 Stability

13.1 Round-off error analysis
When a system of linear equations Ax = b is solved numerically, the

computer only knows machine representations Ac and bc of A and b. Then,
at best, it can find xc = A−1

c bc, instead of x = A−1b. We know that the
resulting error will be

E1 : =
‖xc − x‖
‖x‖

. 2uκ(A)

by 12.6 (we ignored the small term uκ(A) in the denominator). This may
be bad enough already when the matrix A is ill-conditioned. However, in
reality things appear to be even worse, since the computer does not evaluate
xc = A−1

c bc precisely, apart from trivial cases. The computer executes a
certain sequence of arithmetic operations (a program) designed to solve the
given system Ax = b. As the program runs, more and more round-off errors
are made at each step and the errors compound toward the end. As a result,
the computer finds a vector x̂c different from xc, i.e. Acx̂c 6= bc. The actual
output x̂c depends not only on the machine system but even more on the
algorithm that is used to solve the system Ax = b. See the diagram nearby.

Of course, we do not expect the final error

E2 : =
‖x̂c − x‖
‖x‖

to be smaller than E1, but we hope that it will not be much larger either. In
other words, a good algorithm should not magnify the errors caused already
by conditioning. If this is the case, the algorithm is said to be stable.

13.2 Stable algorithms (definition)
An algorithm for solving a system of linear equations Ax = b is said to

be stable (or numerically stable) if

‖x̂c − x‖
‖x‖

≤ Cuκ(A)

where C > 0 is a constant. More precisely, C must be independent of A, b
and the machine system, but it may depend on the size of the matrix, n.

83

-

-XXXXXXXXXXXXXXXXXXz-

r
r
b

r
r
r

exact A, b

machine Ac, bc

‘virtual’ Âc, bc

exact x

‘idealistic’ xc

computed x̂c

exact solution

exact solution

exact solution

computer
algorithm

13.3 Backward error analysis
In order to estimate the final error E2, a typical approach is to “trace

the errors backwards” and find another matrix, Â = A + δA that satisfies
(A + δA)x̂c = bc. We call A + δA a virtual matrix, since it is neither given
nor computed numerically. Moreover, it is far from being unique. One wants
to find a virtual matrix as close to A as possible, to make δA small, for the
reasons made clear below.

13.4 Backward stable algorithms (definition)
An algorithm for solving a system of linear equations Ax = b is said to

be backward stable if there exists a virtual matrix A+ δA such that

‖δA‖
‖A‖

≤ Cu

where C > 0 is a constant. More precisely, C must be independent of A, b
and the machine system, but it may depend on the size of the matrix, n.

13.5 Theorem
Every backward stable algorithm is stable.

Proof. By Theorem 12.4,

‖x̂c − x‖
‖x‖

≤ κ(A)

1− κ(A)‖δA‖‖A‖

‖δA‖
‖A‖

. Cuκ(A). �

The proofs of stability (or instability) of algorithms of linear algebra are
quite involved. We only present relevant facts here, without proofs.

84

13.6 Theorem (without proof)
If one uses the LU decomposition A = LU for solving a system Ax = b,

then there is a virtual matrix A+ δA such that

‖δA‖ ≤ C‖L‖ ‖U‖u,

where C > 0 is a constant independent of A and the machine system (but
it may depend on the size of the matrix, n). Thus, the LU algorithm is
unstable, its accuracy deteriorates when ‖L‖ ‖U‖ is large.

13.7 Example
In Example 11.11, the LU decomposition (without pivoting) is[

0.01 2
1 3

]
=

[
1 0

100 1

] [
0.01 2

0 −197

]
hence ‖L‖ ‖U‖ ∼ 104. This explains the huge errors of the corresponding
numerical solutions that we observed.

13.8 Remarks

(a) Applying partial pivoting ensures that the entries of L are uniformly
bounded: |Lij| ≤ 1. Also, it is observed in practice that in most cases
‖U‖ ≤ C‖A‖, hence the partial pivoting algorithm is usually stable.

(b) The LU decomposition with complete pivoting is always stable, in this
case one can prove that ‖U‖ ≤ C‖A‖.

(c) The Cholesky factorization A = GG∗ of a positive definite matrix A
is a particular form of the LU decomposition, so the above analysis
applies. In this case, we know that

aii =
i∑

j=1

g2
ij

see Section 8.6. Thus, one can easily prove that ‖G‖ ≤ C‖A‖1/2, hence
the Cholesky factorization is always stable.

85

13.9 Example
In Example 11.11, the matrix[

0.01 2
1 3

]
has singular values σ1 = 3.7037 and σ2 = 0.5319, hence its condition number
is κ(A) = σ1/σ2 = 6.96. This explains a moderate factor (≤ 5) by which
relative errors of the numerical solutions are related to the minimal error
10−t in Example 11.11.

In Example 11.12, the matrix[
3 1
1 0.35

]
has singular values σ1 = 3.33 and σ2 = 0.0150, hence its condition number
is κ(A) = 222. This explains a large factor (up to 200) by which relative
errors of the numerical solutions are related to the minimal error 10−t in
Example 11.12, even though we used a stable algorithm (the LU with com-
plete pivoting). Remember that a stable algorithm should not increase errors
already caused by conditioning, but it cannot cancel them out.

Exercise 13.1. (JPE, September 2004) Compute the LU decomposition A = LU for the
matrix

A =

[
0.01 2

1 3

]
Compute ‖L‖∞‖U‖∞. What does this imply about the numerical stability of solving a
system of linear equations Ax = y by LU decomposition without pivoting?

86

14 Numerical solution of overdetermined systems

In Chapter 10 we discussed the least squares solution of overdetermined sys-
tems of equations

Ax = b

where A ∈ Cm×n with m ≥ n and presented three algorithms: (i) based on
normal equations, (ii) based on the QR decomposition, and (iii) based on the
SVD decomposition.

14.1 Comparison of algorithms

(a) Algorithm 10.8 via normal equations has many advantages. It is the
most compact and elegant one, and it is twice as cheap as the other two.
It should be used whenever the computations are precise. However, if
computations involve round-off errors, other considerations come into
play. If the matrix A is ill-conditioned (i.e. its condition number is
large, κ2(A)� 1), then by Section 12.11

κ2(A∗A) = [κ2(A)]2

hence the condition of the matrix A∗A will be much worse than that of
A, and solving the normal equations can be disastrous. For example:

A =

 1 1
ε 0
0 ε

then

A∗A =

[
1 + ε2 1

1 1 + ε2

]
If ε is so small that ε2 < u (for example, ε = 10−4 in single precision),
then the matrix A∗A will be stored in computer memory as [1 1

1 1], which
is a singular matrix, so the algorithm via normal equations will fail.
Still, it is possible to find a good numerical solution to the original
system Ax = b if one uses more elaborate methods.

(b) Due to Proposition 12.8, κ2(A) = κ2(QA) for any unitary matrix
Q ∈ Cm×m, hence κ2(A) = κ2(R) in the QR-based algorithm 10.9
and κ2(A) = κ2(D) in the SVD-based algorithm 10.10. Hence, these

87

methods are safe, regarding the conditioning of the problem. The other
aspect of numerical algorithms is stability. It turns out that the classi-
cal Gram-Schmidt orthogonalization (Section 1.12) is unstable, hence it
leads to unpredictable round-off errors in numerical computations. On
the other hand, the modified Gram-Schmidt algorithm (Section 9.6) is
stable; see programming assignment. Even better algorithms for con-
structing the QR decomposition are based on reflection and rotation
matrices, which we will learn in this chapter.

(c) The SVD-based algorithm 10.10 requires the computation of the SVD
of the matrix A, for which no simple algorithm exists (the computation
of SVD is beyond the scope of this course). Standard software packages
(like MATLAB) use only stable algorithms for the SVD computation.
Practically, the SVD-based method 10.10 is as good as the QR-based
method 10.9 (see programming assignment). It is observed that the
SVD-based method is more reliable when the matrix A is nearly sin-
gular or just singular, cf. Section 10.11.

14.2 Hyperplanes and reflections
Let V be a finite dimensional vector space. A subspace W ⊂ V is called

a hyperplane if dimW = dimV − 1. Note that in this case dimW⊥ = 1.
Let W ⊂ V be a hyperplane. For any vector v ∈ V we have a unique

decomposition v = w+w′, where w ∈ W and w′ ∈ W⊥. The linear operator
P on V defined by Pv = w−w′ is called a reflection (or reflector) across the
hyperplane W . It is identity on W and negates vectors orthogonal to W .

14.3 Householder reflector matrices
Let x 6= 0 be a vector in Rn or Cn. The n× n matrix

P = I − 2
xx∗

x∗x
= I − 2

xx∗

‖x‖2

is called the Householder reflector matrix corresponding to x. Obviously, P
is unchanged if x is replaced by cx for any c 6= 0.

14.4 Theorem
Let P be the reflector matrix corresponding to a vector x 6= 0. Then

(a) Px = −x.

88

(b) Py = y whenever 〈y, x〉 = 0.

(c) P is Hermitian (in the real case it is symmetric).

(d) P is unitary (in the real case it is orthogonal).

(e) P is involution, i.e. P 2 = I.

Proof. Direct calculation.

14.5 Theorem
Let y be a vector in Rn or Cn. Choose a scalar σ so that |σ| = ‖y‖ and

σ · 〈e1, y〉 ∈ R. Suppose that x = y + σe1 6= 0. Let P = I − 2xx∗/‖x‖2 be
the reflector matrix defined in 14.3. Then Py = −σe1.

Proof. First, 〈y − σe1, y + σe1〉 = ‖y‖2 − σ〈e1, y〉+ σ̄〈y, e1〉 − |σ|2 = 0. Now

14.4(a) implies: P (y + σe1) = −y − σe1

14.4(b) implies: P (y − σe1) = y − σe1

Adding these two equations proves the theorem. �

14.6 Remarks

(a) To choose σ in Theorem 14.5, write a polar representation for 〈e1, y〉 =
ȳ1 = reiθ and then set σ = ±‖y‖e−iθ.

(b) In the real case, we have y1 ∈ R, and one can just set σ = ±‖y‖.

(c) It is geometrically obvious that for any two unit vectors x, y ∈ Rn there
is a reflector P that takes x to y. In the complex space Cn, this is not
true: for generic unit vectors x, y ∈ Cn there is no reflector that takes
x to y. But according to Theorem 14.5, one can always find a reflector
that takes x to cy with some scalar c ∈ C.

14.7 Corollary
For any vector y in Rn or Cn there is a scalar σ (which was defined in

14.5 and specified in 14.6) and a matrix P , which is either a reflector or the
identity (P = I), such that Py = −σe1.

Proof. Apply Theorem 14.5 in the case y+σe1 6= 0 and set P = I otherwise.

89

14.8 QR Decomposition via Householder reflectors
For any A ∈ Cm×n with m ≥ n there is a QR decomposition with a

unitary matrix Q ∈ Cm×m that is a product of at most n reflector matrices.

Proof. We use induction on n. Let n = 1, so that A is a column m-vector.
By Corollary 14.7 there is a matrix P (a reflection or identity) such that
PA = −σe1 for a scalar σ. Hence, A = PR where R = −σe1 is upper
triangular. Now, let n ≥ 1 and a1 the first column of A. Again, by 14.7 there
is a (reflection or identity) matrix P such that Pa1 = −σe1. Hence,

PA =

[
−σ w∗

0 B

]
where w ∈ Cn−1 and B ∈ C(m−1)×(n−1). By the inductive assumption, there
is a unitary matrix Q1 ∈ C(m−1)×(m−1) and an upper triangular matrix R1 ∈
C(m−1)×(n−1) such that B = Q1R1. Consider the unitary m×m matrix

Q2 =

[
1 0
0 Q1

]
By Section 2.9, the matrix Q2 is unitary whenever Q1 is. Furthermore, if Q1

is a product of ≤ n− 1 reflectors, then the same is true for Q2. Now one can
easily check that PA = Q2R where

R =

[
−σ w∗

0 R1

]
is an upper triangular matrix. Hence, A = QR with Q = PQ2.

14.9 Remark
In the real case, there are two choices for the scalar σ, that is σ = ±‖y‖;

see Remark 14.6 (b). The better one is

σ = sgn(y1) ‖y‖
i.e. the sign of σ is determined by the sign of y1. Then computing the vector
x = y + σe1 is always stable, there is no danger of catastrophic cancellation.

14.10 Givens rotation matrices
Let 1 ≤ p < q ≤ m and θ ∈ [0, 2π). The matrix G = Gp,q,θ = (gij) defined

by gpp = cos θ, gpq = sin θ, gqp = − sin θ, gqq = cos θ and gij = δij otherwise
is called a Givens rotation matrix (or a Givens rotator). It defines a rotation
through the angle θ of the xpxq coordinate plane in Rm with all the other
coordinates fixed. Obviously, G is an orthogonal matrix.

90

14.11 QR decomposition via Givens rotators
For any A ∈ Rm×n with m ≥ n there is a QR decomposition with an

orthogonal matrix Q ∈ Rm×m that is a product of Givens rotators.

Proof. Let aj be the leftmost column of A that contains a nonzero entry
below the main diagonal, aij 6= 0 with some i > j. Consider the matrix
A′ = GA where G = Gj,i,θ is the Givens rotator. One easily checks that
(a) the first j − 1 columns of A′ are zero below the main diagonal;
(b) in the j-th column, only the elements a′jj and a′ij will be different from
the corresponding elements of A, and moreover

a′ij = −ajj sin θ + aij cos θ

Now we want to find sin θ and cos θ to make a′ij = 0. For example,

cos θ =
ajj√

a2
jj + a2

ij

and sin θ =
aij√

a2
jj + a2

ij

will do. Note that one never actually evaluates the angle θ, since Gj,i,θ only
contains cos θ and sin θ, and these are given by the above formulas.

In this way we eliminate one nonzero element aij below the main diagonal.
Working from left to right, one can convert A into an upper triangular matrix
G̃A = R where G̃ is a product of Givens rotators. Each nonzero element of
A below the main diagonal requires one multiplication by a rotator. Then
we get A = QR with an orthogonal matrix Q = G̃T . �

14.12 Cost of QR via Givens rotators
The evaluation of cos θ and sin θ takes 6 flops (the square root extraction

is counted here as one flop), then the subsequent multiplication of A by Gj,i,θ

takes 6n flops. Thus, if A originally had p nonzero subdiagonal entries, then
the QR decomposition via Givens rotators takes 6pn flops.

When p is close to its maximal value, mn − n2/2, then the total cost
∼ 6mn2 − n3/2 greatly exceeds the cost of QR via Householder reflectors or
Gram-Schmidt decomposition. Hence Givens rotators are very inefficient for
generic matrices. But they work well if the matrix A is sparse, i.e. contains
just a few nonzero elements below the main diagonal. Then Givens rotators
can give the quickest result. We will see such instances later.

91

Exercise 14.1. Let x, y ∈ Cn be such that x 6= y and ‖x‖2 = ‖y‖2 6= 0. Show that there
is a reflector matrix P such that Px = y if and only if 〈x, y〉 ∈ R. For an extra credit:
show that if the above reflector exists, then it is unique.

Exercise 14.2. (simplified of JPE, May 2011) Prove that any Givens rotator matrix in
R2 is a product of two Householder reflector matrices. Can a Householder reflector matrix
be a product of Givens rotator matrices?

Exercise 14.3 (Bonus). (JPE May, 2010) Let

A =

 3 −3
0 4
4 1

(a) Find the QR factorization of A by Householder reflectors.

(b) Use the results in (a) to find the least squares solution of Ax = b, where

b = [16 11 17]T

(Note: there is a typo in the original JPE exam, it is corrected here.)

92

15 Computation of eigenvalues: theory

15.1 Preface
Eigenvalues of a matrix A ∈ Cn×n are the roots of its characteristic poly-

nomial, CA(x). It is a consequence of the famous Galois group theory (Abel’s
theorem) that there is no closed formula for the roots of a generic polynomial
of degree > 4. Hence, there are no finite algorithms for computation of the
roots of polynomials (or eigenvalues, for that matter).

Thus, all the methods for computing eigenvalues of matrices of size n ≥
5 are necessarily iterative, they provide successive approximations to the
eigenvalues, but never exact results. Furthermore, even though for n = 3 and
n = 4 exact formulas exist, they are rather impractical and often numerically
unstable, so even in these cases iterative methods should be used instead.

For this reason, matrix decompositions that involve eigenvalues (Schur
and SVD) cannot be implemented by finite algorithms. On the other hand,
decompositions that do not involve eigenvalues (e.g, QR, or LU, or Cholesky)
can be implemented by finite algorithms (and we learned some of those).

Now we learn iterative algorithms for computing eigenvalues and eigen-
vectors. Note that the most important matrix decomposition, SVD, requires
the eigenvalues of a Hermitian positive semidefinite matrix A∗A, hence it is
particularly important to develop algorithms for this class of matrices.

If an eigenvalue λ of a matrix A is known, an eigenvector x can be found
by solving the linear system (A − λI)x = 0 (say, by LU decomposition).
Conversely, if an eigenvector x is known, the corresponding eigenvalue λ can
be immediately found by (Ax)i/xi whenever xi 6= 0. Hence, eigenvalues and
eigenvectors are often computed ‘in parallel’. In this chapter, we develop a
theoretical basis for computation of eigenvalues and eigenvectors, while in
the next chapter we turn to practical algorithms.

15.2 Rayleigh quotient
Let A ∈ Cn×n. We call

r(x) =
x∗Ax

x∗x
=
〈Ax, x〉
〈x, x〉

, x 6= 0

the Rayleigh quotient of A. It is a function on Cn \ {0}, with values in C.

Note: r(cx) = r(x) for c 6= 0, hence r(x) is constant on the line span{x}
(with the zero vector removed). Since any nonzero vector is a scalar multiple

93

of a unit vector, r(x) is completely defined by its values on the unit sphere
S1, on which

r(x) = x∗Ax = 〈Ax, x〉, because 〈x, x〉 = 1 on S1

Thus r(x) is a quadratic function of the coordinates of x, on the sphere S1.

If A is Hermitian, then r(x) ∈ R for any nonzero x ∈ Cn.

If x is a unit eigenvector with an eigenvalue λ, then Ax = λx and so

r(x) = λ

If x is an arbitrary unit vector, then r(x)x = (x∗Ax)x is the orthogonal
projection of the vector Ax on the line spanned by x. Hence

‖Ax− r(x)x‖2 = min
µ∈C
‖Ax− µx‖2

If one regards x as an ‘approximate’ eigenvector, then the Rayleigh quotient
r(x) is the best choice that one could make for the associated ‘approximate’
eigenvalue in the sense that the value µ = r(x) comes closest (in the 2-norm)
to achieving the desired relation Ax− µx = 0.

15.3 Theorem
Let A ∈ Cn×n and x a unit eigenvector of A corresponding to eigenvalue

λ. Let y be another unit vector and r = y∗Ay. Then

|λ− r| ≤ 2 ‖A‖2 ‖x− y‖2

Moreover, if A is a Hermitian matrix, then there is a constant C = C(A) > 0
such that

|λ− r| ≤ C ‖x− y‖2
2

Proof. To prove the first part, put

λ− r = x∗A(x− y) + (x− y)∗Ay

and then use the triangle inequality and Cauchy-Schwarz inequality. Now,
assume that A is Hermitian. Then there is an ONB of eigenvectors, and we
can assume that x is one of them. Denote that ONB by {x, x2, . . . , xn} and

94

the corresponding eigenvalues by λ, λ2, . . . , λn. Let y = cx+c2x2 + · · ·+cnxn.
Then

‖y − x‖2 = |c− 1|2 +
n∑
i=2

|ci|2 ≥
n∑
i=2

|ci|2

On the other hand, ‖y‖ = 1, so

λ = λ|c|2 +
n∑
i=2

λ|ci|2

Now, Ay = cλx+
∑n

i=2 ciλixi, so

r = 〈Ay, y〉 = λ|c|2 +
n∑
i=2

λi|ci|2

Therefore,

λ− r =
n∑
i=2

(λ− λi)|ci|2

The result now follows with

C = max
2≤i≤n

|λ− λi|

The theorem is proved. �

15.4 Lemma
Let A ∈ Cn×n be a Hermitian matrix with eigenvalues λ1 ≤ · · · ≤ λn

(they are all real, hence we can order them). Then for any ‖x‖ = 1

λ1 ≤ x∗Ax ≤ λn

Proof. Let {x1, . . . , xn} be an ONB of eigenvectors of A and x = c1x1 + · · ·+
cnxn. Then x∗Ax = λ1|c1|2 + · · ·+ λn|cn|2. The result now follows easily. �

15.5 Lemma
Let L and G be subspaces of Cn and dimG > dimL. Then there is a

nonzero vector in G orthogonal to L.

Proof. By way of contradiction, if G∩L⊥ = {0}, then G⊕L⊥ is a subspace
of Cn with dimension dimG + n− dimL. Now our assumptions imply that
this value exceeds n, a contradiction. �

95

15.6 Courant-Fisher Minimax Theorem
Let A ∈ Cn×n be a Hermitian matrix with eigenvalues λ1 ≤ · · · ≤ λn

(they are all real, hence we can order them). Then for every i = 1, . . . , n

λi = min
L : dimL=i

max
x∈L\{0}

x∗Ax

x∗x

where L stands for a vector subspace of Cn.

Proof. Let {u1, . . . , un} be an ONB of eigenvectors of A corresponding to the
eigenvalues λ1, . . . , λn. If dimL = i, then by Lemma 15.5 there is a nonzero
vector x ∈ L orthogonal to the space span{u1, . . . , ui−1}. Hence, the first
i− 1 coordinates of x are zero, i.e. x =

∑n
j=i cjuj. Thus

x∗Ax

x∗x
=

∑n
j=i |cj|2λj∑n
j=i |cj|2

≥ λi

Therefore,

max
x∈L\{0}

x∗Ax

x∗x
≥ λi

Now, take the subspace L = span{u1, . . . , ui}. Obviously, dimL = i and for
every nonzero vector x ∈ L we have x =

∑i
j=1 cjuj, so

x∗Ax

x∗x
=

∑i
j=1 |cj|2λj∑i
j=1 |cj|2

≤ λi

The theorem is proved. �

15.7 Theorem
Let A and ∆A be Hermitian matrices. Let α1 ≤ · · · ≤ αn be the eigen-

values of A. Let δmin and δmax the smallest and the largest eigenvalues of
∆A. Denote the eigenvalues of the matrix B = A + ∆A by β1 ≤ · · · ≤ βn.
Then for each i = 1, . . . , n

αi + δmin ≤ βi ≤ αi + δmax

Proof. Let {u1, . . . , un} be an ONB of eigenvectors of A corresponding to the

96

eigenvalues α1, . . . , αn. Let L = span{u1, . . . , ui}. Then, by Theorem 15.6

βi ≤ max
x∈L\{0}

x∗Bx

x∗x

≤ max
x∈L\{0}

x∗Ax

x∗x
+ max

x∈L\{0}

x∗∆Ax

x∗x

≤ αi + max
x∈Cn\{0}

x∗∆Ax

x∗x

= αi + δmax

which is the right inequality. Now apply this theorem to the matrices B,
−∆A and A = B + (−∆A). Then its right inequality, just proved, will read
αi ≤ βi − δmin (note that the largest eigenvalue of −∆A is −δmin). The
theorem is completely proved. �

15.8 Corollary
Since ‖∆A‖2 = max{|δmin|, |δmax|}, we have

αi − ‖∆A‖2 ≤ βi ≤ αi + ‖∆A‖2 ∀i = 1, . . . , n

15.9 Remark
Suppose one knows an approximate eigenvalue λ and an approximate unit

eigenvector x of a matrix A. To estimate the closeness of λ to the actual but
unknown eigenvalue of A, one can compute the residual r = Ax−λx. Assume
that r is small and define the matrix ∆A = −rx∗. Then ‖∆A‖2 = ‖r‖2 and

(A+ ∆A)x = Ax− rx∗x = λx

Therefore, (λ, x) are an exact eigenpair of perturbed matrix A+∆A, and the
norm ‖∆A‖2 is known. One could then apply Corollary 15.8 to estimate the
closeness of λ to the actual eigenvalue of A, if the matrices A and ∆A were
Hermitian. Since this is not always the case, we need to study how eigenvalues
of a generic matrix change under small perturbations of the matrix. This is
the issue of eigenvalue sensitivity.

15.10 Bauer-Fike theorem
Let A ∈ Cn×n be a diagonalizable matrix, so that

X−1AX = D = diag{λ1, . . . , λn}

97

If µ is an eigenvalue of a perturbed matrix A+ ∆A, then

min
1≤i≤n

|λi − µ| ≤ κp(X) ‖∆A‖p

where ‖ · ‖p stands for any p-norm (1 ≤ p ≤ ∞).

Proof. If µ is an eigenvalue of A, the claim is trivial. If not, the matrix
D − µI is invertible. Observe that

X−1(A+ ∆A− µI)X = D +X−1∆AX − µI
= (D − µI)

[
I + (D − µI)−1(X−1∆AX)

]
Since the matrix A + ∆A − µI is singular, so is the matrix I + (D −
µI)−1(X−1∆AX). Then the Neumann lemma (Exercise 1.2) implies

1 ≤ ‖(D − µI)−1(X−1∆AX)‖p ≤ ‖(D − µI)−1‖p‖X−1‖p‖∆A‖p‖X‖p
Lastly, observe that (D − µI)−1 is diagonal, so

‖(D − µI)−1‖p = max
1≤i≤n

1

|λi − µ|
=

1

min1≤i≤n |λi − µ|
The theorem now follows. �

15.11 Corollary
If A is a normal matrix, then in the above theorem

min
1≤i≤n

|λi − µ| ≤ ‖∆A‖2

because X is a unitary matrix and so κ2(X) = 1.

Theorem 15.10 answers the question raised in Section 15.9, it gives an esti-
mate on the error in the eigenvalue in terms of ‖∆A‖ and κ(X). However,
this answer is not good enough – it gives one estimate for all eigenvalues.
In practice, some eigenvalues can be estimated better than others. It is
important then to develop finer estimates for individual eigenvalues.

15.12 Left eigenvectors (definition)
Let A ∈ Cn×n. A nonzero vector x ∈ Cn is called a left eigenvector of A

corresponding to an eigenvalue λ if

x∗A = λx∗

Note that this is equivalent to A∗x = λ̄x, i.e. x being an ordinary (right)
eigenvector of A∗ corresponding to the eigenvalue λ̄.

98

15.13 Lemma
A matrix A has a left eigenvector corresponding to λ if and only if λ is

an eigenvalue of A (a root of the characteristic polynomial of A).

Proof. x∗A = λx∗ for an x 6= 0 is equivalent to (A∗− λ̄I)x = 0, which means
that det(A∗ − λ̄I) = 0, or equivalently, det(A− λI) = 0, i.e. CA(λ) = 0. �

This explains why we do not introduce a notion of a left eigenvalue: the set
of eigenvalues for left eigenvectors is just the same as the set of eigenvalues
for ordinary (right) eigenvectors.

15.14 Lemma
For any eigenvalue λ of A the dimension of the ordinary (right) eigenspace

equals the dimension of the left eigenspace (i.e., the geometric multiplicity of
λ is the same, in the left and right senses).

Proof. dim Ker(A − λI) = n − rank(A − λI) = n − rank(A∗ − λ̄I) =
dim Ker(A∗ − λ̄I). �

15.15 Lemma
Let A ∈ Cn×n. Then we have:

(a) If λ is an eigenvalue with a right eigenvector x, and µ 6= λ is another
eigenvalue with a left eigenvector y, then y∗x = 0, i.e. x ⊥ y.

(b) If λ is a simple eigenvalue (this means its algebraic multiplicity is one)
with right and left eigenvectors x and y, respectively, then y∗x 6= 0.

Proof. To prove (a), observe that 〈Ax, y〉 = λ〈x, y〉 and, by a remark after
Section 15.12, 〈x,A∗y〉 = 〈x, µ̄y〉 = µ〈x, y〉. Hence, λ〈x, y〉 = µ〈x, y〉, which
proves (a), since λ 6= µ.

To prove (b), assume that ‖x‖ = 1. By the Schur decomposition theorem,
there is a unitary matrix R with first column x such that

R∗AR =

[
λ h∗

0 B

]
with some h ∈ Cn−1 and B ∈ C(n−1)×(n−1). Note also that Re1 = x. Since
λ is a simple eigenvalue of A, it is not an eigenvalue of B. Thus the matrix
λI −B is invertible, hence so is λ̄I −B∗. Let z = (λ̄I −B∗)−1h. Then

λ̄z −B∗z = h =⇒ h∗ + z∗B = λz∗

99

Now one can readily verify that

[1 z∗]R∗AR = λ [1 z∗] =⇒ [1 z∗]R∗A = λ [1 z∗]R∗

Denote w∗ = [1 z∗]R∗. The above equation now takes a short form

w∗A = λw∗

Hence w is a left eigenvector of A. By the simplicity of λ, the vector w is a
nonzero multiple of y. However, observe that

w∗x = [1 z∗]R∗Re1 = 1 (6= 0)

which proves the lemma. �

15.16 Theorem
Let A ∈ Cn×n have a simple eigenvalue λ with right and left unit eigen-

vectors x and y, respectively. Let E ∈ Cn×n such that ‖E‖2 = 1. For
small ε, denote by λ(ε) and x(ε), y(ε) the eigenvalue and right and left unit
eigenvectors of the matrix A+ εE obtained from λ and x, y. Then

|λ′(0)| ≤ 1

|y∗x|

Proof. It follows from the inverse function theorem that λ(ε) and x(ε) are
differentiable for sufficiently small ε. Write the equation

(A+ εE)x(ε) = λ(ε)x(ε)

and differentiate it in ε, set ε = 0, and get

Ax′(0) + Ex = λ′(0)x+ λx′(0)

Then multiply this equation through on the left by the vector y∗, use the
fact that y∗A = λy∗ and get

y∗Ex = λ′(0) y∗x

Now the result follows since

|y∗Ex| = |〈Ex, y〉| ≤ ‖Ex‖2 ‖y‖2 ≤ ‖E‖2 ‖x‖2 ‖y‖2 = 1

100

This proves the theorem. Note that y∗x 6= 0 by Lemma 15.15. �

Note: The matrix A + εE is the perturbation of A “in the direction” of E.
If the perturbation matrix E is known, one has exactly

λ′(0) =
y∗Ex

y∗x

and so

λ(ε) = λ+
y∗Ex

y∗x
ε+O(ε2)

by Taylor expansion, a fairly precise estimate on λ(ε). In practice, how-
ever, the matrix E is absolutely unknown, so one has to use the bound of
Theorem 15.16 to estimate the sensitivity of λ to small perturbations of A.

15.17 Condition Number of An Eigenvalue
Let λ be a simple eigenvalue (this means that its algebraic multiplicity

is one) of a matrix A ∈ Cn×n and x, y the corresponding right and left unit
eigenvectors. The condition number of λ is

K(λ) =
1

|y∗x|
Note that |y∗x| does not depend on the particular choice of x and y.

The condition number K(λ) describes the sensitivity of a (simple) eigenvalue
to small perturbations of the matrix. Large K(λ) signifies an ill-conditioned
eigenvalue.

15.18 Simple properties of K(λ)

(a) First, K(λ) ≥ 1, because |y∗x| ≤ ‖x‖2‖y‖2 = 1.

(b) If a matrix A is normal, then K(λ) = 1 for all its simple eigenvalues.

(c) Conversely, if a matrix A has all simple eigenvalues with K(λ) = 1 for
each of them, then it is normal.

Proof. See Exercises 15.3 and 15.4.

Normal matrices are characterized by the fact that the Schur decomposition
Q∗AQ = T results in a diagonal matrix T . One can expect that if the
matrix T is nearly diagonal (i.e., its off-diagonal elements are small), then the
eigenvalues of A are well-conditioned. On the contrary, if some off-diagonal
elements of T are large, then at least some eigenvalues are ill-conditioned.

101

15.19 Remark
It remains to discuss the case of multiple eigenvalues (of algebraic mul-

tiplicity ≥ 2). If λ is a multiple eigenvalue, the left and right eigenvectors
may be orthogonal even if the geometric multiplicity of λ equals one. Ex-

ample: A =

[
0 1
0 0

]
, the right and left eigenvectors are x = e1 and y = e2,

respectively. Moreover, if the geometric multiplicity is ≥ 2, then for any right
eigenvector x there is a left eigenvector y such that y∗x = 0 (Exercise 15.5).
Hence, the definition 15.17 gives an infinite value of K(λ).

This does not necessarily mean that a multiple eigenvalue is always ill-
conditioned. It does mean, however, that an ill-conditioned simple eigenvalue
is ‘nearly multiple’. Precisely, if λ is a simple eigenvalue of A with K(λ) > 1,
then there is a matrix E such that

‖E‖2

‖A‖2

≤ 1√
K(λ)2 − 1

and λ is a multiple eigenvalue of A+E. We leave out the proof. We will not
further discuss the sensitivity of multiple eigenvalues.

15.20 Theorem (1st Gershgorin)
Let A ∈ Cn×n be ‘almost diagonal’. Precisely, let A = D + E, where

D = diag{d1, . . . , dn} and E = (eij) is small. Then every eigenvalue of A lies
in at least one of the circular disks

Di =
{
z ∈ C : |z − di| ≤

n∑
j=1

|eij|
}

Note: Di are called Gershgorin disks.

Proof. Let λ be an eigenvalue of A with eigenvector x. Let

|xr| = max
i
{|x1|, . . . , |xn|}

be the maximal (in absolute value) component of x. We can normalize x
so that xr = 1 and |xi| ≤ 1 for all i. On equating the r-th components in
Ax = λx we obtain

(Ax)r = drxr +
n∑
j=1

erjxj = dr +
n∑
j=1

erjxj = λxr = λ

102

Hence

|λ− dr| ≤
n∑
j=1

|erj| |xj| ≤
n∑
j=1

|erj|

The theorem is proved. �

15.21 Theorem (2nd Gershgorin)
Suppose k of the Gershgorin disks Di make a cluster in the following

sense: the union of their interiors (open disks) is a connected domain in
C that is disjoint from the other n − k Gershgorin disks. Then there are
precisely k eigenvalues of A (counting multiplicity) in that cluster.

Proof. For brevity, denote

hi =
n∑
j=1

|eij|

Consider a family of matrices A(s) = D + sE for 0 ≤ s ≤ 1. It is a stan-
dard fact in complex analysis that the roots of a complex polynomial change
continuously with its coefficients. Hence the eigenvalues of A(s) depend con-
tinuously on s. The Gershgorin disks Di(s) for the matrix A(s) are centered
at di and have radii shi. As s increases, each disk Di(s) grows concentrically,
until it reaches the size of the Gershgorin disk Di of Theorem 15.20 at s = 1.
When s = 0, each Gershgorin disk Di(0) is just a point, di, which is an
eigenvalue of the matrix A(0) = D. So, if di1 = · · · = dim is an eigenvalue of
multiplicity m ≥ 1, then m degenerate disks Di1(0), . . . , Dim(0) will coincide.
For small s > 0, the corresponding m disks Di1(s), . . . , Dim(s) will have a
common center and make a cluster containing m eigenvalues of A(s). As the
disks grow with s, the eigenvalues cannot jump from one cluster to another
(by continuity), unless the two clusters overlap and then make one cluster.
Once two clusters overlap (merge) for some s > 0, all their disks will belong
in one cluster for all larger values of s, including s = 1. This proves the
theorem. �

Note: If the Gershgorin disks D1, . . . , Dn are all disjoint, then each contains
exactly one eigenvalue of A.

Exercise 15.1. (JPE May, 1994). Let X−1AX = D, where D is a diagonal matrix.

(i) Show that the columns of X are right eigenvectors and the conjugate rows of X−1

are left eigenvectors of A.

103

(ii) Let λ1 . . . , λn be the eigenvalues of A. Show that there are right eigenvectors
x1, . . . , xn and left eigenvectors y1, . . . , yn such that

A =

n∑
i=1

λixiy
∗
i

Exercise 15.2. Let A ∈ Cn×n be Hermitean with eigenvalues λ1 ≤ · · · ≤ λn. Let
µ1 ≤ · · · ≤ µn−1 be all the eigenvalues of the (n − 1)-st principal minor An−1 of A. Use
the Minimax theorem to prove the interlacing property

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn

Exercise 15.3. Let A ∈ Cn×n. Show that

(i) λ is an eigenvalue of A iff λ̄ is an eigenvalue of A∗.

(ii) if A is normal, then for each eigenvalue the left and right eigenspaces coincide;

(iii) if A is normal, then for any simple eigenvalue λ of A we have K(λ) = 1.

Exercise 15.4. Let A ∈ Cn×n and B = Q∗AQ, where Q is a unitary matrix. Show that if
the left and right eigenspaces of A are equal, then B enjoys the same property. After that
show that A is normal. Finally, prove that if A has all simple eigenvalues with K(λ) = 1,
then A is normal.

Exercise 15.5. Suppose λ is an eigenvalue of geometric multiplicity ≥ 2 for a matrix A.
Show that for each right eigenvector x there is a left eigenvector y such that y∗x = 0.

Exercise 15.6. Use the Gershgorin theorems to show that a symmetric, strictly row
diagonally dominant real matrix with positive diagonal elements is positive definite.

104

16 Computation of eigenvalues: power method

To simplify the matter, we always assume that the matrix A is diagonaliz-
able, i.e., it has a complete set of eigenvectors x1, . . . , xn with eigenvalues
λ1, . . . , λn. The latter are assumed to be ordered in absolute value:

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|

16.1 Dominant eigenvalue and eigenvector
Assume that |λ1| > |λ2|, i.e. the largest eigenvalue is simple. We call λ1

the dominant eigenvalue and x1 a dominant eigenvector.

16.2 Power method: the idea
Let λ1 be the dominant eigenvalue of A and

q = c1x1 + · · ·+ cnxn

an arbitrary vector such that c1 6= 0. Then

Akq = c1λ
k
1x1 + · · ·+ cnλ

k
nxn

= λk1[c1x1 + c2(λ2/λ1)kx2 + · · ·+ cn(λn/λ1)kxn]

Denote

q(k) = Akq/λk1 = c1x1 + c2(λ2/λ1)kx2 + · · ·+ cn(λn/λ1)kxn︸ ︷︷ ︸
∆k

16.3 Lemma
The vector q(k) converges to c1x1. Moreover,

‖∆k‖ = ‖q(k) − c1x1‖ ≤ const · rk

where r = |λ2/λ1| < 1.

Therefore, the vectors Akq (obtained by the powers of A) will align in the
direction of the dominant eigenvector x1 as k → ∞. The number r charac-
terizes the speed of alignment, i.e. the speed of convergence ‖∆k‖ → 0 (the
smaller r the faster convergence). Note that if c2 6= 0, then

‖q(k+1) − c1x1‖/‖q(k) − c1x1‖ → r

The number r is called the convergence ratio or the contraction number.

105

16.4 Linear, quadratic and cubic convergence
We say that the convergence xk → x is linear if

|xk+1 − x| ≤ r|xk − x|

for some r < 1 and all sufficiently large k. If

|xk+1 − x| ≤ C|xk − x|a

with some C > 0 and a > 1, then the convergence is said to be superlinear (it
is faster than linear). For a = 2 the convergence is quadratic, and for a = 3
cubic.

In order to come close to within ε of the limit, the linear convergence
takes k ∼ O(| log ε|) iterations, while the superlinear convergence takes k ∼
O
(
| log(| log ε|)|

)
iterations.

16.5 Remarks on convergence
If the convergence is linear, then by induction we have |ak − a| ≤ Crk,

where C = |a0 − a|. The sequence Crk decreases to zero exponentially fast,
which is very fast by calculus standards. However, in numerical calculations
standards are different.

The linear convergence practically means that each iteration adds a fixed
number of accurate digits to the result. For example, if r = 0.1, then each
iteration adds one correct decimal digit. This is not superb, since it will take
6–7 iterations to reach the maximum accuracy in single precision arithmetic
and 15–16 iterations in double precision. If r = 0.5, then each iteration adds
one binary digit (a bit), hence one needs 22–23 iterations in single precision
and 52–53 in double precision. Now imagine how long it might take when
r = 0.9 or r = 0.99.

On the other hand, the quadratic convergence means that each iteration
doubles (!) the number of digits of accuracy. Starting with just one accu-
rate binary digit, one needs 4–5 iterations in single precision arithmetic and
only one more iteration in double precision. The cubic convergence means
that each iteration triples (!!!) the number of digits of accuracy. See Exam-
ple 16.14 for an illustration.

16.6 Scaling problem in the power method
In practice, the vector q(k) = Akq/λk1 is inaccessible because we do not

know λ1 in advance. But we cannot just drop the factor λk1, because then

106

‖Akq‖ → ∞ if |λ1| > 1 and ‖Akq‖ → 0 if |λ1| < 1, possibly causing overflow
or underflow in numerical computations. Thus we must somehow normalize,
or scale, the vector Akq.

16.7 Power method: two choices for the scaling factor
Pick an initial vector q0. For k ≥ 1, define

qk = Aqk−1/σk

where σk is a properly chosen scaling factor. One common choice is

σk = ‖Aqk−1‖, then ‖qk‖ = 1

In this case one can approximate the eigenvalue λ1 by the Rayleigh quotient

λ
(k)
1 = q∗kAqk.

Another popular choice for σk is the largest (in absolute value) component of
the vector Aqk−1. This ensures that the largest (in absolute value) component
of qk equals one, in particular ‖qk‖∞ = 1. Assume that the vector x has one
component with the largest absolute value. In that case σk itself is a good
approximation for λ1, and we set

λ
(k)
1 = σk.

To estimate how close the unit vector qk is to the one-dimensional eigenspace
span{x1}, denote by pk the orthogonal projection of qk on span{x1} and by
dk = qk − pk the orthogonal component. Then ‖dk‖ measures the distance
from qk to span{x1}.

16.8 Theorem (convergence of the power method)
Assume that λ1 is the dominant eigenvalue, and q0 =

∑
cixi is chosen so

that c1 6= 0. Then the distance from qk to the eigenspace span{x1} converges

to zero and λ
(k)
1 converges to λ1. Furthermore,

‖dk‖ ≤ const · rk |λ(k)
1 − λ1| ≤ const · rk

Note: The sequence of vectors qk need not have a limit, see examples.

Proof. It is a direct calculation, based on the representation Akq0 = λk1(c1x1+
∆k) of Section 16.2 and Lemma 16.3.

107

16.9 Examples

(a) Let A =

[
3 2
1 1

]
. Pick q0 = (1, 1)T and use the second choice of σk in

16.7. Then σ1 = 5 and q1 = (1, 0.4)T , σ2 = 3.8 and q2 = (1, 0.368)T ,
σ3 = 3.736 etc. Here σk converges to the dominant eigenvalue λ1 =
2 +
√

3 = 3.732 and qk converges to a dominant eigenvector (1,
√

3/2−
1/2)T = (1, 0.366)T .

(b) Let A =

[
−1 0

0 0

]
. Pick q0 = (1, 1)T and use the first choice of σk in

16.7. Then qk = ((−1)k, 0) does not have a limit, it keeps flipping. With
the second choice of σk in 16.7, we have qk = (1, 0) and σk = −1 = λ1

for all k ≥ 1.

16.10 Initial choice
The choice of the initial vector q0 only has to fulfill the requirement c1 6= 0.

Since the vectors with c1 = 0 form a hyperplane in Cn, one hopes that a vector
q0 picked “at random” will not lie in that hyperplane. Furthermore, even if
c1 = 0, round-off errors will most likely pull the numerical vectors qk away
from that hyperplane. If that does not seem to be enough, one can carry
out the power method for n different initial vectors that make a basis, say
e1, . . . , en. One of these vectors surely lies away from that hyperplane.

16.11 Inverse power method
Assume that A is invertible. Then λ−1

1 , . . . , λ−1
n are the eigenvalues of

A−1, with the same eigenvectors x1, . . . , xn. Note that |λ−1
1 | ≤ · · · ≤ |λ−1

n |.
Assume that |λ−1

n | > |λ−1
n−1|. Then λ−1

n is the dominant eigenvalue of A−1

and xn a dominant eigenvector. One can apply the power method to A−1 and
find λ−1

n and xn. The rate of convergence of iterations will be characterized
by the ratio r = |λn/λn−1| < 1. This is called the inverse power method.

Note: in practice, there is no need to compute the inverse matrix A−1

explicitly. To find A−1b for any given vector b, one can just solve the system
Ax = b, e.g., by the LU decomposition of the matrix A.

Now we know how to compute the largest and the smallest eigenvalues.
The following trick allows us to compute any simple eigenvalue.

108

16.12 Power method with shift
Recall that if λ is an eigenvalue of A with eigenvector x, then λ− ρ is an

eigenvalue of A− ρI with the same eigenvector x.
Assume that ρ is a good approximation to a simple eigenvalue λi of A, so

that |λi − ρ| < |λj − ρ| for all j 6= i. Then the matrix A − ρI will have the
smallest eigenvalue λi − ρ with the eigenvector xi.

The inverse power method can now be applied to A − ρI to find λi − ρ
and xi. The convergence of iterations will be linear with ratio

r =
|λi − ρ|

minj 6=i |λj − ρ|
< 1

Hence, the better ρ approximates λi, the faster convergence is guaranteed.
By subtracting ρ from all the eigenvalues of A we shift the entire spec-

trum of A by ρ. The number ρ is called the shift. The above algorithm for
computing λi and xi is called the (inverse) power method with shift.

The power method with shift allows us to compute all the simple eigen-
values and eigenvectors of a matrix, but the convergence is slow (just linear).

16.13 Power method with Rayleigh quotient shift
This is an improvement of the algorithm 16.12. Since at each iteration of

the inverse power method we obtain a better approximation to the eigenvalue
λi, we can use it as the shift ρ for the next iteration. So, the shift ρ will be
updated at each iteration. This will ensure a faster convergence.

One chooses an initial vector q0 and an initial approximation ρ0, and for
k ≥ 1 computes

qk =
(A− ρk−1I)−1qk−1

σk

and

ρk =
q∗k(A− ρk−1I)−1qk

q∗kqk

where σk a convenient scaling factor, for example, σk = ‖(A−ρk−1I)−1qk−1‖.
The convergence of the Rayleigh quotient iterations is, generally, quadratic

(better than linear). If the matrix A is Hermitian, the convergence is even
faster – it is cubic!!!

109

16.14 Example
Consider the symmetric matrix

A =

 2 1 1
1 3 1
1 1 4

and let q0 = (1, 1, 1)T be the initial vector and q0 = 5 the initial shift.
When Rayleigh quotient iteration is applied to A, the following values ρk are
computed by the first two iterations:

ρ1 = 5.2131, ρ2 = 5.214319743184

The actual value is λ = 5.214319743377. After only two iterations, Rayleigh
quotient method produced 10 accurate digits. The next iteration would bring
about 30 accurate digits – more than enough in double precision.

16.15 Power method: pros and cons

(a) The power method is classic. It is very simple and generally good.

(b) An obvious concern is the numerical stability of the method. The
matrices used in the inverse power method with shift tend to be ex-
ceedingly ill-conditioned. As a result, the numerical solution of the
system (A−ρI)x = b, call it xc, will deviate significantly from its exact
solution x. However, for some peculiar reason (we do not elaborate)
the difference xc − x tends to align with the vector x. Therefore, the
normalized vectors xc/‖xc‖ and x/‖x‖ are close to each other. Hence,
ill conditioning of the matrices does not cause trouble.

(c) On the other hand, the power method is slow. Each iteration requires
solving a linear system of equations (A − ρk−1I)x = b, every time
with a new matrix, so the LU decomposition must be repeated, which
takes 2n3/3 fops. If we want to compute all n eigenpairs, and make p
iterations per eigenpair, then the total cost is 2pn4/3 flops.

(d) Lastly, when the matrix A is real, then in order to compute its complex
eigenvalues one has to deal with complex matrices (A− ρk−1I), which
is inconvenient and expensive. It would be nice to stick to real matrices
for as long as possible and obtain pairs of complex conjugate eigenvalues
only at the final step. The QR algorithm, to be discussed in the next
chapter, provides such a luxury.

110

Exercise 16.1. (JPE, May 2003) Let A be a symmetric matrix with eigenvalues such that
|λ1| > |λ2| ≥ · · · ≥ |λn−1| > |λn|. Suppose z ∈ Rn with zTx1 6= 0, where Ax1 = λ1x1.
Prove that, for some constant C,

lim
k→∞

Akz

λk1
= Cx1

and use this result to devise a reliable algorithm for computing λ1 and x1. Explain how
the calculation should be modified to obtain (a) λn and (b) the eigenvalue closest to 2.

Exercise 16.2. (JPE, September 1996) The matrix

A =

 2 0 0
0 1 2
0 2 1

has eigenpairs

(λ, x) =

2,

 1
0
0

 ,

−1,

 0
1
−1

 ,

3,

 0
1
1

 ,

Suppose the power method is applied with starting vector

z0 = [1, 1,−1]t/
√

3

(a) Determine whether or not the iteration will converge to an eigenpair of A, and if
so, which one. Assume exact arithmetic.

(b) Repeat (a), except now use the inverse iteration with the same starting vector z0
and the Rayleigh quotient of z0 as approximation for the eigenvalue.

(c) Now answer both (a) and (b) again, except this time use standard fixed precision
floating point arithmetic, i.e. computer arithmetic.

111

17 Computation of eigenvalues: QR algorithm

The QR algorithm (not to be confused with QR decomposition!) dates back
to the early 1960s, and in the recent decades it became the most widely used
method for calculating the complete set of eigenvalues and eigenvectors.

17.1 Pure QR algorithm
Let A ∈ Cn×n. The algorithm starts with A0 = A and generates a

sequence of matrices Ak defined as follows:

Ak−1 = QkRk, Ak = RkQk.

That is, a QR decomposition of Ak−1 is computed and then its factors are re-
combined in reverse order to produce Ak. One iteration of the QR algorithm
is called QR step.

17.2 Lemma

(a) All matrices Ak in the QR algorithm are unitary equivalent, in partic-
ular, they have the same eigenvalues.

(b) If A is a Hermitian matrix, then all Ak’s are Hermitian matrices as
well.

Proof. To prove (a), we note that Ak = Q∗kAk−1Qk. Now (b) follows by
induction from A∗k = Q∗kA

∗
k−1Qk = Q∗kAk−1Qk = Ak. �

17.3 Theorem (convergence of the QR algorithm)
Let λ1, . . . , λn be the eigenvalues of A satisfying

|λ1| > |λ2| > · · · > |λn| > 0

Under one technical condition, see below, the matrix Ak = (a
(k)
ij) is guaran-

teed to converge to an upper triangular form, so that

(a) a
(k)
ij → 0 as k →∞ for all i > j.

(b) a
(k)
ii → λi as k →∞ for all i.

112

The convergence is linear, with the ratio

r = max
k
|λk+1/λk| < 1.

This theorem is given without proof. The technical condition mentioned
above is that the matrix Y whose i-th row is a left eigenvector of A corre-
sponding to λi for all i, must have an LU decomposition (i.e. all its principal
minors must be nonsingular).

17.4 Remarks

(a) If A is Hermitian, then Ak will converge to a diagonal matrix.

(b) All the matrices Ak (and Rk) involved in the QR algorithm have the
same 2-condition number (by Section 12.8), thus the QR algorithm is
numerically superior to the power method. This is also true for all the
variations of the QR method discussed below.

(c) On the other hand, the pure QR algorithm is quite expensive. Espe-
cially, each iteration is very costly: the QR decomposition takes 2n3

flops and the multiplication of two matrices Rk and Qk (even if we take
advantage of the triangular structure of Rk!) takes n3 flops, a total of
3n3 flops. Thus if we make p iterations then the total cost is 3pn3. This
seems to be an improvement over 2pn4/3 flops of the power method,
but we also need to remember that the convergence is slow (linear),
thus it may require many more iterations, according to Section 16.4.
Fortunately, the computational cost can be reduced with the help of
Hessenberg matrices, see below.

(d) The pure QR algorithm fails on matrices with multiple eigenvalues (see
Example 17.16 below) and on real matrices with complex eigenvalues.
Indeed, complex eigenvalues of a real matrix come in conjugate pairs
a± ib, which have equal absolute values |a+ bi| = |a− bi|, violating the
main assumption of the theorem. Furthermore, if A is real, then all Qk,
Rk and Ak are real matrices as well, and thus we cannot even expect
the real diagonal elements of Ak to converge to the complex eigenvalues
of A. In this case Ak may not converge to anything.

113

17.5 Hessenberg matrix
A ∈ Cn×n is called an (upper) Hessenberg matrix if aij = 0 for all i > j+1,

i.e. A has the form

A =

× × · · · · · · ×
× ×

...

0 × × . . .
...

...
.

...
0 · · · 0 × ×

17.6 Lemma

If an invertible matrix A0 is Hessenberg, then all the matrices Ak gener-
ated by the QR algorithm will be Hessenberg as well.

Proof. By induction, let Ak−1 be Hessenberg. Then Ak−1 = QkRk and
so Qk = Ak−1R

−1
k . Since this is a product of a Hessenberg matrix and

an upper triangular matrix, it is verified by direct inspection that Qk is
Hessenberg. Then, similarly, Ak = RkQk is a product of an upper triangular
and Hessenberg matrices, so it is Hessenberg. �

For noninvertible Hessenberg matrices, one can show that Qk constructed
by Gram-Schmidt orthogonalization, see Chapter 9, is also Hessenberg, thus
Ak will again be a Hessenberg matrix.

17.7 Cost of a QR step for Hessenberg matrices
For Hessenberg matrices, the QR algorithm can be implemented with a

substantial reduction of computational cost. First, the QR decomposition
via Givens rotators takes 6n2 flops, according to Section 14.12. Second, Qk

is a product of n − 1 rotators, hence the multiplication of Rk by Qk takes
≤ 6n2 flops. The total for the QR step is then ≤ 12n2 flops, a dramatic drop
from 3n3 flops as required for a non-Hessenberg matrix A.

17.8 Theorem
Every matrix A ∈ Cn×n is unitary equivalent to a Hessenberg matrix, i.e.

A = Q∗HQ

where H is a Hessenberg matrix and Q is a unitary matrix. There is an exact
finite algorithm for computing H and Q.

114

Note: the existence of H immediately follows from Schur decomposition
A = Q∗TQ, so we only need to show that H and Q here can be constructed by
a finite algorithm. Remember that there is no finite algorithm for Schur de-
composition, since it involves the eigenvalues of the matrix A (Section 15.1).

Proof. An explicit algorithm for computing Q and H is known as Arnoldi
algorithm. The matrix equation A = Q∗HQ can be rewritten as AQ∗ = Q∗H.
Denote by qi, 1 ≤ i ≤ n, the columns of the unitary matrix Q∗ and by hij
the entries of H. Equating the columns of the matrices AQ∗ and Q∗H (and
remembering that hij = 0 for i > j + 1) we obtain a system of equations

Aq1 = h11q1 + h2,1q2

Aq2 = h12q1 + h22q2 + h3,2q3

· · ·
Aqi = h1iq1 + · · ·+ hiiqi + hi+1,iqi+1

· · ·
Aqn = h1nq1 + · · ·+ hn−1,nqn−1 + hn,nqn

(Note that the last equation is slightly different from the others since it
terminates on a diagonal entry of H.)

Now the Arnoldi algorithm goes along the lines similar to the classical
Gram-Schmidt orthogonalization. We pick an arbitrary unit vector q1, com-
pute v1 = Aq1, and represent

v1 = Prq1v1 + w2 = 〈v1, q1〉 q1 + w2

where w2 is orthogonal to q1. Then we set h11 = 〈v1, q1〉 and h21 = ‖w2‖ and
define q2 = w2/‖w2‖. This enforces the first equation in the above system.

Generally, for every i = 1, . . . , n− 1 we make four steps:

Step 1: compute vi = Aqi.
Step 2: for all j = 1, . . . , i compute hji = 〈vi, qj〉.
Step 3: wi = vi−

∑i
j=1 hjiqj (note: this vector is orthogonal to q1, . . . , qi).

Step 4: hi+1,i = ‖wi‖ and qi+1 = wi/hi+1,i, unless hi+1,i = 0, see below.

If hi+1,i = 0 in Step 4, we pick an arbitrary unit vector qi+1 orthogonal
to q1, . . . , qi. Finally, for i = n we execute steps 1 and 2 only. �

115

Theorem 17.8 shows that one can first transform A to a Hessenberg matrix
A0 = H, which has the same eigenvalues as A does (by similarity) and then
start the QR algorithm with A0.

17.9 Remarks on terminology
The exceptional case hi+1,i = 0 in Step 4 is referred to as the breakdown

of the Arnoldi algorithm. This term is quite misleading, since the method
does not really break down. In fact, the resulting Hessenberg matrix H will
have a simpler structure (an extra zero on its subdiagonal), and then the
matrix H has form

H =

[
H1 C
0 H2

]
where H1 ∈ Ci×i and H2 ∈ C(n−i)×(n−i). Clearly, the set of eigenvalues of
H is the union of the eigenvalues of H1 and H2, and those can be found by
the QR algorithm applied to the two smaller matrices H1 and H2 separately.
This leads to a reduction of the problem.

The Arnoldi algorithm is often applied to very large (or even infinite)
matrices, where the complete construction of H and Q is out of the question.
Then one can run the Arnoldi algorithm partway to obtain approximations
to H and Q. Such a method is referred to as Arnoldi iterations.

17.10 Cost of Arnoldi algorithm
The cost of Step 1 is 2n2 flops, the cost of Step 2 is 2ni flops, the same

for Step 3, and lastly Step 4 takes 3n flops. The total cost is then

n∑
i=1

(2n2 + 4ni+ 3n) ∼ 4n3

(actually, by choosing q1 = e1 one can save some work and compute H and Q
in 10

3
n3 flops; see the textbook for more details). This cost is comparable to

the cost of one QR step for a generic (non-Hessenberg) matrix. The Arnoldi
algorithm can be regarded as a pre-processing of the matrix A; it only needs
to be done once, and then the QR algorithm is applied to the resulting
Hessenberg matrix.

17.11 The case of Hermitian matrices
If A is a Hermitian matrix, then H will be both Hermitian and Hessen-

berg. Hence H will be a tridiagonal matrix (hij = 0 for all |i − j| > 1). Its
construction by the Arnoldi algorithm takes only 4

3
n3 flops (see the textbook).

116

17.12 Theorem
Assume that A0, and hence Ak for all k ≥ 1, are Hessenberg matrices.

Then the convergence a
(k)
i,i−1 → 0 as k → ∞ in Theorem 17.3 is linear with

ratio ri = |λi/λi−1|. In addition, the convergence a
(k)
nn → λn is linear with

ratio rn = |λn/λn−1|.
This theorem is given without proof.

Note that |λi+1/λi| < 1 for all i. The smaller this ratio, the faster the

convergence. It is also important to note that each subdiagonal entry a
(k)
i,i−1

has its own rate of convergence. This allows us to accelerate the convergence
of some selected entries, see below.

17.13 QR algorithm with shift - 1
One can modify the matrix A to decrease the ratio |λn/λn−1| and thus

make the convergence

a
(k)
n,n−1 → 0 and a(k)

nn → λn (B)

of the two bottom entries faster with the help of shifting, as in Section 16.12.
To achieve this, one applies the QR steps to the matrix A − ρI where ρ is
a properly chosen approximation to λn. Then the convergence (B) will be
linear with ratio r = |λn − ρ|/|λn−1 − ρ|. The better ρ approximates λn the
faster the convergence.

17.14 QR algorithm with shift - 2
The approximation ρ can be updated at every iteration, as in Section 16.13,

by using Rayleigh quotient

ρ = ρk = u∗kAkuk

where uk is an approximate unit eigenvector of the matrix Ak corresponding
to the smallest eigenvalue λn. In practice, a simple and convenient choice for
uk is uk = en, which gives ρk = a

(k)
nn . Then the QR algorithm with shift goes

as follows:

Ak−1 − ρk−1I = QkRk (QR decomposition of Ak−1 − ρk−1I)

RkQk + ρk−1I = Ak (computation of the next matrix Ak)

ρk = a(k)
nn (setting ρk to the trailing element of Ak)

This is called the Rayleigh quotient shift. The convergence (B) is now quadratic
for the same reasons as in Section 16.13.

117

17.15 QR algorithm with shift - 3
However, the other subdiagonal entries, a

(k)
i+1,i, 1 ≤ i ≤ n − 2, move to

zero slowly (linearly, with variable ratios). To speed them up, one uses the

following trick. After making a
(k)
n,n−1 practically zero, one ensures that a

(k)
nn is

practically equal to λn. Then one can partition the matrix Ak as

Ak =

[
Âk bk
0 λn

]
where Âk is an (n − 1) × (n − 1) Hessenberg matrix, whose eigenvalues
are (obviously) λ1, . . . , λn−1. Then one can apply further steps of the QR
algorithm (with shift) to the matrix Âk, instead of Ak. This quickly produces
its smallest eigenvalue, λn−1, which can be split off in the same manner. This
procedure is called the deflation of the matrix A.

In practice, each eigenvalue of A requires just 3-5 iterations (QR steps),
on the average. For Hermitian matrices, it is even faster – just 2-3 iterations
per eigenvalue. Thus the QR algorithm with shift and deflation achieves a
top speed.

It remains to discuss the problem of computing multiple real eigenvalues and
complex eigenvalues for real matrices described in Remark 17.4 (d).

17.16 Example

Let A =

[
0 1
1 0

]
. Then the pure QR algorithm gives

A0 = Q1R1 =

[
0 1
1 0

] [
1 0
0 1

]
hence

A1 = R1Q1 =

[
1 0
0 1

] [
0 1
1 0

]
= A

so the process goes nowhere. The Rayleigh quotient shift ρ = a22 has no effect
either, since a22 = 0. The reason of this failure is that the eigenvalues of A,
which are +1 and −1, have equal absolute values – this is a symmetry which
confuses the QR algorithm, it “cannot decide” which eigenvalue to approach.
To break this symmetry, one needs to choose the shift ρ differently.

118

17.17 Wilkinson iteration
At step k of the QR algorithm with shift, consider the trailing 2×2 matrix

at the bottom right of Ak:

Bk =

[
a

(k)
n−1,n−1 a

(k)
n−1,n

a
(k)
n,n−1 a

(k)
n,n

]

Now set ρk to the eigenvalue of Bk that is closer to a
(k)
n,n (in case of a tie,

either one can be taken). This is called the Wilkinson shift.
The eigenvalues of a 2× 2 matrix can be easily (and precisely) computed

by the quadratic formula, whether they are real or complex. If they are
real, then the Wilkinson shift will help to break the symmetry in the case of
multiple eigenvalues of A.

17.18 Example 17.16 continued
The Wilkinson shift here is either ρ = 1 or ρ = −1. Let us choose ρ = −1.

Then

A0 − ρI =

[
1 1
1 1

]
= Q1R1 =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [√
2
√

2
0 0

]
and then

A1 = R1Q1 + ρI =

[
2 0
0 0

]
+

[
−1 0

0 −1

]
=

[
1 0
0 −1

]
so the QR algorithm converges in one step.

17.19 Wilkinson iteration for complex eigenvalues
If the eigenvalues of Bk are complex, then the shift ρk will be complex,

and the matrix A−ρkI will be complex, too. The QR step will then produce
a complex matrix Ak+1, which is inconvenient. In this case one can use the
following trick to avoid further working with complex matrices: set ρk+1 = ρ̄k
(which is the other complex eigenvalue of Bk) for the next QR step. Then
the resulting matrix Ak+2 will be real again, see bellow.

Furthermore, the values ρk and ρ̄k will approximate two complex eigen-
values of the matrix A. Therefore, the QR algorithm with Wilkinson shift is
able to compute conjugate pairs of complex eigenvalues of a real matrix A,
thus resolving the concern raised in Section 16.15 (d).

119

Actually, there is no need to compute the complex matrix Ak+1 mentioned
above. One can just combine the two QR steps together and construct Ak+2

directly from Ak (bypassing Ak+1). This can be carried out entirely in real
arithmetic. The resulting all-real procedure is called the double-step QR
algorithm with Wilkinson shift.

17.20 Lemma
Let A0 ∈ Rn×n and ρ, ρ̄ not eigenvalues of A0. Consider a pair of QR

steps with complex conjugate shifts:

A0 − ρI = Q1R1 R1Q1 + ρI = A1

A1 − ρ̄I = Q2R2 R2Q2 + ρ̄I = A2

Since the matrices A0 − ρI and A1 − ρ̄I are nonsingular, the above QR
decompositions may be constructed so that R1 and R2 have positive real
entries, cf. Section 9.4. In this case A2 will be real.

Proof. First, note that A1 = Q∗1A0Q1 and A2 = Q∗2A1Q2. Now

(A0 − ρ̄I)(A0 − ρI) = (A0 − ρ̄I)Q1R1

= Q1Q
∗
1(A0 − ρ̄I)Q1R1

= Q1(A1 − ρ̄I)R1

= Q1Q2R2R1,

This is actually a QR decomposition of the matrix (A0 − ρ̄I)(A0 − ρI), with
Q = Q1Q2 and R = R2R1. Note that the upper triangular matrix R = R2R1

has real positive diagonal entries. Since the matrix

(A0 − ρ̄I)(A0 − ρI) = A2
0 − (ρ+ ρ̄)A0 + ρρ̄I

= A2
0 − 2(Re ρ)A0 + |ρ|2I

is obviously real, the above QR decomposition is unique by Corollary 9.4,
thus it must be real, hence the matrices Q1Q2 and R2R1 are entirely real.
Thus

A2 = (Q1Q2)∗A0(Q1Q2) = (Q1Q2)TA0(Q1Q2)

is a real matrix as well. �

Exercise 17.1. (JPE, September 2009) Let A ∈ Cn×n be nonsingular. Let A = Q1R1

be a QR decomposition of A, and for k ≥ 1 define inductively AQk = Qk+1Rk+1, a QR
decomposition of AQk.

120

(a) Prove that there exists an upper triangular matrix Uk such that Qk = AkUk and a
lower triangular matrix Lk such that Qk = (A∗)−kLk.

(b) Suppose limk→∞Rk = R∞ and limk→∞Qk = Q∞ exist. Determine the eigenvalues
of A in terms of R∞.

Exercise 17.2. (JPE, May 2006) Let A ∈ Cn×n be tri-diagonal and Hermitian, with all
its super-diagonal entries nonzero. Prove that the eigenvalues of A are distinct.

(Hint: show that for any scalar λ, the matrix A− λI has rank at least n− 1.)

121

