
Dynamical Systems, MA 760

1 Measure Theory (reminder)

1.1 Definition. A σ-algebra B for a set X is a collection of subsets of X such that

(i) ∅, X ∈ B

(ii) {Bi}∞i=1 ∈ B =⇒ ∪∞
i=1Bi ∈ B

(iii) B ∈ B =⇒ Bc ∈ B

A pair (X,B) is called a measurable space. Sets B ∈ B are said to be measurable.

1.2 Definition. A measure m on (X,B) is a function m : B → IR ∪ {+∞} such that

(i) m(B) ≥ 0 for all B ∈ B

(ii) m(∅) = 0

(iii) {Bi}∞i=1 ∈ B and Bi ∩ Bj = ∅ for i 6= j =⇒ m (∪∞
i=1Bi) =

∑∞
i=1 m(Bi)

The property (iii) is called σ-additivity or countable additivity. We use the obvious
convention: if m(Bi) = ∞ for some i, then

∑
m(Bi) = ∞. 2

1.3 Exercise. Show that if m(X) < ∞, then the clause (ii) of Definition 1.2 follows
from (i) and (iii). Construct an example of a function m : B → IR ∪ {+∞} that satisfies
(i) and (iii) but not (ii).

1.4 Remark. We say that a σ-algebra B is closed under countable (and hence, also
finite) unions. It is easy to show that B is also closed under countable (and finite) in-
tersections, i.e. {Bi}∞i=1 ∈ B =⇒ ∩∞

i=1Bi ∈ B [to prove this, just use the formula
∩∞

i=1Bi = (∪∞
i=1B

c
i )

c ]. Also, B is closed under differences and symmetric differences, i.e.
A,B ∈ B =⇒ A \ B ∈ B and A∆B ∈ B, where A∆B = (A \ B) ∪ (B \ A) [the proof
is simple].

1.5 Remark. Measures have the following simple properties: A ⊂ B =⇒ m(B \A) =
m(B) − m(A) and m(A) ≤ m(B). In particular, m(B) ≤ m(X) for all B ∈ B. If
m(X) < ∞, then m is said to be finite (otherwise, it is called infinite). If m(X) = 1,
then m is called a probability measure or just a probability. In this course, we will
only deal with probability measures.

1.6 Remark. For any set X, there are two trivial σ-algebras. One is minimal, it consists
of the sets X and ∅ only. The other is maximal, it contains all the subsets of X. The
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latter one is denoted by 2X . (Note: if X is a finite set of n elements, then the maximal
σ-algebra contains exactly 2n sets.)

1.7 Examples of measures:

(a) Let X = (a, b) ⊂ IR, B the Borel σ-algebra of X, and m the Lebesgue measure on X.
When a = −∞ or b = ∞ (or both), then m is infinite, otherwise m is finite.

(b) Let X = (a, b) ⊂ IR, B the Borel σ-algebra of X, again m the Lebesgue measure on
X, and f : X → IR is an integrable nonnegative function. Then

µ(B) =
∫

B
f(x) dm(x) for B ∈ B

defines a measure µ on X. The function f(x) is called the density of the measure µ.

(c) Let (X,B) be an arbitrary measurable space and x ∈ X a selected point. The measure
δx defined by

δx(B) =

{

1 if x ∈ B
0 otherwise

is called a delta-measure or a Dirac measure (concentrated at x).

(d) Let X be a finite or countable set, say, X = {1, 2, . . .}. Then any measure m on
(X, 2X) is determined by the numbers pi = m({i}), i ∈ X, because

m(B) =
∑

i∈B

pi for any B ⊂ X

1.8 Convention. Whenever X is a finite or countable set, then we always consider the
σ-algebra 2X . If X ⊂ IR, then we consider the Borel σ-algebra (unless otherwise stated).

1.9 Remark. σ-algebras are not necessarily closed under uncountable unions or inter-
sections. If they were, then the Borel σ-algebra for IR would contain all the subsets of
IR, which we know is not the case.

1.10 Exercise. Let X be a finite set, say, X = {1, 2, . . . , n}. Describe all probability
measures on X. Hint: use Example 1.7(d) and recall the notion of a simplex from geom-
etry.

1.11 Remark. Let m be a measure on (X,B) and c ≥ 0. Then cm is a measure defined
by (cm)(B) = c · m(B) for all B ∈ B. Let m1 and m2 be two measures on (X,B). Then
m1 + m2 is a measure defined by (m1 + m2)(B) = m1(B) + m2(B) for all B ∈ B. Hence,
we can add measures and multiply them by nonnegative constants.
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1.12 Lemma. If m1 and m2 are two probability measures on (X,B), then pm1+(1−p)m2

is a probability measure for every 0 ≤ p ≤ 1. Hence, the set of all probability measures
on (X,B) is convex.

1.13 Definition. If m is a finite measure on (X,B) with m(X) > 0, then the measure
m1 = cm, where c = 1/m(X), is a probability measure. The multiplication of m by
1/m(X) is called the normalization, and m1 is called the normalized measure.

Note: σ-algebras are usually quite complicated and contain many “weird” sets. For-
tunately, it is often enough to deal with certain “nice” sets that “represent” the entire
σ-algebra.

1.14 Definition. An algebra A for a set X is a collection of subsets of X such that

(i) ∅, X ∈ A

(ii) {Ai}n
i=1 ∈ A =⇒ ∪n

i=1Ai ∈ A

(iii) A ∈ A =⇒ Ac ∈ A

[Note the difference from Definition 1.1: now only finite unions are required to belong in
A, not countable.]

1.15 Examples of algebras:

(i) Let X = [a, b] ⊂ IR. Finite unions of subintervals1 of X make an algebra.

(ii) Let X = IR. Finite unions of intervals (including infinite intervals like (a,∞) and
(−∞, b)) make an algebra.

1.16 Lemma. The intersection of any family of σ-algebras of a set X is always a σ-algebra
of X (the family itself may be finite, countable or uncountable). The same property holds
for algebras.

1.17 Definition. Let J be any collection of subsets of X. The intersection of all σ-
algebras (algebras) containing J is the minimal σ-algebra (resp., algebra) containing J .
It is called the σ-algebra (resp., algebra) generated by J and denoted by B(J ) (resp.,
by A(J )).

A simple but useful fact: if J is finite (countable), then A(J ) is also finite (countable).

1This includes open, closed, and semi-open intervals, like (c, d), [c, d], (c, d] and [c, d).
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1.18 Definition. Let X be a topological space. Then the σ-algebra generated by the
collection of all open sets is called the Borel σ-algebra of X. Sets in this σ-algebra are
called Borel sets. Any measure defined on the Borel σ-algebra of X is called a Borel
measure.

The following theorem is particularly helpful in many proofs:

1.19 Approximation Theorem. Let m be a probability measure on (X,B) and let A
be an algebra which generates B, i.e. such that B(A) = B. Then for any B ∈ B and any
ε > 0 there is an A ∈ A such that m(A∆B) < ε.

That is, the sets of the σ-algebra B can be approximated arbitrarily well by sets of
the algebra A.

For constructing measures, the next theorem can be very useful.

1.20 Definition. Let A be an algebra of X. A nonnegative function m0 : A → IR is
said to be σ-additive (or countably additive) if for any sequence {Ai}∞i=1 of disjoint
sets Ai ∈ A such that ∪∞

i=1Ai ∈ A we have m0 (∪∞
i=1Ai) =

∑∞
i=1 m0(Ai).

Note: we have to assume that ∪∞
i=1Ai ∈ A, since this does not automatically hold for

algebras.

1.21 Extension Theorem. Let A be an algebra of X and m0 : A → IR a σ-additive
nonnegative function. Then there is a unique finite measure m on (X,B(A)) that coin-
cides with m0 on A. (We say that m extends m0 from A to B(A).)

Therefore, to construct a measure on a σ-algebra, it is sufficient to construct a σ-
additive function on an algebra that generates the σ-algebra.

1.22 Theorem. Let (X,B) be a measurable space and J a collection of subsets of X
that generates B, i.e. such that B(J ) = B. Suppose two measures, µ1 and µ2, agree on
J , i.e. µ1(A) = µ2(A) for all A ∈ J , and µ1(X) = µ2(X). Then µ1 = µ2.

1.23 Corollary. If two Borel measures, µ1 and µ2, on X = (a, b) ⊂ IR agree on subin-
tervals of X, then µ1 = µ2. It is enough to require the agreement for all open intervals
or for all closed intervals only.

1.24 Corollary. Let X be a topological space and B its Borel σ-algebra. If two mea-
sures agree on the open sets, then they are equal.

Theorems 1.19, 1.21, and 1.22 are given without proofs here. Some were proved in
Real Analysis. In any case, their proofs are beyond the scope of this course.
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2 Simplest Examples and Basic Definitions

2.1 Circle Rotation. Let X be a circle and T : X → X a transformation specified
by rotating the circle X through some angle.

The circle X can be coordinatized by the (polar) angle θ ∈ [0, 2π) and the map T
specified by T (θ) = θ + θ0 (mod 2π), where θ0 is the angle of rotation. Alternatively, we
can use a complex variable z and define X = {|z| = 1} and T (z) = eiθ0z.

However, we prefer to have a circle of unit length and use the coordinate x on X such
that 0 ≤ x < 1. Equivalently, X can be thought of as a closed unit interval [0, 1] with
the endpoints 0 and 1 identified. Then we set T (x) = x + a (mod 1), where the constant
a plays the role of the angle of rotation.

2.2 Doubling map. Let X = [0, 1) and T : X → X be a function defined by T (x) = 2x
(mod 1). Again, one can think of X as the unit circle and x the angle measure, then T
doubles angles. For this reason T is also called the angle doubling map.

T

x

x+ax+2a

x+3a

x

y
1

10

(a) (b)

Figure 1: The circle rotation (a) and the doubling map (b).

2.3 Definition. In dynamical systems, we deal with iterates of a given map T : X →
X, i.e. with the sequence of maps T n : X → X, n ≥ 1, defined by

T n = T ◦ T ◦ · · · ◦ T
︸ ︷︷ ︸

n

For any point x0 ∈ X, the sequence

x0, x1 = T (x0), x2 = T 2(x0), . . . , xn = T n(x0), . . .

is called the trajectory of x0 (or, sometimes, the orbit of x0). We are usually interested
in the overall behavior of the sequence {xn} rather than in individual points x1, x2, etc.
The variable n is called time2. We think of x0 as the initial point and of xn = T n(x0)

2Note: n only takes integral values. For this reason it is also called discrete time.
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as its image at time n.

2.4. Remarks. For the circle rotation, T n(x) = x + na (mod 1), so T n is the rotation
through the angle na. For the doubling map, T n(x) = 2nx (mod 1), i.e. the graph of T n

consists of 2n branches, each has slope 2n.

2.5 Question. Suppose A ⊂ X is some subset of interest. We want to see whether a tra-
jectory {xn} hits A at time n, i.e. whether xn ∈ A. This happens whenever T n(x0) ∈ A,
i.e. whenever x0 ∈ (T n)−1(A); here (T n)−1 (also denoted by T−n) is the inverse map.

2.6 Definition. For any n ≥ 1 and any subset A ⊂ X the set

T−n(A) = {y ∈ X : T n(y) ∈ A}

is the preimage of A under T n. For any point x ∈ X the set T−n(x) = {y ∈ X :
T n(y) = x} is the full preimage of x under T n. Any particular point y ∈ T−n(x) is
called a preimage of x under T n. Note: T−n is not necessarily a pointwise map on X,
it takes points to sets (and sets to sets).

2.7 Remarks. For the circle rotation, T−n(x) = x−na (mod 1) is the rotation through
the angle −na. For the doubling map, T−n(x) is a set consisting of 2n points {(x+i)/2n},
0 ≤ i ≤ 2n − 1.

2.8 Exercise. Verify by direct inspection the following simple properties of T −n:

(a) T−m(T−n(A)) = T−(m+n)(A) for all m,n ≥ 1;

(b) if A ∩ B = ∅, then T−n(A) ∩ T−n(B) = ∅;

(c) for any A ⊂ X we have T−n(Ac) = (T−n(A))c;

(d) for any A,B ⊂ X we have T−n(A ∪ B) = T−n(A) ∪ T−n(B);

(e) for any A,B ⊂ X we have T−n(A ∩ B) = T−n(A) ∩ T−n(B);

(f) for any A,B ⊂ X we have T−n(A \ B) = T−n(A) \ T−n(B);

Therefore, T−n neatly preserves all the set-theoretic operations. The properties (d) and
(e) can be easily extended to countable unions and intersections. A curious remark: most
of the above properties fail (!) for T n. Give some counterexamples.

Next, if A ⊂ X is a “nice” (say, Borel) set, then we want T−n(A) to be “nice” as well.

2.9 Definition. Let X be a set with a σ-algebra B. A transformation T : X → X is
called measurable if T−1(B) ∈ B for every B ∈ B.
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Note: this implies T−n(B) ∈ B for all B ∈ B and n ≥ 1. We do not require (and do
not need) that T n(B) ∈ B for n ≥ 1.

2.10 Lemma. Let (X,B) be a measurable space and T : X → X a transformation. Fix
n ≥ 1. Then the collection of sets {T−n(B) : B ∈ B} is a σ-algebra. It is denoted by
T−n(B). Also, the collection of sets {B ⊂ X : T−n(B) ∈ B} is a σ-algebra.

Proof: This easily follows from 2.8. 2

2.11 Theorem. Let (X,B) be a measurable space and J a collection of subsets of X
that generates B, i.e. B(J ) = B. Then a transformation T : X → X is measurable iff
T−1(A) ∈ B for all A ∈ J .

Proof: The collection of subsets B1 = {B ⊂ X : T−1(B) ∈ B} is a σ-algebra (by
2.10), and it is assumed that J ⊂ B1. Hence, B ⊂ B1. 2

2.12 Corollary. If X is a topological space and B its Borel σ-algebra, then T : X → X
is measurable iff T−1(B) ∈ B for every open set B.

Note: every continuous transformation is measurable.

2.13 Corollary. If X = (a, b) ⊂ IR and B is the Borel σ-algebra of X, then T : X → X
is measurable iff T−1(B) ∈ B for every interval B ⊂ X.

2.14 Examples. We can now easily check that the circle rotation and doubling map
are measurable. Indeed, the preimage of any interval is an interval for the circle rotation
and a union of two intervals for the doubling map.

2.15 Question 2.5 continued. We now want to know “how many” points x0 ∈ X hit
A at time n. Since usually the number of those points is infinite, then we translate this
question into the language of measures.

Suppose µ is a fixed probability measure on X. Then we want to compute

µ({x ∈ X : T n(x) ∈ A}) = µ(T−n(A))

The value of µ(T−n(A)) is the “fraction” of points that hit A at time n, or the “chance”
that a randomly selected point x hits A at time n.

2.16 Lemma. Let µ be a probability measure on (X,B) and T : X → X a measurable
transformation. Then, for every n ≥ 1, the function µn : B → IR given by

µn(B) = µ(T−n(B)) ∀B ∈ B

is a probability measure on (X,B).
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Proof: This easily follows from 2.8. 2

Note: one probability measure µ determines another probability measure, µn, for every
n ≥ 1.

2.17 Definition. Let (X,B) be a measurable space. Denote by M = M(X) the set
of all probability measures on X. Then a measurable map T : X → X induces a map
T : M → M. For every µ ∈ M the measure Tµ is defined by

(Tµ)(B) = µ(T−1(B)) ∀B ∈ B

2.18 Remark. In the notation of Lemma 2.16, we have µ1 = Tµ, hence µn = T nµ for
all n ≥ 1. So, the iteration of T on X corresponds to the iteration of T on M.

Note also that T is a linear map on M in the sense that T (pµ1 + (1 − p)µ2) =
pT (µ1) + (1 − p)T (µ2) for every µ1, µ2 ∈ M and 0 ≤ p ≤ 1.

It would be very convenient to have µn = µ for all n ≥ 1 in Lemma 2.16, so that one
measure µ would describe all the iterates of T . This requires Tµ = µ.

2.19 Definition. A probability measure µ is said to be invariant under T , or T -
invariant, if Tµ = µ. Equivalently, µ(T−1(B)) = µ(B) for all B ∈ B.

We also say that T preserves the measure µ. A map T : X → X that preserves
a measure µ is called a measure-preserving map. This is our notion of a dynamical
system.

2.20 Theorem. Let (X,B) be a measurable space and J a collection of subsets of X
that generates B, i.e. B(J ) = B. Let T : X → X be a measurable transformation. Then
a probability measure µ is T -invariant iff µ(T−1(A)) = µ(A) for all A ∈ J .

Proof: We need to show that the measures Tµ and µ are equal. This easily follows
from 1.22. 2

2.21 Examples. Let m be the Lebesgue measure on the unit interval X = [0, 1). Then
m is invariant under the circle rotation and under the doubling map.

Indeed, for any interval A = (c, d) ⊂ X its preimage under the circle rotation is
another interval with the same length. For the doubling map, T−1A is a union of two
intervals, one is (c/2, d/2) and the other ((c+1)/2, (d+1)/2). Their total length is d− c,
which is m(A). We are done.

The invariance of the Lebesgue measure m can be interpreted as follows: for any
Borel set B ⊂ X the chance that a randomly selected point in X hits B at time n equals
m(B) (and this chance does not depend on n).
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2.22 Definition. If T (x) = x, then x is called a fixed point for the map T . If
T n(x) = x for some n ≥ 1, then x is called a periodic point for the map T , and n is its
period. The smallest such n is said to be the minimal period of x.

Note: if x is a periodic point with a minimal period n ≥ 2, then the map T cyclically
permutes n points x0 = x, x1 = T (x), . . . , xn−1 = T n−1(x). That is, T (xi) = xi+1 and
T (xn−1) = x0.

2.23 Remark. If x is a fixed point for the map T , then the delta-measure δx is invari-
ant under T . If x is a periodic point with a minimal period n ≥ 2, then the measure
(δx0

+ δx1
+ · · ·+ δxn−1

)/n is T -invariant (we use the notation of 1.7(c) and 2.22). Check
these two facts by direct inspection.

2.24 Exercise. A point x is called an atom for a measure µ if µ({x}) > 0. Show that
if x is an atom for a T -invariant measure, then x is a periodic point.

2.25 More examples. Usually, a transformation T : X → X has many invariant
measures. If T : X → X is the identity, i.e. T (x) = x for all x ∈ X, then every
probability measure on X is invariant.

For the doubling map, the delta measure δ0 concentrated at zero is invariant, since
T (0) = 0. The measure µ = 0.5 δ1/3 + 0.5 δ2/3 is also invariant (guess, why).

From the physics point of view, though, the most interesting and important invariant
measures are those which are absolutely continuous with respect to the Lebesgue measure.

2.26 Exercises (some are rather challenging):

(a) Let X = IN (the set of natural numbers) and T : X → X defined by T (x) = x + 1.
Show that T has no invariant measures.

(b) Let X = IR and T : X → X defined by T (x) = x + a with a constant a 6= 0. Show
that T has no invariant measures3.

(c) Let X = (0, 1) and T : X → X defined by T (x) = x2. Show that T has no invariant
measures.

(d) Let X = [0, 1] and T : X → X defined by T (x) = x/2 for x > 0 and by T (0) = 1.
Show that T has no invariant measures.

(e) Let X = [0, 1] and T : X → X defined by T (x) = x2. Find all T -invariant measures.

(f) Let X = {1, 2, . . . ,m} be a finite set, and T : X → X a permutation (i.e., a
bijection of X). Describe all T -invariant measures.

3Definition 2.19 can be extended to nonprobability measures: a finite or infinite measure µ is T -
invariant if µ(T−1(B)) = µ(B) for all B ∈ B. Under this extension, the Lebesgue measure on IR is
invariant. In this course, though, we only deal with probability invariant measures.
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2.27 Example. The doubling map can be slightly generalized as follows. For an integer
k ≥ 2 we define T (x) = kx (mod 1) on the set X = [0, 1). This map has many
properties similar to those of the doubling map. In particular, the Lebesgue measure m
is T -invariant.

Consider, more specifically, the map T with k = 10. For x ∈ X let x = 0.i0i1i2 . . .
be the infinite decimal fraction representing x. Then 10x = i0.i1i2 . . ., hence T (x) =
0.i1i2i3 . . .. It is just as easy to see that T n(x) = 0.inin+1in+2 . . . for all n ≥ 1.

Why is this interesting? Consider the set Ar = [r/10, (r + 1)/10) for some r =
0, 1, . . . , 9. The inclusion x ∈ Ar means that the decimal representation x = 0.i0i1i2 . . .
starts with r, i.e. i0 = r. Therefore, T n(x) ∈ Ar means that the n-th digit in the decimal
representation of x is r, i.e. in = r.

Let Ar(n) be the set of points x ∈ [0, 1) whose decimal representation has r at the
n-th place (n ≥ 0). Note that Ar(0) = Ar and Ar(n) = T−n(Ar) for all n ≥ 0.

Since the Lebesgue measure m is T -invariant, we have m(Ar(n)) = m(T−n(Ar)) =
m(Ar) = 0.1. This means that the chance that for a randomly selected point x ∈ X, the
n-th digit in its decimal representation of x is r, equals 0.1 (for any r and any n). We
will see more of this map later.

2.28 The doubling map revisited. The above discussion of the map T (x) = 10x
(mod 1) applies to the doubling map, provided one uses the binary number system. In
the binary system, every point x ∈ [0, 1) has an infinite representation x = (0.i0i1i2 . . .)2

where in, n ≥ 0, are binary digits, i.e. zeroes and ones. Then 2x = (i0.i1i2 . . .)2, hence
T (x) = (0.i1i2i3 . . .)2. It is again easy to see that T n(x) = (0.inin+1in+2 . . .)2 for all n ≥ 1.

2.29 Remark. We note how T acts on the sequence of digits i0i1i2 . . . in both examples
2.27 and 2.28: the first (leftmost) digit is dropped and the rest of the sequence is moved
(shifted) to the left, so that the second digit becomes the first, etc. We will see more of
shift maps in Section 10.
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3 More of Measure Theory

In this section, X is a compact metric space (or, at least, a compact metrisable topolog-
ical space) and B its Borel σ-algebra.

3.1 Standard notation and facts. The space of continuous functions f : X → IR
is denoted by C(X). (Very rarely, we will need to consider complex-valued continuous
functions f : X → C|| , then we shall indicate necessary changes.)

The space C(X) is a vector space (usually, infinite-dimensional). It has a norm
||f || = supx |f(x)| that makes it a metric space with distance between f, g ∈ C(X) given
by ||f − g||.

Probability measures µ ∈ M(X) can be identified with special maps Jµ : C(X) → IR
defined by

Jµ(f) =
∫

X
f dµ

3.2 Fact. For each probability measure µ ∈ M(X) the map Jµ : C(X) → IR has three
characteristic properties:

(J1) It is a linear and continuous map.

(J2) It is positive, i.e. Jµ(f) ≥ 0 if f(x) ≥ 0 ∀x ∈ X.

(J3) It preserves unity, i.e. Jµ(1I) = 1, where 1I(x) = 1 ∀x ∈ X.

Proof goes by a direct inspection.

3.3 Fact. If Jµ1
(f) = Jµ2

(f) for all f ∈ C(X), then µ1 = µ2.

Proof. See Walters, pp. 147–148.

3.4 Fact (Riesz Representation Theorem). If J : C(X) → IR is a map with
properties (J1)-(J3), then there is a measure µ ∈ M(X) such that J = Jµ.

Proof was given in Real Analysis.

The representation of measures by integrals of continuous functions allows us to de-
fine a very useful topology on M, called the weak* topology.

3.5 “Definition”. The weak* topology on M is defined so that, as n → ∞

µn → µ ⇐⇒
∫

X
f dµn →

∫

X
f dµ ∀f ∈ C(X)
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The convergence of measures in the weak* topology is called the weak convergence.
As we see, it is equivalent to the convergence of integrals of continuous functions.

This is not a formal definition (see one below), but it is what one remembers and uses
in practice.

3.6 Definition. The weak* topology can be defined formally. For any µ0 ∈ M(X),
any finite collection of functions f1, . . . , fk ∈ C(X) and ε > 0 the set

Vµ0
(f1, . . . , fk; ε) =

{

µ ∈ M(X) :
∣
∣
∣
∣

∫

X
fi dµ −

∫

X
fi dµ0

∣
∣
∣
∣ < ε, 1 ≤ i ≤ k

}

is open in the weak* topology. These sets make a basis of the weak* topology.
An exercise: check that 3.6 implies 3.5, indeed.

3.8 Remark. The weak* topology is metrisable. A metric on M(X) that gives the
weak* topology can be defined as follows. Let {fn}∞n=1 be a countable dense subset4 of
C(X). Then for every µ, ν ∈ M(X) we set

D(µ, ν) =
∞∑

n=1

| ∫ fn dµ − ∫

fn dν|
2n ||fn||

Unfortunately, this metric depends on the choice of {fn}, and there is no standard metric
on M(X) that gives the weak* topology.

Proof. See Walters, pp. 148–149.

3.9 Remark. There is a standard metric on M(X), defined by

Dvar(µ, ν) = total variation of µ − ν

but it does not give the weak* topology. It is, in a sense, too strong.

3.10 Example. Let m be the Lebesgue measure on X = [0, 1]. For N ≥ 1, let xi = i/N
for 1 ≤ i ≤ N . Consider the measure

µ(N) = (δx1
+ · · · + δxN

)/N

This is a uniform measure on the finite set {xi}, 1 ≤ i ≤ N . Each point xi is an atom
for µ(N). Note that for f ∈ C(X)

∫

X
f dµ(N) =

1

N
(f(x1) + · · · + f(xN))

4A countable dense subset of C(X) exists whenever X is a metrisable compact Hausdorff space.
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We know from Calculus I that, as N → ∞,
∫

X
f dµ(N) →

∫

X
f dm ∀f ∈ C(X)

Hence µ(N) → m, as N → ∞, in the weak* topology.

3.11 Remarks.
(i) The map X → M(X) given by x 7→ δx is continuous in the weak* topology.
(ii) The convergence µn → µ in the weak* topology is equivalent to

lim sup
n

µn(F ) ≤ µ(F )

for every closed set F ⊂ X.
(iii) The convergence µn → µ in the weak* topology is equivalent to

lim inf
n

µn(U) ≥ µ(U)

for every open set U ⊂ X.
(iv) The convergence µn → µ in the weak* topology is equivalent to

lim
n

µn(A) = µ(A)

for every set A ⊂ X such that µ(∂A) = 0.

Proof. See Walters, pp. 149–150 and references therein.

3.12 Theorem (Alaoglu). The set M(X) is compact in the weak* topology. In
particular, every sequence of measures µn has a (weakly) convergent subsequence.

Proof. See Walters, pp. 150.

3.13 Definition. Let N ≥ 1 and {xi}, 1 ≤ i ≤ N , a finite collection of points in X
(not necessarily distinct). We call

µ(N) = (δx1
+ · · · + δxN

)/N

the uniform atomic measure supported on the points x1, . . . , xN .
We have seen in Example 3.10 that the Lebesgue measure m on X = [0, 1] can be

approximated by uniform atomic measures.

3.14 Theorem. Any measure µ ∈ M(X) can be approximated by uniform atomic mea-
sures, i.e. for every µ ∈ M(X) there is a sequence of such measures µ(N) that converges
to µ in the weak* topology. (Proof is left as an exercise.)

13



3.15 A physical/philosophical essay about measures. It would be helpful if we
could visualize a measure. One is used to think of the measure µ(A) of a set A as the
“size” of A. This is suitable for measure theory, but not for dynamical systems. Why
not? Because here a transformation T acts on both X and M(X), so one has to deal
with a sequence of measures µn = T nµ. Thus, µn(A) changes with n, while the set A
does not (so its “size” should not change either).

There is a way to visualize measures that works for dynamical systems. Let µ be
a probability measure and µ(N) a uniform atomic measure approximating µ, which is
supported on some points x1, . . . , xN . If N is large enough, then for all practical purposes
(and physical applications) the measures µ and µ(N) are indistinguishable. We can say
that the points x1, . . . , xN represent our measure µ, i.e. we can “visualize” µ by looking
at the set of points x1, . . . , xN .

Now, how do we visualize the measures µn = T nµ? For each n ≥ 1 the measure µn

can be usually approximated by µ(N)
n = T nµ(N). The measure µ(N)

n is another uniform
atomic measure, which is supported on the points {T n(xi)}, 1 ≤ i ≤ N . Hence, we
can “visualize” µn by looking at the set of points {T n(xi)}, the images of the original
points {xi}. Now µ(N)

n (A) can change with n depending on the balance of “incoming”
and “outgoing” representative points that move in and out under T .

A

Figure 2: Three points leave the set A and three new points come in.

Now, what does a T -invariant measure µ “look like”? If µ is invariant, then Tµ =
µ, and then usually Tµ(N) ≈ µ(N). This means that (loosely speaking) for a generic
measurable set A we have #{i : xi ∈ A} ≈ #{i : T (xi) ∈ A}. So, the number of points
that leave the set A (go out) is about the same as the number of points that enter the
set A (come in), see Fig. 2.

Suppose you first look at the set of points {xi} representing the measure µ (this is
how you “visualize” µ). Now you apply T (turn the “switch” on), so that each point
xi instantaneously jumps to T (xi). You then look again at the newly obtained set of
points {T (xi)}. If µ is invariant, then this set should look exactly the same as the old
set {xi}, i.e. you should not notice any difference in the general appearance of your set
of points before you apply T and after you apply T (even though each individual point
“jumps” somewhere). The preservation of that “general picture” (or general structure)
of the set of representative points by T is exactly how physicists “see” the invariance of
the measure µ.

14



4 Measure-preserving Transformations

Here we begin a systematic study of measurable maps and their invariant measures.
In this section, (X,B) is a measurable space and T : X → X is a measurable trans-

formation. We denote by M = M(X) the set of all probability measures on X and by
Minv = Minv(X,T ) the set of all T -invariant probability measures on X.

4.1 Remark. Minv ⊂ M, and Minv is a convex set (i.e., if µ1, µ2 ∈ Minv then
pµ1 + (1 − p)µ2 ∈ Minv for all 0 ≤ p ≤ 1). The set Minv may be empty, see Exer-
cises 2.26 (a), (b), (c), and (d).

4.2 Theorem (Bogolyubov-Krylov). If X is a compact metrisable topological space
and T : X → X a continuous transformation, then Minv 6= ∅, i.e. T has at least one
invariant measure.

Proof. See Walters, pp. 151–152, and Pollicott, pp. 8–9.

4.3 Remarks. Several interesting facts are involved in the proof of Theorem 4.2:

(a) The map T : M → M is continuous in the weak* topology.

(b) For any measure µ ∈ M every accumulation point of the sequence (µ + Tµ + · · ·+
T n−1µ)/n is a T -invariant measure. This is a very helpful method for constructing
invariant measures, even in a broader context than that of Theorem 4.2.

(c) A general fixed point theorem by Shauder (or Tykhonov-Shauder) says that a con-
tinuous transformation of a compact convex set always has a fixed point. This pro-
vides an alternative proof of Theorem 4.2 – based on the continuity of T : M → M
and the Shauder theorem.

4.4 Remarks. The assumption on the compactness of X in Theorem 4.2 cannot be
dropped, see Examples 2.26(bc). The assumption on the continuity of T in Theorem 4.2
cannot be dropped either, see Examples 2.26(d).

We now return to general measurable maps on measurable spaces. Our next step is to
learn how to use functions f : X → IR (or, more generally, f : X → C|| ) in the study of
invariant measures.

4.5 Notation. We denote by L0(X) the set of all measurable functions f : X → IR.
Given a measure µ ∈ M, for any p > 0 we denote

Lp
µ(X) =

{

f ∈ L0(X) :
∫

X
|f |p dµ < ∞

}

15



This is a vector space with norm ||f ||p =
∫

X |f |p dµ. In addition, the space L2
µ(X) has a

scalar product5 defined by

〈f, g〉 =
∫

X
fg dµ

We denote by L∞(X) the set of all bounded functions on X. It is a linear space with
norm ||f ||∞ = supx |f(x)|.

4.6 Lemma (Characterizing invariant measures). A measure µ ∈ M is T -
invariant if and only if

∫

X
f ◦ T dµ =

∫

X
f dµ ∀f ∈ L0(X)

(if one integral is infinite or does not exist, then the other has the same property).

Proof. See Walters, p. 25, and Pollicott, p. 6.

The lemma 4.6 is a particular case of a more general statement:

4.7 Lemma. For any measure µ ∈ M its image µ1 = Tµ is characterized by
∫

X
f ◦ T dµ =

∫

X
f dµ1 ∀f ∈ L0(X)

(again, if one integral is infinite or does not exist, then the other has the same property).

Proof. See Walters, p. 25. Also, Pollicott’s argument on p. 6 applies with obvious
changes.

4.8 Remark. The above lemma is, in fact, a generalized change of variable formula. If
x ∈ X and y = T (x), then

∫

f(y) dµ1(y) =
∫

f(Tx) dµ(x).

4.9 Remark. If X is a compact metrisable topological space and T : X → X a con-
tinuous map (as in Section 3), then Lemma 4.6 can be slightly improved: µ ∈ M is
T -invariant if and only if

∫

f ◦ T dµ =
∫

f dµ for all f ∈ C(X).

Proof. See Walters, p. 151.

4.10 Definition. A measurable transformation T : X → X induces a map UT :
L0(X) :→ L0(X) defined by

(UT f)(x): = (f ◦ T )(x) = f(T (x))

4.11 Simple properties.

5If f and g are complex-valued functions, then we define 〈f, g〉 =
∫

fḡ dµ.
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(a) For every n ≥ 1, we have UT n = (UT )n.

(b) The map UT is linear.

(c) The map UT takes L∞(X) into itself and does not increase the norm || · ||∞, i.e.
||UT f ||∞ ≤ ||f ||∞. Moreover, if T is onto, then ||UT f ||∞ = ||f ||∞.

(d) For any T -invariant measure µ, the map UT takes Lp
µ(X) into itself and preserves

the norm || · ||p, i.e. ||UT f ||p = ||f ||p. It also preserves the scalar product in L2
µ(X),

i.e. 〈UT f, UT g〉 = 〈f, g〉, i.e. UT is a unitary operator. This explains the notation
UT .

4.12 Remark. Given a function f : X → IR and a point x ∈ X, the sequence

(Un
T f)(x) = f(T nx), n ≥ 0

consists of the values of the function f at times n ≥ 0 along the orbit of the point x.
If f is a physical parameter (such as temperature), then this sequence consists of its
measurements taken at successive time moments. It is also called the time series. That
is what physicists (and other scientists) observe in experiments, so the behavior of the
time series is just as important as that of the orbit {T n(x)}.
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5 More Examples

5.1 Baker’s transformation. Let

X = {(x, y) : 0 ≤ x < 1, 0 ≤ y < 1}

be a unit square on the xy plane. The baker’s map T : X → X is defined by

T (x, y) =

{

(2x, y/2) if 0 ≤ x < 1/2
(2x − 1, (y + 1)/2) if 1/2 ≤ x < 1

L

L
L

R
R

R

1

1 1

1

1

12

R

Step 1 Step 2

2

Figure 3: The baker’s map constructed in two steps.

The action of T is shown on Fig. 3. At step 1, the square X is transformed into a
rectangle by the linear map (x, y) 7→ (2x, y/2) (so X is stretched in the x direction and
squeezed in the y direction). At step 2, the rectangle is cut in half and its right half is
placed atop its left half. This process resembles the way a baker kneads dough, hence
the name baker’s map.

5.2 Remarks. The baker’s transformation is a bijection of the unit square X. Its
inverse, T−1 : X → X, satisfies similar equations:

T−1(x, y) =

{

(x/2, 2y) if 0 ≤ y < 1/2
((x + 1)/2, 2y − 1) if 1/2 ≤ y < 1

Note that T is discontinuous on the line x = 1/2 but continuous elsewhere. Such maps
are said to be piecewise continuous. Moreover, T is piecewise smooth (and even piecewise

linear). The map T−1 has the same properties, except it is discontinuous on another line,
y = 1/2.

5.3 Proposition. Let B be the Borel σ-algebra and m the Lebesgue measure on the
unit square6 X. Then the baker’s map T : X → X is measurable and preserves m.

6Let us adopt a convention: whenever X ⊂ IRd, d ≥ 2, then B will denote the Borel σ-algebra and m
the Lebesgue measure on X.
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Proof. By 2.11 and 2.20, it is enough to find a collection of subsets J ⊂ B such that
B(J ) = B and T−1(A) ∈ B and m(T−1(A)) = m(A) for all A ∈ J . Let J consist of
subrectangles A ⊂ X that do not intersect the line y = 1/2 (in this case T−1(A) will be
a subrectangle as well). This will do it. 2

5.4 Remark. In the proof of Proposition 5.3, it is enough to restrict J to rectangles of
diameter < ε, where ε is an arbitrarily small positive number. Taking the limit as ε → 0,
the condition m(T−1(A)) = m(A) will reduce to

| det DT | = 1 (1)

where DT is the matrix of partial derivatives of T . In our case

DT =

(

2 0
0 1/2

)

Hence, | det DT | = 1, indeed.

5.5 “Digital” representation of the baker’s map. Let (x, y) ∈ X be an arbitrary
point. Let x = 0.i0i1i2 . . . be an infinite representation of x in the binary system, cf. 2.28.
Let y = 0.j1j2j3 . . . be the binary representation of y. Then the image (x′, y′) = T (x, y)
has representation

x′ = 0.i1i2i3 . . . and y′ = 0.i0j1j2 . . .

Note that it is remarkably simple: the first digit of x becomes the first digit of y, and
the rest of the digits shift accordingly.

This suggests the following trick. Let us reverse the sequence j1j2j3 . . . and append
it to the sequence i0i1i2 . . . on the left:

. . . j3j2j1i0i1i2 . . . (2)

thus obtaining one sequence of binary digits (0’s and 1’s), which is infinite in both
directions (we call that a double infinite sequence). This sequence represents a pair of
real numbers x and y, i.e. a point in the square X.

For convenience, let us denote ωk = ik for k = 0, 1, 2, . . . and ω−k = jk for k = 1, 2, . . ..
Then the double infinite sequence (2) will look like

ω = (. . . ω−3ω−2ω−1ω0ω1ω2 . . .) (3)

The point ω0 is the first digit of x here.
How does T act on double infinite sequences? If a point (x, y) ∈ X is represented by

a sequence (3), then its image (x′, y′) = T (x, y) is represented by another sequence

ω′ = (. . . ω′
−3ω

′
−2ω

′
−1ω

′
0ω

′
1ω

′
2 . . .)
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that is obtained by the rule ω′
k = ωk+1 for all k ∈ ZZ. Hence, T corresponds to the left

shift on representing sequences.

5.6 Exercises. Let X be a unit square and T : X → X a diffeomorphism (a bijection
of X such that both T and T−1 are smooth everywhere).

(a) Show that if | det DT | ≡ 1, then T preserves the Lebesgue measure m.

(b) Let µ be a probability measure on X with density f(x, y), cf. 1.7 (b), which means
that for any Borel set A ⊂ X

µ(A) =
∫

A
f(x, y) dx dy =

∫

A
f dm

Then the measure µ1 = Tµ has density f1(x, y) given by

f1(x, y) =
f(x1, y1)

| det DT (x1, y1)|

where (x1, y1) = T−1(x, y).

(c) A probability measure µ on X with density f(x, y) is T -invariant iff

f(x, y) =
f(x1, y1)

| det DT (x1, y1)|
(4)

for m-almost all (x, y) ∈ X, here again (x1, y1) = T−1(x, y). Precisely, the set of
points (x, y) ∈ X where (4) fails must have zero Lebesgue measure.

5.7 Remark. So, we have a criterion of the invariance of the Lebesgue measure that
is based on the identity (1). It can be modified and applied to the doubling map of the
unit interval T (x) = 2x (mod 1), cf. 2.2. Let x ∈ X = [0, 1) and T−1(x) = {y1, y2} be
the full preimage of x (say, y1 = x/2 and y2 = (x + 1)/2). Then the T -invariance of the
Lebesgue measure is “equivalent” to

2∑

i=1

1

|T ′(yi)|
= 1

This is obviously true since T ′(y) ≡ 2.

5.8 Exercises. Let X = [0, 1] be the unit interval (which may be open, closed or
semiopen). Let T : X → X be a piecewise monotonic map, i.e. there are points
0 = a0 < a1 < a2 < · · · < ak−1 < ak = 1 such that T is strictly monotonic and
differentiable on each of the k intervals (ai, ai+1), 0 ≤ i ≤ k − 1.
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(a) Show that the Lebesgue measure is T -invariant iff

∑

y∈T−1(x)

1

|T ′(y)| = 1

for almost every point x ∈ X. (Note: every point x has at most k preimages.)

(b) Let µ be a probability measure on X with density f(x). Then the measure µ1 = Tµ
has density f1(x) given by

f1(x) =
∑

y∈T−1(x)

f(y)

|T ′(y)|

(c) A probability measure µ on X with density f(x) is T -invariant iff

f(x) =
∑

y∈T−1(x)

f(y)

|T ′(y)| (5)

for m-almost all x ∈ X. Precisely, the set of points x ∈ X where (5) fails must
have zero Lebesgue measure.

Note: the sequence of problems in 5.8 almost repeats that of 5.6.

5.9 Example: the tent map. Let X = [0, 1] and T : X → X be defined by

T (x) =

{

2x if x ≤ 1/2
2 − 2x if x > 1/2

This is the tent map, see Fig. 4a. Note that T is continuous and its graph is a “tent”
with a sharp tip. Since T is a “two-to-one” map and |T ′(x)| ≡ 2, it preserves the Lebesgue
measure by 5.8(a).

5.10 Example: a quadratic map. Let X = [0, 1] and T : X → X be defined by

T (x) = 4x(1 − x)

Note that T is continuous and even smooth, and its graph is a “tent” with a curved top,
see Fig. 4b. Note that T is a “two-to-one” map and |T ′(x)| = |4 − 8x|. It does not
preserve the Lebesgue measure by 5.8(a).

5.11 Exercise. Show that the quadratic map in 5.10 preserves the measure µ with
density

f(x) =
1

π
√

x(1 − x)
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Figure 4: The tent map (a), the quadratic map (b) and the Gauss map (c).

Here 1/π is just the normalizing factor introduced to make µ a probability measure.

5.12 Example: the Gauss map. Let X = [0, 1] and T : X → X be defined by
T (x) = 1/x (mod 1) for x 6= 0 and T (0) = 0. That is, T (x) is the fractional part of 1/x.
The graph of this function has infinitely many branches, see Fig. 4c. Its discontinuity
points are x = 1/n, n ∈ IN, and x = 0. Every point x < 1 has infinitely many preimages.

5.13 Exercise. Show that the Gauss map in 5.12 preserves the measure µ with density

f(x) =
1

ln 2
· 1

1 + x

Here 1/ ln 2 is just the normalizing factor introduced to make µ a probability measure.
This density was found by K. F. Gauss in the Nineteenth Century.

5.14 Remark. The density of a T -invariant measure is a solution of the functional equa-
tion (5). Generally, it is very hard (if at all possible) to solve it. The solutions given in
Exercises 5.11 and 5.13 for two particular maps have been found basically “by accident”
or “by trial and error”. There are no general algorithms to solve functional equations.

5.15 Definition. An map T : I → I of an interval I ⊂ IR is said to have an absolutely
continuous invariant measure (a.c.i.m. for short) if there is a T -invariant measure
on I with a density.

We have seen that the doubling map, the tent map, the quadratic map, and the Gauss
map all have a.c.i.m.

5.16 Remark. The existence or uniqueness of an a.c.i.m. is not guaranteed. For all of
the above interval maps the a.i.c.m. is indeed unique, and we will prove that in Section 8.

22



By far, we have seen maps of various kinds: some were one-to-one (e.g., circle rota-
tions and the baker’s transformation) and some others were two-to-one (the doubling map
and the tent map) or even infinitely-many-to-one (the Gauss map). If a map T : X → X
is a bijection, one can use T−1 as well.

5.17 Definition. A bijective map T : X → X is called an automorphism if both T
and T−1 are measurable maps. (Examples: circle rotations and the baker’s map.)

On the contrary, if T is not an automorphism, then T is called an endomorphism.

5.18 Exercise. If an automorphism T preserves a measure µ, then its inverse T −1 also
preserves µ.
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6 Recurrence

Here we turn back to the general properties of measure-preserving transformations. In
this section, T : X → X always denotes a measurable map with a T -invariant measure µ.

6.1 Definition. Let A ⊂ X be a measurable set and x ∈ A. Denote by

τA(x) = min{n ∈ IN : T n(x) ∈ A}

the first return time when the point x comes back to the set A. If such a time does
not exist (i.e., if x never returns to A) then we set τA(x) = ∞.

6.2 Theorem (Poincaré Recurrence Theorem). If µ(A) > 0, then almost every
point x ∈ A does return to A, i.e.

µ({x ∈ A : τA(x) = ∞}) = 0

Proof. See Walters, p. 26 or Pollicott, p. 9.

6.3 Remark. Poincaré Theorem 6.2 is false if the measure µ is infinite. For example,
let X = IR, µ be the Lebesgue measure and T (x) = x + 1. Then the set A = (0, 1) has
no returning points at all.

6.4 Corollary. If µ(A) > 0, then almost every point x ∈ A returns to A infinitely
many times, i.e. for almost every x ∈ A there is a sequence 0 < n1 < n2 < · · · of natural
numbers such that T ni(x) ∈ A for each i.

6.5 Remark. Let Ã ⊂ A denote the set of points that return to A infinitely many times.
Note that

Ã = A ∩
(

∩∞
n=1 ∪∞

m=n T−m(A)
)

Since Ã is obtained by a countable number of set operations, it is a measurable set, i.e.
Ã ∈ B.

6.6 Definition. Let A ⊂ X and µ(A) > 0. The map TA : A → A defined by

TA(x) = T τA(x)(x)

is called the first return map (or Poincaré map) on A. It is actually defined on the
set {x ∈ A : τA(x) < ∞}, but that set coincides with A up to a set of measure zero.

It is more convenient to restrict TA to the set Ã. Note that TA(Ã) ⊂ Ã, i.e. Ã is
invariant under TA. We now can consider TA : Ã → Ã as a new transformation, induced
by T and A.
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Note that µ(Ã) = µ(A) and µ(A∆Ã) = 0 by 6.4, so one commonly identifies A with
Ã by neglecting a set of zero measure. Still, for the sake of clarity we will keep working
with Ã.

6.7 Definition. Let BÃ be the σ-algebra induced on Ã, i.e.

BÃ = {B ∈ B : B ⊂ Ã}

Define a probability measure µÃ on (Ã,BÃ) by

µÃ(B) = µ(B)/µ(Ã) for all B ∈ BÃ

The measure µÃ is called the conditional measure.

6.8 Theorem. Let A ⊂ X and µ(A) > 0. Then the first return map TA : Ã → Ã
preserves the conditional measure µÃ.

Proof. Let B ∈ BÃ. Define a sequence of sets Bn ⊂ Ã by

Bn = {x ∈ Ã : τA(x) = n & T n(x) ∈ B}

Then T−1
A (B) = ∪n≥1Bn. Next, the sets Bn are pairwise disjoint, because τA takes

different values on different Bn’s. Lastly, we need to show that µ(B) =
∑

n µ(Bn). For
each n ≥ 1, let

Cn = {x ∈ T−n(B) : T ix /∈ A ∀i = 0, 1, . . . , n − 1}

Verify by direct inspection that T−1(Cn) = Cn+1∪Bn+1 and Cn+1∩Bn+1 = ∅. Therefore,

µ(Cn) = µ(Cn+1) + µ(Bn+1)

Also, T−1(B) = C1 ∪B1 and C1 ∩B1 = ∅, hence µ(B) = µ(C1)+µ(B1). Adding all these
equations for measures together proves the theorem.

Right? Not quite. We also need to show that limn→∞ µ(Cn) = 0. Do this as an
exercise. Hint: show that the sets Cn are pairwise disjoint. 2

6.9 Exercise. Let f : X → IR+ be a positive measurable function, i.e. f(x) > 0 for all
(or almost all) x ∈ X. Show that

∞∑

n=0

f(T n(x)) = ∞

for almost every point x ∈ X.
Find an example of a strictly positive function f > 0 so that the above series con-

verges for some points x ∈ X. (Hint: you can use the map 2.26e).
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Figure 5: The tower map S. A point x with τ(x) = 4 is shown.

The following construction is in a sense opposite to that of the first return map. Be-
fore, we shrunk the space X to a smaller set A. Now we will construct a “larger” space
to replace X.

6.10 Definition. Let T : X → X be a transformation preserving a measure µ and
τ : X → IN a measurable positive integral-valued function on X such that

D =
∫

X
τ dµ < ∞

Let
Y = {(x, k) : x ∈ X, k = 1, 2, . . . , τ(x)}

This is called a tower. It is naturally partitioned into levels (“floors”) Y = ∪n≥1Yn

where
Yn = {(x, k) ∈ Y : k = n}

Let ϕ : Y → X be a natural projection ϕ(x, n) = x. Define a map S : Y → Y by

S(x, k) =

{

(x, k + 1) if k < τ(x)
(T (x), 1) if k = τ(x)

Note that S moves each point straight up the tower until it reaches the top level (“the
ceiling”), then S takes it down to the level zero and at that time applies the “old” map
T , see Fig. 5. The function τ(x) is called the ceiling function.

Define a measure µ′ on each level Yn, n ≥ 1, by

µ′(B) = µ(ϕ(B)) B ⊂ Yn

(this also defines a σ-algebra on Yn). Then we obtain a measure µ′ on Y . It is finite
and µ′(Y ) = D, then the measure µ̃ = µ′/D is a probability measure on Y . The map S
preserves the measure µ̃, which can be verified directly.

26



7 Ergodicity

7.1 Definition (not a good one!). A set B ⊂ X is said to be T -invariant if
T (B) ⊂ B.

7.2 Remark. The above definition is standard in some mathematical courses, but not
so convenient for dynamical systems. First of all, T (B) may not be measurable, even if
B is. Second, when B is invariant, then Bc = X \ B may not be. These considerations
motivate the following:

7.3 Definition A measurable set B ⊂ X is (fully) T -invariant if T −1(B) = B.

Note that now when B is invariant, then so is Bc, i.e. T−1(Bc) = Bc. The following
exercise shows, though, that Definition 7.1 is essentially equivalent to 7.3:

7.4 Exercise. Let T (B) ⊂ B for a set B ∈ B. Consider the “forward limit” B+ =
∩n≥0T

n(B) and the “backward limit” B− = ∪n≥0T
−n(B).

(a) Show that the set B− is measurable and (fully) invariant, i.e. T−1(B−) = B−. Is
B+ also fully invariant? (Prove or give a counterexample.)

(b) Show that if µ is a T -invariant measure, then µ(B∆B−) = 0. Also, if T n(B) ∈ B
for all n ≥ 1, then prove µ(B∆B+) = 0.

This shows that for any invariant set B in the sense of 7.1 there is a fully invariant set
B− that coincides with B up to a null set.

In dynamical systems, we work with measures. Sets of zero measure are treated as
negligible and often ignored.

7.5 Definitions. Let µ ∈ M be a probability measure. We call A a null set if
µ(A) = 0. We say that A and B coincide (mod 0) if µ(A∆B) = 0. In this case we
write A = B (mod 0).

7.6 Remark. The relation A = B (mod 0) is an equivalence relation. In particular, to
check that A = B (mod 0) and B = C (mod 0) implies A = C (mod 0), one can use a
simple formula A∆C ⊂ (A∆B) ∪ (B∆C).

7.7 Definition. Let µ be an invariant measure. We say that a set B ⊂ X is invariant
(mod 0) if B = T−1(B) (mod 0), i.e. µ(B∆T−1B) = 0.

Note: in this case B = T−nB (mod 0) for all n ≥ 1. This easily follows from 7.6.
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7.8 Definition. Let µ be a probability measure. If f, g : X → IR are two measurable
functions, then we say that f and g are µ-equivalent, and write f = g (mod 0), if
µ{x : f(x) 6= g(x)} = 0.

7.9 Exercise. Let B ∈ B. Consider the set

B∞ = ∩∞
n=0 ∪∞

m=n T−m(B)

consisting of points whose orbits visit B infinitely many times.

(a) Show that the set B∞ is measurable and (fully) invariant, i.e. T−1(B∞) = B∞.

(b) Let µ be a T -invariant measure. Suppose that B = T−1(B) (mod 0), i.e. B is
invariant (mod 0). Prove that B = B∞ (mod 0).

This shows that for any (mod 0) invariant set B there is a fully invariant set B∞ that
coincides (mod 0) with B.

7.10 Examples.

(a) If X is a finite set and T : X → X is a permutation (see 2.26f), then every set
whose elements form a cycle is fully invariant.

(b) If X = [0, 1] and T (x) = x2, see 2.26e, then the sets B1 = {0}, B2 = (0, 1) and
B3 = {1} are fully invariant.

B Bc

Figure 6: The decomposition of X into two invariant subsets.

7.11 Remark. Let B ⊂ X be a (fully) invariant set. Then T (B) ⊂ B and T (Bc) ⊂ Bc.
So, the orbits that originate in B never visit Bc and the orbits originating in Bc never
visit B. The space X naturally decomposes into two “noninteracting” parts: X1 = B
and X2 = Bc. We can restrict T to X1 and X2 and consider two measurable maps
Ti = T : Xi → Xi with i = 1, 2, separately.

Whenever µ1 is a T1-invariant measure on X1 and µ2 is a T2-invariant measure on X2,
then any weighted sum pµ1 +(1−p)µ2 for 0 ≤ p ≤ 1 will be a T -invariant measure on X.
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Also, any T -invariant measure µ on X such that µ(B) > 0 and µ(Bc) > 0 is a weighted
sum of the conditional measures µB and µBc on B and Bc, which are invariant under T1

and T2, respectively. In this case one can reduce the study of the map T : X → X to the
study of two “smaller” maps T1 : X1 → X1 and T2 : X2 → X2.

7.12 Definition. A T -invariant measure µ is said to be ergodic if there is no T -
invariant subset B ⊂ X such that µ(B) > 0 and µ(Bc) > 0. (Equivalently: there is no
T - invariant set B such that 0 < µ(B) < 1.)

We also say that T is ergodic (with respect to the measure µ). The set of ergodic
measures is denoted by Merg ⊂ Minv.

7.13 Examples.

(a) If X is a finite set and T : X → X is a permutation (see 2.26f), then a T -invariant
measure is ergodic iff it is concentrated on one cycle.

(b) If X = [0, 1] and T (x) = x2, see 2.26e, then the only ergodic measures are δ0 and
δ1. Note: a T -invariant set (0, 1) cannot carry any T -invariant measure, see 2.26c.

We see that ergodic measures are, in a sense, “extreme” invariant measures.

Recall that the collection of T -invariant measures, Minv is a convex subset of M(X),
see 4.1. For any convex set R a point x ∈ R is called an extremal point of R if there is
no pair of points x1, x2 ∈ R, x1 6= x2, such that x = px1 + (1 − p)x2 for some 0 < p < 1.

Figure 7: Extremal points of convex sets: the entire boundary of an oval and just four
vertices of a rectangle.

7.14 Proposition. Ergodic measures are precisely extremal points of the set Minv.

Proof. Let µ be a nonergodic measure. Let B be an invariant set such that 0 <
µ(B) < 1. Then µ is a weighted sum of the conditional measures µB and µBc , see
Remark 7.11, i.e. µ is not an extremal point of M.

Conversely, let µ be another measure that satisfies µ = pµ1+(1−p)µ2 for some distinct
T -invariant measures µ1 6= µ2 and 0 < p < 1. Consider the signed measure ν = µ1 − µ2.
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By Hahn decomposition theorem, there is a set B ∈ B such that ν = ν+ − ν−, where
ν+ and ν− are positive measures concentrated on B and Bc, respectively. Moreover,
ν+(A) = ν(A ∩ B) and ν−(A) = −ν(A ∩ Bc) for all A ∈ B.

Since µ1 and µ2 are T -invariant, then so is ν. Therefore, ν(B\T−1B) = ν((T−1B)\B).
On the other hand, ν(B \ T−1B) ≥ 0 and ν((T−1B) \ B) ≤ 0. Hence, ν(B \ T−1B) =
ν((T−1B) \ B) = 0, i.e. ν̄(B∆T−1B) = 0, where ν̄ = ν+ + ν− is the total variation of ν.
Next, ν+ is an invariant measure since for any A ⊂ X

ν+(T−1A) = ν((T−1A) ∩ B) = ν(T−1(A ∩ B)) = ν(A ∩ B) = ν+(A)

Similarly, ν− is invariant, hence ν̄ is invariant as well. Therefore, for the T -invariant set
B∞ we have ν̄(B∆B∞) = 0, see Exercise 7.9. Hence, ν(B∞) > 0 and ν(Bc

∞) < 0. Thus,
µ(B∞) > 0 and µ(Bc

∞) > 0, so the measure µ is not ergodic. 2

We see that a nonergodic measure µ can be represented by a weighted sum of two
other invariant measures. If those measures are not ergodic either, this decomposition
can be continued, and ultimately we can represent µ by ergodic measures only:

7.15 Theorem (Ergodic Decomposition). Let X be a topological space. Given
any invariant measure µ ∈ Minv there exists a probability measure ρµ on the space Minv

such that
(a) ρµ(Merg) = 1;
(b) for any f ∈ L1

µ(X)
∫

X
f dµ =

∫

Merg

(∫

X
f dν

)

dρµ(ν)

(i.e. the invariant measure µ is an affine combination, weighted by ρµ, of ergodic mea-
sures ν ∈ Merg).

We assume this statement without proof. A proof is outlined in Pollicott, pp. 18-19.
The ergodic decomposition theorem 7.15 is conceptually important, but practically it is
hardly useful (see Remark 7.21, however).

7.16 Corollary. Let X be a compact metrisable topological space and T : X → X a
continuous transformation. Then Minv is closed and Merg 6= ∅, i.e. there exists at least
one ergodic measure.

7.17 Definition. Two measures µ1, µ2 ∈ M(X) are said to be mutually singular
(denoted µ1 ⊥ µ2) if there is a set B ∈ B such that µ1(B) = 1 and µ2(B) = 0.

7.18 Proposition. If µ1, µ2 ∈ Merg are two ergodic measures, then they either coincide
(µ1 = µ2) or are mutually singular (µ1 ⊥ µ2).
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Proof. Consider the signed measure ν = µ1 − µ2. Arguing as in the proof of Proposi-
tion 7.14 gives µ1(B∞) > 0 and µ2(B

c
∞) > 0. Now use the ergodicity of µ1 and µ2.

7.19 Proposition. Let µ ∈ Minv be an invariant measure. Suppose the measure ρµ in
7.15 is concentrated on a finite or countable set of ergodic measures ν1, ν2, . . .. Since all
of them are mutually singular by 7.18, there is a partition X = ∪n≥1Xn, Xi 6= Xj for
i 6= j, such that for each n ≥ 1 the measure νn is concentrated on Xn, i.e. νn(Xn) = 1.
In this case νn = µXn

is the conditional measure induced by µ on Xn.

7.20 Remark. The above proposition can be generalized to arbitrary invariant measures
µ. That is, the space X can be decomposed into smaller T -invariant subsets on each of
which the conditional measure induced by µ is ergodic. However, when those subsets
have zero µ-measure, the definition of conditional measures is quite involved and we do
not give it here, see Pollicott, p. 18, and Walters, p. 9.

7.21 Remark. Let A ⊂ X be a subset such that ν(A) = 1 for every ergodic measure ν.
Then µ(A) = 1 for every invariant measure µ. Indeed, we can set f = χA, the indicator
of the set A, and apply Theorem 7.15.

Invariance of sets (defined by 7.3) is just as important as invariance of functions:

7.22 Definition. A function f ∈ L0(X) is invariant if UT f = f , i.e. f(T (x)) = f(x)
for all x ∈ X. In this case f is constant on every orbit {T nx}.

Given an invariant measure µ, a function f is almost everywhere invariant if
f(T (x)) = f(x) for a.e. x ∈ X. This precisely means µ({x : f(T (x)) 6= f(x)}) = 0.

Note: if the function f is invariant a.e., then f is constant on the orbit of almost
every point x ∈ X.

7.23 Lemma (Characterizing ergodic measures). An invariant measure µ is
ergodic iff any invariant (alternatively: any almost everywhere invariant) function f is
constant a.e.

Note: it is enough to restrict this criterion to functions f ∈ L1
µ(X) or f ∈ L2

µ(X) or
even f ∈ L∞(X).

Proof. See Walters, p. 28, or Pollicott, p. 10.

7.24 Exercise. Let µ be an ergodic measure and µ(A) > 0. Show that µ(A∞) = 1, i.e.
almost every point x ∈ X visits the set A infinitely many times.

7.25 Corollary. Let X be a topological space with a countable basis. Let µ be an er-
godic measure such that µ(U) > 0 for every nonempty open set U (this is quite common
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in physics). Then the orbit of almost every point x ∈ X visits every open set infinitely
many times. In particular, the orbit of almost every point is dense in X.

The following two exercises are very similar. Do only one of them (your choice):

7.26 Exercise. Let a map T : X → X be ergodic with respect to a measure µ. Let
µ(A) > 0. Show that the first return map TA : Ã → Ã constructed in 6.6 is ergodic with
respect to the conditional measure µÃ (defined in 6.7).

7.27 Exercise. Let a map T : X → X be ergodic with respect to a measure µ. Let
τ : X → IN be a function with a finite integral. Show that the map S on the tower Y
defined in 6.10 is ergodic with respect to the measure µ̃ (also defined in 6.10).

An important concept in dynamical systems is that of isomorphism.

7.28 Definition. For i = 1, 2, let Ti : Xi → Xi be a transformation preserving a
probability measure µi. We say that T1 and T2 are isomorphic if for each i = 1, 2 there
is a Ti-invariant set Bi ⊂ Xi of full measure, i.e. T (Bi) ⊂ Bi and µi(Bi) = 1, and a
bijection ϕ : B1 → B2 such that

(i) ϕ preserves measures, i.e. for every measurable set A ⊂ B1 the set ϕ(A) ⊂ B2 is
measurable and µ1(A) = µ2(ϕ(A)) (and vice versa);

(ii) ϕ preserves dynamics, i.e. ϕ ◦ T1 = T2 ◦ ϕ on B1.

We call ϕ an isomorphism and write T1 ' T2. An isomorphism means that two dy-
namical systems, (X1, T1, µ1) and (X2, T2, µ2) are equivalent, up to sets of zero measure
(which we neglect).

7.29 Remarks. Isomorphism is an equivalence relation. Also, if T1 ' T2, then T n
1 ' T n

2

for all n ≥ 1.

7.30 Exercise. Assume that T1 ' T2. Prove that T1 is ergodic if and only if so is T2.
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8 Examples of Ergodic Maps

Here we show that many of the maps we have discussed so far are ergodic. Let us start
with the circle rotation T (x) = x + a (mod 1), where x ∈ X = [0, 1).

8.1 Claim. If a ∈ Q|| , i.e. a is a rational number, then every point x ∈ X is periodic.

Proof. Let a = p/q. Then T n(x) = x + np/q (mod 1) for all n ≥ 1, hence T q(x) = x.
2

Note that if p and q are relatively prime, then q is the minimal period of every point
x ∈ X.

8.2 Claim. If a is irrational, then for every x ∈ X the trajectory {T nx}, n ≥ 0, is dense
in X.

Proof. First, if a is irrational, then no point x can be periodic. Indeed, if x is periodic
with period n, then x = T n(x) = x + na (mod 1), hence na ∈ ZZ, so a is a rational
number.

Therefore, all points {T nx}, n ≥ 1, are distinct. Hence for any ε > 0 there are two of
those points, say T m(x) and T m+k(x), which are ε-close to each other. Put y = T m(x),
then T k(y) = T m+k(x), so dist(y, T ky) ≤ ε. Since T preserves distances, we have

dist(y, T ky) = dist(T ky, T 2ky) = dist(T 2ky, T 3ky) = · · ·
Since T also preserves orientation, then the sequence y, T ky, T 2ky, T 3ky, . . . moves in one
direction on the circle, and eventually will go around it and make an ε-dense subset of
X. Since ε > 0 is arbitrary, we get our claim. 2

8.3 Claim. If a is rational, then T is not ergodic with respect to the Lebesgue measure
m on X.

Proof. Let a = p/q. For any ε > 0 the set

Bε = ∪q−1
i=0 (i/q, i/q + ε)

is invariant. Its measure is m(Bε) = εq > 0. 2

8.4 Claim. If a is irrational, then T is ergodic with respect to the Lebesgue measure m
on X.

Proof. We will need one fact from real analysis. Let B ⊂ IR be a Borel set. A point
x ∈ IR is called a Lebesgue density point (or just a density point) of the set B if

lim
ε→0

m(B ∩ [x − ε, x + ε])

2ε
= 1
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The fact is that m-almost every point x ∈ B is a density point.
Now, assume that T is not ergodic and B ⊂ X is a T -invariant set, such that

0 < m(B) < 1. Let x be a density point for B and y a density point for Bc (one
exists since m(Bc) > 0). Find such a small ε > 0 that m(B ∩ [x − ε, x + ε]) > 1.9 ε
and m(Bc ∩ [y − ε, y + ε]) > 1.9 ε. Now, since the orbit of x is dense in X, there is
an n ≥ 1 such that dist(T nx, y) < 0.1 ε. Because the set B is T -invariant, we have
m(B ∩ [T nx − ε, T nx + ε]) > 1.9 ε. This easily leads to a contradiction. 2

1

10

(a) (b)

y T yk

B

T B1-

Figure 8: The sequence y, T ky, T 2ky, . . . on the circle (a), and a set B with its preimage
T−1B, the latter consisting of two identical parts (b).

Next we turn to the doubling map T (x) = 2x (mod 1), where x ∈ X = [0, 1).

8.5 Claim. The doubling map is ergodic with respect to the Lebesgue measure m.

Proof. Let B ⊂ X be a Borel set. Note that T−1B consists of two identical copies of
B, each is twice as small as the original B, one lies on the interval [0, 1/2) and the other
on the interval [1/2, 1). Hence,

m(T−1B ∩ [0, 1/2)) = m(T−1B ∩ [1/2, 1)) = m(B)/2

Applying the same argument to T−nB we get the following. Let Ji,n = [i/2n, (i + 1)/2n)
for i = 0, 1, . . . , 2n − 1 (we call these binary intervals). Then

m(T−nB ∩ Ji,n) = m(B)/2n = m(B) m(Ji,n) (6)

for all i = 0, 1, . . . , 2n − 1.
It is easy to see that the collection of all binary intervals {Ji,n}, n ≥ 1, 0 ≤ i ≤ 2n−1,

generates the Borel σ-algebra on X. Finite unions of binary intervals make an algebra.
Let A ⊂ X be a Borel set. By the approximation theorem 1.19 for any ε > 0 the set

A can be approximated by a finite union of binary intervals, i.e. there is A0 = ∪jJij ,n so
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that m(A∆A0) < ε. Here n can be made the same for all j. Certainly, n depends on ε,
so let us call it nε.

Now, (6) implies
m(T−nB ∩ A0) = m(B) m(A0)

for all n ≥ nε. Since A0 approximates A, it is easy to derive that

|m(T−nB ∩ A) − m(B) m(A)| < 2ε

for all n ≥ nε. Hence,

m(A ∩ T−nB) → m(A) m(B) as n → ∞ (7)

Note: this is true for any (!) Borel sets A,B ⊂ X.
Now, if B is a T -invariant set, then T−nB = B and (setting A = B) we get

m(B) = [m(B)]2. This is only possible if m(B) = 0 or m(B) = 1. 2

8.6 Remark. The same argument, without changes, applies to the tent map. Hence,
the tent map is ergodic with respect to the Lebesgue measure.

Next, we take the quadratic map T (x) = 4x(1 − x) for x ∈ [0, 1]. This one has an
absolutely continuous invariant measure (a.c.i.m.) with density given in 5.11. It is hard,
in this case, to show the ergodicity directly, but there is a helpful trick. This map is
shown on Fig. 4b and looks very much like the tent map shown on Fig. 4a (topologically,
they are equivalent). Maybe they are isomorphic?

8.7 Claim. The tent map and the quadratic map are isomorphic.

Proof. Let T1(x) = 2x for x ≤ 1/2 and T1(x) = 2 − 2x for x > 1/2 be the tent map.
Let T2(y) = 4y(1 − y) be the quadratic map. The isomorphism is established by the
function

y = ϕ(x) =
1 − cos πx

2

It is a bijection of the unit interval [0, 1] onto itself. We need to verify the preservation
of measures 7.28(i) and dynamics 7.28(ii).

We first check 7.28(i). Let x ∈ (0, 1) and y = ϕ(x). Take a small interval (x, x + dx)
and let y + dy = ϕ(x + dx). The preservation of measures means

dx = f(y) dy + o(dy)

where f(y) is the density function given in 5.11. Dividing by dx and taking the limit
dx → 0 gives

f(ϕ(x)) ϕ′(x) = 1

So, we need to verify this identity, which can be done by direct substitution.

35



Next, we show how to check 7.28(ii). Let x < 1/2. Then

ϕ(T1(x)) = ϕ(2x) =
1 − cos 2πx

2
= sin2 πx

On the other hand,

T2(ϕ(x)) = 4ϕ(x)(1 − ϕ(x)) = 4 × 1 − cos πx

2
× 1 + cos πx

2
= sin2 πx

so we get ϕ ◦ T1 = T2 ◦ ϕ. The case x > 1/2 is similar. 2

8.8 Corollary. The quadratic map T (x) = 4x(1 − x) is ergodic with respect to the
a.c.i.m. with density given in 5.11.

Lastly, we turn to the baker’s transformation of the unit square.

8.9 Claim. The baker’s map is ergodic with respect to the Lebesgue measure.

Proof. After you grasp the proof of 8.5, this should be pretty clear. Our main tool
will be binary rectangles, rather than binary intervals. A binary rectangle is

Ri,j,m,n = {(x, y) : i/2m ≤ x < (i + 1)/2m, j/2n ≤ y < (j + 1)/2n}
It is easy to see that the collection of all binary rectangles generates the Borel σ-algebra
on X. Also, finite unions of binary rectangles make an algebra.

Consider an arbitrary binary rectangle Ri,j,m,n. Note that T (Ri,j,m,n) = Rs,t,m−1,n+1

for some s, t. Therefore, T m(Ri,j,m,n) = Ru,v,0,n+m for some u, v. This last set is a
rectangle, which stretches across X all the way in the x direction (from x = 0 to x = 1).
Similarly, T−n(Ri,j,m,n) = Re,f,m+n,0 is a rectangle stretching across X all the way in the
y direction (from y = 0 to y = 1).

Now, let A and B be two Borel subsets of X. By the approximation theorem 1.19, for
any ε > 0 there are sets A0 and B0, each being a finite union of some binary rectangles,
such that m(A∆A0) < ε and m(B∆B0) < ε.

Let A0 = ∪p,qRip,jq ,m,n, where m and n can be made the same for all (p, q). Then
Tm(A0) is a union of binary rectangles stretched across X all the way in the x direction.
The same is obviously true for T k(A0) whenever k ≥ m.

Now let B0 = ∪r,sRir,js,m,n, where m and n can be made the same for all (r, s) (and
the same as above). Then T−n(B0) is a union of binary rectangles stretched across X all
the way in the y direction. The same is obviously true for T−`(B0) whenever ` ≥ n.

The above observations imply

m(T kA0 ∩ T−`B0) = m(T kA0) m(T−`B0)

for all k ≥ m and ` ≥ n. Since the Lebesgue measure m is T -invariant and T is an
automorphism,

m(A0 ∩ T−NB0) = m(A0) m(B0)
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for all N ≥ m + n.
Next, because A0 approximates A and B0 approximates B, it is easy to derive that

|m(A ∩ T−NB) − m(A) m(B)| < 4ε

for all N ≥ m + n. Hence,

m(A ∩ T−NB) → m(A) m(B) as N → ∞ (8)

Note: this is true for any (!) Borel sets A,B ⊂ X.
Now, if B is a T -invariant set, then T−NB = B and (setting A = B) we get

m(B) = [m(B)]2. This is only possible if m(B) = 0 or m(B) = 1. 2

Finally, we discuss the uniqueness of the absolutely continuous invariant measures
(a.c.i.m.’s) constructed in Section 5.

8.10 Theorem. Let T : X → X be a map of an interval X ⊂ IR that has an ergodic
a.c.i.m. µ with a positive density f(x) > 0. Then that a.c.i.m. is unique.

Proof. The assumption f(x) > 0 implies that µ is equivalent to the Lebesgue measure
m, i.e. µ(B) = 0 iff m(B) = 0. Since µ is ergodic, then for each T -invariant set B we
have m(B) = 0 or m(Bc) = 0.

If there were another a.c.i.m. ν with density g(x), then for any T -invariant set B we
would have either ν(B) =

∫

B g dm = 0 or ν(Bc) =
∫

Bc g dm = 0. Hence, the measure
with density g would be ergodic, too. On the other hand, distinct ergodic measures are
mutually singular by 7.18, a contradiction. 2

Figure 9: The function in Exercise 8.13.

37



8.11 Remark. The last theorem (with the same proof) extends to maps on a unit square
or, more generally, any domain of IRd for any d ≥ 1.

8.12 Corollary. The doubling map, the tent map, the quadratic map and the baker’s
transformation have unique a.c.i.m.’s.

8.13 Exercise. Let T : [0, 1) → [0, 1) be defined by

T (x) =







2x if x < 1/4
2x − 1/2 if 1/4 ≤ x < 3/4
2x − 1 if 3/4 < x

Find two distinct a.c.i.m.’s on X = [0, 1). Are both ergodic? Can you find an ergodic
a.c.i.m.? How many? Can you find an a.c.i.m. with a strictly positive density?

8.14 “Exercise”. Let T : X → X be a map of a unit interval X ⊂ IR that has an
ergodic a.c.i.m. µ with a positive density f(x) > 0. Assume, additionally, that

0 < C1 ≤ f(x) ≤ C2 < ∞ ∀x ∈ X

with some positive constants C1 < C2. Consider the sequence of measures

νn = (m + Tm + · · · + T n−1m)/n

where m is the Lebesgue measure on X. Show that νn weakly converges to µ.
Note: this exercise requires substantial work, it is not recommended as a homework

problem. It might be a large project for a student.
Hints: show that for every k ≥ 1 the measure T km is absolutely continuous and its

density gk(x) is bounded by C1/C2 ≤ gk ≤ C2/C1. Then show that for every n ≥ 1 the
measure νn has the same property. Then show that every limit point of the sequence νn

has the same property. Next, show that every limit point of the sequence νn is an invariant
measure: to do that, prove that if a subsequence νnk

weakly converges to a measure ν,
then νnk

(A) → ν(A) for every Borel set A ⊂ X (this can be done via approximating A
by finite unions of intervals A0 such that m(A∆A0) < ε). Lastly, use Theorem 8.10.

Note: it is not necessarily true that the sequence T km converges to any measure as
k → ∞.
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9 Ergodic Theorem

This section presents the single most important result in the theory of dynamical sys-
tems. It is the ergodic theorem, the main fact in our course.

We again assume that T : X → X is a transformation preserving a measure µ.

9.1 Definition. Let f ∈ L0(X) be a measurable function. Then for every x ∈ X and
n ≥ 1

Sn(x) = f(x) + f(Tx) + · · · + f(T n−1x)

is called a partial sum or ergodic sum. It is obtained from the time series {f(T ix)},
i ≥ 0. The value Sn(x)/n is the (partial) time average of the function f at the point
x. The limit

f+(x) = lim
n→+∞

1

n
Sn(x) (9)

(if it exists) is called the (asymptotic) time average of the function f along the orbit
of x.

9.2 Theorem (Birkhoff-Khinchin Ergodic Theorem). Let f be integrable, i.e.
f ∈ L1

µ(X). Then

(a) For almost every point x ∈ X the limit f+(x) defined by (9) does exist.

(b) The function f+(x) is T -invariant. Moreover, if f+(x) exists, then f+(T nx) exists
for all n and f+(T nx) = f+(x).

(c) f+ is integrable and
∫

X
f+ dµ =

∫

X
f dµ

(d) If µ is ergodic, then f+(x) is constant almost everywhere and

f+(x) =
∫

X
f dµ for a.e. x ∈ X

We postpone the proof for a short while. First, we make some remarks and derive
some corollaries.

9.3 Remark. The integral
∫

X f dµ is called the space average of the function f . The
part (d) of the ergodic theorem asserts that

If T is ergodic, then the time averages are equal to the space average
(almost everywhere)
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In probability theory, the identity between time and space averages is known as the
strong law of large numbers. It is quite common in statistical physics to replace time
averages with space averages, this practice goes back to L. Boltzmann and others in the
Nineteenth Century. This is how the idea of ergodicity was born.

9.4 Corollary. Let T : X → X be an automorphism. Then the “past” time average

f−(x) = lim
n→∞

f(x) + f(T−1x) + · · · + f(T−(n−1)x)

n
(10)

exists almost everywhere, and f+(x) = f−(x) for a.e. x ∈ X.

Proof. The existence follows from Ergodic Theorem 9.2 applied to T−1, it also
implies that

∫

f− dµ =
∫

f dµ. To show that f+ = f−, consider the T -invariant set
A = {x : f+(x) > f−(x)}. If µ(A) > 0, then apply Ergodic Theorem to the restriction of
T to A preserving the conditional measure µA. This yields

∫

A f+ dµ =
∫

A f dµ =
∫

A f− dµ,
a contradiction. Similarly one can show that the set {x : f+(x) < f−(x)} has zero mea-
sure. 2

9.5 Definition. Let A ⊂ X. The limit

rA(x) = lim
n→+∞

#{0 ≤ i ≤ n − 1 : T i(x) ∈ A}
n

(11)

(if one exists) is called the (asymptotic) frequency of visits of the point x to the set A.

9.6 Corollary. For every set A the limit rA(x) defined by (11) exists for almost every
point x ∈ X. If µ is ergodic, then rA(x) = µ(A) for a.e. x ∈ X.

Hence, if µ is ergodic, then the orbit of a.e. point x spends time in the set A propor-
tional to its measure µ(A). In this sense, the ergodic measure µ describes the asymptotic
distribution of almost every orbit {T n(x)}, n ≥ 0 in the space X.

9.7 Proof of Ergodic Theorem 9.2. This is done in three major steps. Step 1
consists in proving a lemma:

9.8 Lemma (Maximal Ergodic Theorem). For every N ≥ 0, define a function

FN = max{S0, S1, . . . , SN}

where we set S0 = 0. Let AN = {x : FN(x) > 0} and A = ∪N≥1AN . Then

∫

AN

f dµ ≥ 0 and
∫

A
f dµ ≥ 0 (12)
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Proof. See Walters, pp. 37-38. We just sketch the proof here. First we prove that
∫

AN
f dµ ≥ 0. For 0 ≤ n ≤ N we have FN ≥ Sn, hence FN ◦ T ≥ Sn ◦ T , and hence

FN ◦ T + f ≥ Sn+1. Therefore, for all x ∈ AN we have

FN(T (x)) + f(x) ≥ max
1≤n≤N

{Sn(x)} = FN(x)

(since S0(x) = 0 and FN(x) > 0). Thus, f(x) ≥ FN(x) − FN(T (x)) for x ∈ AN . Note
also that FN(y) = 0 and FN(T (y)) ≥ 0 for all y ∈ Ac

N . Hence,

∫

AN

f dµ ≥
∫

AN

FN dµ −
∫

AN

FN ◦ T dµ ≥
∫

X
FN dµ −

∫

X
FN ◦ T dµ = 0

the last equation is due to the invariance of µ.
Next, since FN ≤ FN+1, then AN ⊂ AN+1 for all N . Now

∫

A
f dµ = lim

N→∞

∫

AN

f dµ ≥ 0 2

Step 2 consists in using Lemma 9.8 to prove the clause (a) of Theorem 9.2. See
Walters, p. 38. We sketch the argument here. Let

f̄(x) = lim sup
n→+∞

1

n
Sn(x)

and

f(x) = lim inf
n→+∞

1

n
Sn(x)

It is enough to show that f̄ = f a.e. If this is not the case, then there are real numbers
α > β such that the set

E = Eα,β = {x : f̄(x) > α and f < β}

has positive measure, i.e. µ(E) > 0. Note that the functions f̄ and f are invariant, hence
E is a fully T -invariant set.

Consider a function g = (f − α) χE, where χE is the indicator of E. Then for all
x ∈ E we have

sup
N≥1

(

g(x) + g(Tx) + · · · + g(T N−1x)
)

> 0

and g ≡ 0 on Ec. Applying (12) to the function g we get
∫

E g dµ ≥ 0, hence

∫

E
f dµ ≥ α µ(E) (13)

Similarly, we can show that ∫

E
f dµ ≤ β µ(E) (14)
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(by applying the previous argument to the function −f). But then (13) and (14) imply
µ(E) = 0.

Step 3 consists of deriving the clauses (b), (c) and (d) from (a). See Walters, p. 39.
The clause (b) is trivial. The clause (d) follows by 7.23. The integrability of f+ in the
clause (c) follows from Fatou’s lemma, which in fact gives

‖f+‖1 ≤ ‖f‖1 (15)

It remains to prove the integral identity in (c). Our argument is different from that of
Walters. First, observe that

∫

X Sn/n dµ =
∫

X f dµ for all n, because µ is invariant. If f
is bounded, then ‖Sn/n‖∞ ≤ ‖f‖∞, hence the sequence Sn/n is uniformly bounded. In
this case the integral identity in (c) follows from the dominated convergence theorem.

For an arbitrary f ∈ L1
µ(X), we take ε > 0 and approximate f with a bounded

function φ so that ‖f − φ‖1 < ε. Since φ is bounded, we have
∫

φ dµ =
∫

φ+ dµ. Lastly,

‖f+ − φ+‖1 = ‖(f − φ)+‖1 ≤ ‖f − φ‖1 < ε

where we applied (15) to the function f−φ. This implies | ∫ f dµ−∫ f+ dµ| < 2ε. Ergodic
Theorem 9.2 is now proved. 2

9.9 Corollary (Lp Ergodic Theorem of Von Neumann). Let 1 ≤ p < ∞. If
f ∈ Lp

µ(X), then ‖Sn/n − f+‖p → 0 as n → ∞.

Proof. See Walters, p. 36. By the way, it is quite similar to our proof of the clause
(c) of Theorem 9.2. 2

9.10 Exercise. Let A ⊂ X and µ(A) > 0. Prove that rA(x) > 0 (defined in 9.5) for
almost every point x ∈ A. [Hint: consider the set B = {x ∈ A : rA(x) = 0}.]

9.11 Example. There is an interesting application of the ergodic theorem to number
theory. Recall Example 2.27, which involves the map T (x) = 10x (mod 1) on the unit
interval X = [0, 1). This map preserves the Lebesgue measure m, as shown in 2.27. One
can also show that m is ergodic by using the same argument as in 8.5, we omit details.

Consider the set Ar = [r/10, (r + 1)/10) for some r = 0, 1, . . . , 9. For x ∈ X, the
inclusion T n(x) ∈ Ar means that the n-th digit in the decimal representation of x is r, see
2.27. For n ≥ 1, let Kr(n, x) be the number of occurrences of the digit r among the first n
digits of the decimal representation of x. This is exactly #{0 ≤ i ≤ n− 1 : T i(x) ∈ Ar}.
Corollary 9.6 now implies that

lim
n→∞

Kr(n, x)/n = m(Ar) = 0.1

for almost every x ∈ X.
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The above fact is known in number theory. A number x ∈ [0, 1) is called normal
if for every r = 0, 1, . . . , 9 the asymptotic frequency of occurrences of the digit r in the
decimal representation of x is exactly 0.1. The fact, which we just proved, that almost
every point x ∈ X is normal is known as Borel Theorem on Normal Numbers.

Next we derive some further consequences of Ergodic Theorem 9.2 along the lines of
9.5 and 9.6. We need to assume that X is a compact metrisable topological space, but
the map T does not have to be continuous. For x ∈ X, consider the sequence of uniform
atomic measures (recall Definition 3.13)

µ(n)
x = (δx + δTx + · · · + δT n−1x)/n (16)

As n → ∞, the measure µ(n)
x may converge to a probability measure µ ∈ M(X) in the

weak* topology.

9.12 Definition. A point x ∈ X is said to be µ-generic for a measure µ ∈ M(X) if
the sequence µ(n)

x defined by (16) weakly converges to µ as n → ∞. Equivalently,

lim
n→∞

1

n

n−1∑

i=0

F (T i(x)) =
∫

X
F dµ ∀F ∈ C(X)

i.e. the time averages are equal to the space averages for all continuous functions.

If a point x is µ-generic, then the trajectory {T nx} of x is distributed in the space X
according to the measure µ (one can say that x is “attracted” by the measure µ).

9.13 Definition. Let T : X → X be a map and µ ∈ M(X). The set

Bµ = {x : x is µ−generic}

is called the basin of attraction of the measure µ.

Note: if µ 6= ν are two distinct measures, then Bµ ∩ Bν = ∅.

9.14 Proposition. If µ is an ergodic measure, then µ-almost every point x ∈ X is
µ-generic, i.e. µ(Bµ) = 1.

Proof. Let J be a countable basis in the topology on X and A(J ) = {Ak} a count-
able algebra of X generated by J , see 1.17. For every k we have µ(n)

x (Ak) → µ(Ak) as
n → ∞ a.e. by 9.6, i.e. we have this convergence for all x ∈ Xk with µ(Xk) = 1. Let
X∞ = ∩kXk. Obviously, µ(X∞) = 1. Since every open set U ⊂ X is a union of some
disjoint elements of A(J ), one can easily derive that lim infn µ(n)

x (U) ≥ µ(U) for every
x ∈ X∞. Therefore, µ(n)

x weakly converges to µ by 3.11(iii). 2
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9.15 Applications in Physics. Suppose a map T : X → X models a physical process.
In this case, usually, X is a compact topological space with some natural coordinates on
it (examples: a compact domain in IRd, a sphere, a torus, etc.). The coordinates allow
us to define the Lebesgue measure m on X. It measures area or volume in X, depending
on the dimension of X. Let m be normalized so that m(X) = 1.

A typical physical experiment (or a numerical test done with the aid of a computer)
consists of choosing a point x ∈ X at random and experimentally following (or numeri-
cally generating) its trajectory x, T (x), . . . , T n−1(x) until some large time n. The points
{x, T (x), . . . , T n−1(x)} represent the measure µ(n)

x defined by (16).
Proposition 9.14 shows that if µ is an ergodic T -invariant measure and the point

x ∈ X is typical with respect to µ, then the measure µ(n) weakly converges to µ as
n → ∞, i.e. the measure µ describes the distribution of typical orbits in the space X.

However, in practice one may NOT want (or may NOT be able) to choose a point x
typical with respect to some ergodic measure µ. Why should those points be physically
interesting? Physicists may not even have any ergodic measure at hands! What they
want is to choose a point x typical with respect to the Lebesgue measure m on X. It is
a fundamental principle in statistical physics that only such points are physically rele-
vant (or experimentally observable). Such points are also easy to generate by computer
programs (using so called random number generators). This motivates the following def-
inition:

9.16 Definition. Let X be a compact space with natural coordinates and a (normal-
ized) Lebesgue measure m. A T -invariant measure µ is said to be physically observable
if m(Bµ) > 0. Such measures are also referred to as Sinai-Bowen-Ruelle (SRB) mea-
sures in the modern theory of dynamical systems.

A measure µ is physically observable if there is a chance to “observe” µ by following
a trajectory chosen at random with respect to the Lebesgue measure m, i.e. observe µ in
a physical experiment or by a computer simulation.

9.17 Proposition. Let T : X → X be the irrational circle rotation, or the doubling
map, or the tent map, or the quadratic map, or the baker’s transformation, and µ the
absolutely continuous invariant measure on X. Then µ is physically observable. More-
over, m(Bµ) = 1, i.e. the a.c.i.m. µ is the only physically observable measure.

Proof. Since µ is ergodic, then µ(Bµ) = 1 by 9.14. Also, µ is equivalent to the
Lebesgue measure m, hence m(Bµ) = 1. 2

9.18 Exercise. Let T (x) = x2 for x ∈ X = [0, 1]. Which invariant measures are physi-
cally observable? Recall Exercise 2.26(e).

9.19 Exercise (optional; it is rather tricky). Let T (x) = x + a (mod 1) for
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X = [0, 1) be a circle rotation with a rational a ∈ Q|| . Are there any physically observable
measures?
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10 Symbolic Dynamics

Recall that in Example 2.28 we represented every point x ∈ X = [0, 1) by a sequence of
binary digits i0i1i2 . . . and the doubling map T (x) = 2x (mod 1) then corresponded to
the left shift of the sequence (with the removal of the first digit i0).

In Example 5.5 we represented every point (x, y) ∈ X = [0, 1) × [0, 1) of the unit
square by a double infinite sequence of binary digits {ωn}∞n=−∞ and then the baker’s map
T : X → X corresponded to the left shift of the entire sequence.

Here we generalize these examples.

10.1 Definitions. Let S be a finite set of r ≥ 2 elements. We call S an alphabet and
elements s ∈ S letters. We label the letters by 1, 2, . . . , r, i.e. we assume S = {1, . . . , r}.
Let Ω+ = Ω+,r = SZZ+ denote the space of infinite sequences of letters. So a point

ω ∈ Ω+ is a sequence ω = {ωn}∞n=0 with ωn ∈ S for each n ≥ 0. Also, let Ω = Ωr = SZZ

be the space of double infinite sequences of elements of S, i.e. Ω consists of sequences
ω = {ωn}∞n=−∞ with ωn ∈ S for each n ∈ ZZ. We call Ω+ and Ω symbolic spaces. (For
brevity, we suppress the index r.)

We equip the finite set S with the discrete topology (i.e., all its subsets are open).
We consider the product topology on Ω+ and Ω. The product topology is generated
by cylinders, see below. Cylinders make a countable basis in the product topology and
play the same important role as intervals in IR.

Let 0 ≤ m ≤ n < ∞ and ω′
i ∈ S for m ≤ i ≤ n. A cylinder is the set

Cm,n(ω′
m, . . . , ω′

n) = {ω ∈ Ω+ : ωi = ω′
i for all m ≤ i ≤ n}

In other words, the cylinder Cm,n(ω′
m, . . . , ω′

n) consists of all sequences whose “coordi-
nates” from m to n are fixed (equal to the given letters ω′

m, . . . , ω′
n). Similarly, a cylinder

Cm,n ⊂ Ω can be defined for any −∞ < m ≤ n < ∞.

10.2 Exercise. Let Cm,n and Cm′,n′ be two cylinders.

(a) Show that Cm,n∩Cm′,n′ is a cylinder or a finite union of disjoint cylinders. Describe
it.

(b) Assume that Cm,n ⊂ Cm′,n′ (note that this implies m ≤ m′ and n′ ≤ n). Show that
Cm′,n′ is a finite union of “smaller” cylinders, one of which is Cm,n.

(c) Show that the complement Cc
m,n to a cylinder is a finite union of cylinders.

Note: It follows from (a)-(b) that if A is a finite union of cylinders, then A is a finite
union of some disjoint cylinders.

10.3 Corollary. Finite disjoint unions of cylinders make an algebra. This algebra
generates the Borel σ-algebra on Ω and Ω+.
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10.4 Remarks.

(a) In the product topology, the convergence ω(k) → ω is equivalent to the following:
for any n ≥ 1 there is a kn ≥ 1 such that for all k ≥ kn

ω
(k)
i = ωi for all |i| ≤ n

i.e. the variable sequence ω(k) stabilizes as k → ∞.

(b) The product topology is metrisable. The corresponding metric on Ω can be defined
by

dist(ω, ω′) =
∞∑

n=−∞

1 − δωnω′
n

2|n|

(in the space Ω+, we only need to sum over n ≥ 0).

(c) In the product topology, both spaces Ω and Ω+ are compact and totally discon-
nected.

10.5 Definition. Let µ0 be a probability measure on the finite set S. It is characterized
by r numbers pi = µ0({i}) such that pi ≥ 0 and

∑r
i=1 pi = 1.

Then µ0 induces the product measure µ on Ω (and on Ω+). For any cylinder
Cm,n(ω′

m, . . . , ω′
n) its measure is given by

µ
(

Cm,n(ω′
m, . . . , ω′

n)
)

=
n∏

i=m

pω′
i

(17)

The measure µ is also called the Bernoulli measure on Ω (resp., on Ω+).

10.6 Remarks.

(a) The existence and uniqueness of the measure µ satisfying (17) follows from Ex-
tension Theorem 1.21. The proof involves the verification of countable additivity,
which is quite tedious.

(b) The measure µ is nonatomic (has no atoms), unless pi = 1 for some i, in which case
µ is concentrated on one sequence {ωn}, for which ωn = i ∀n.

(c) The product measure µ makes the coordinates ωn, n ∈ ZZ, independent random
variables, in terms of probability theory. This explains the name Bernoulli.

10.7 Definition. The left shift map σ can be defined on the spaces Ω and Ω+. For
every ω ∈ Ω we define ω′ = σ(ω) by ω′

i = ωi+1 for all i ∈ ZZ. For every ω ∈ Ω+ we define
ω′ = σ(ω) by ω′

i = ωi+1 for all i ≥ 0.

47



10.8 Exercise. Show that the left shift map σ is “onto” and continuous. On the space
Ω it is a homeomorphism, and on Ω+ it is an r-to-one map.

10.9 Exercise. Show that the left shift σ preserves the Bernoulli measure µ defined by
10.5. Hint: take a cylinder Cm,n and describe its image σ(Cm,n). Then use the algebra
made by finite disjoint unions of cylinders.

10.10 Definition. The symbolic space Ω (or Ω+) with a Bernoulli measure µ defined
by 10.5 and the left shift map σ is called a Bernoulli system (or a Bernoulli shift).
We denote it by Br(p1, . . . , pr) (resp., B+,r(p1, . . . , pr)). Note: its only parameters are r
and p1, . . . , pr.

10.11 Proposition. The doubling map T (x) = 2x (mod 1) with the Lebesgue measure
is isomorphic to the (one-sided) Bernoulli shift B+,2(1/2, 1/2).

Proof. Let B′ ⊂ [0, 1) be the set of binary rational numbers, i.e.

B′ = {k/2n : n ≥ 0, 0 ≤ k < 2n}

Clearly, B′ is a countable set, so m(B ′) = 0. Let r = 2 and Ω′
+ ⊂ Ω+ be the set of

eventually constant sequences, i.e.

Ω′
+ = {ω : ωi = ωi+1 ∀i > i0}

Clearly, Ω′
+ is countable set, so µ(Ω′

+) = 0.
Now, for each x ∈ [0, 1) \ B ′ the binary representation x = 0.i0i1i2 . . . constructed in

2.28 is unique. We define a sequence ω = φ(x) ∈ Ω+ by ωn = in + 1 for all n ≥ 0. This
defines a bijection between [0, 1) \ B ′ and Ω+ \ Ω′

+. One can check by direct inspection
that φ preserves the measure and dynamics, i.e. it is an isomorphism. 2

10.12 Proposition. The baker’s map defined by 5.1 with the Lebesgue measure m is
isomorphic to the (two-sided) Bernoulli shift B2(1/2, 1/2).

Proof. Similar to the previous one.

10.13 Exercise. Let C and C ′ be two cylinders and µ a Bernoulli measure. Show that
there is an n0 ≥ 0 such that

µ(C ∩ σ−n(C ′)) = µ(C) µ(C ′)

for all n ≥ n0. Note: this applies to both Ω and Ω+.

10.14 Theorem. Every Bernoulli shift is ergodic.
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Proof. Let A and B be two Borel subsets of Ω (or Ω+). By the approximation theorem
1.19, for any ε > 0 there are sets A0 and B0, each being a finite disjoint union of some
cylinders, such that m(A∆A0) < ε and m(B∆B0) < ε.

The result of Exercise 10.13 implies that there is an n0 ≥ 0 such that

µ(A0 ∩ σ−n(B0)) = µ(A0) µ(B0)

for all n ≥ n0. Since A0 approximates A and B0 approximates B, it is easy to derive that

|µ(A ∩ σ−n(B)) − µ(A) µ(B)| < 4ε

for all n ≥ n0. Hence,

µ(A ∩ σ−n(B)) → µ(A) µ(B) as n → ∞ (18)

Now, if B is a σ-invariant set, then σ−n(B) = B and (setting A = B) we get µ(B) =
[µ(B)]2. This is only possible if µ(B) = 0 or µ(B) = 1. 2

Whenever we establish an isomorphism between a given dynamical system (X,T, µ)
and a symbolic system (Ω, σ, ν) or (Ω+, σ, ν) with some σ-invariant measure ν, we call
this a symbolic representation of (X,T, µ). We now outline a standard method of
constructing symbolic representations.

10.15 Definition. Let X = X1 ∪ · · · ∪Xr be a finite partition of X into disjoint parts,
Xi ∩ Xj = ∅ for i 6= j. Let T : X → X be a map. For every point x ∈ X its itinerary
is a sequence defined by

{ωn}∞n=0 : T n(x) ∈ Xωn
∀n ≥ 0

If the map T is a bijection, i.e. T−1 : X → X is also defined, then the full itinerary of
a point x ∈ X is a double infinite sequence defined by

{ωn}∞n=−∞ : T n(x) ∈ Xωn
∀n ∈ ZZ

10.16 Definition. A partition X = X1 ∪ · · · ∪ Xr is called a generating partition if
distinct points have distinct itineraries. Equivalently, for any x 6= y there is an n such
that T n(x) ∈ Xi and T n(y) ∈ Xj with some i 6= j.

10.17 Construction of a symbolic representation. Let T : X → X be a map
and X = X1 ∪ · · · ∪ Xr a generating partition. Let φ : X → Ω+ (or φ : X → Ω, if T is
an automorphism) be the map that takes every point x ∈ X to its itinerary constructed
in 10.15. This map is injective for any generating partition.
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Let ΩX = φ(X) be the image of X. Then ΩX is σ-invariant, i.e. σ(ΩX) ⊂ ΩX .
Moreover, φ◦T = σ ◦φ. If T has an invariant measure µ on X, one can define a measure
ν on ΩX by ν(B) = µ(φ−1(B)). Then the dynamical systems (X,T, µ) and (ΩX , σ, ν)
will be isomorphic.

This is a general principle for the construction of a symbolic representation.

10.18 Remark. In the above symbolic representation of T : X → X, any cylinder
Cm,n(ωm, . . . , ωn) ⊂ ΩX corresponds to the set

Xm,n(ωm, . . . , ωn) = ∩n
k=mT−kXωk

that is, φ−1(Cm,n(ωm, . . . , ωn)) = Xm,n(ωm, . . . , ωn).

10.19 Remarks. The symbolic representation of the doubling map corresponds to the
partition X1 = [0, 0.5) and X2 = [0.5, 1). The symbolic representation of the baker’s map
corresponds to the partition of the square X by the line x = 0.5.
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11 Mixing

In this section, we again assume that T : X → X is a transformation preserving a mea-
sure µ.

11.1 Proposition. T is ergodic iff for every two functions f, g ∈ L2
µ(X)

lim
n→∞

1

n

n−1∑

i=0

∫

X
f(T ix)g(x) dµ =

∫

X
f dµ ·

∫

X
g dµ (19)

Proof. If T is not ergodic, then there is an invariant set A with 0 < µ(A) < 1. The
choice of f = g = χA shows that (19) fails. Let T be ergodic. By Ergodic Theorem,

lim
n→∞

1

n

n−1∑

i=0

f(T ix) =
∫

X
f dµ a.e.

Multiplying by g(x) and integrating over X should give the result. The exact argument
is similar to the proof of (c) in Ergodic Theorem. First, for bounded functions f and g we
can use the dominated convergence theorem. Then, for arbitrary functions f, g ∈ L2

µ(X),
we approximate them by bounded functions (in the L2 metric) and use standard integral
estimates (including the Schwarz inequality) to obtain the result. The (boring) details
are left out. 2

11.2 Remarks.

(a) We assume in 11.1 that f, g ∈ L2
µ(X) (not just f, g ∈ L1

µ(X)) in order to ensure
the existence of the integrals on the left hand side of (19).

(b) Physicists use a more convenient notation:
∫

X f dµ = 〈f〉µ (or just 〈f〉). Then (19)
can be rewritten as

lim
n→∞

1

n

n−1∑

i=0

〈(f ◦ T i) g〉 = 〈f〉 〈g〉

11.3 Proposition. T is ergodic iff for every two measurable sets A,B ⊂ X

lim
n→∞

1

n

n−1∑

i=0

µ(T−iA ∩ B) = µ(A) µ(B) (20)

Proof. If T is not ergodic, let A be an invariant set with 0 < µ(A) < 1 and choose
B = A, then (20) fails. If T is ergodic, apply Proposition 11.1 with f = χA and g = χB. 2

11.4 Remark. In the proofs of Claims 8.5 and 8.9 and Theorem 10.14, we have obtained
a stronger convergence than (20):

lim
n→∞

µ(T−nA ∩ B) = µ(A) µ(B)
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for all pairs of measurable sets A,B ⊂ X. This motivates the following definition:

11.5 Definition. We say that a map T : X → X is mixing (with respect to µ) if for
all measurable subsets A,B ⊂ X

lim
n→∞

µ(T−nA ∩ B) = µ(A) µ(B) (21)

We also say that the measure µ is mixing if this holds.

11.6 Corollary. Mixing transformations are ergodic.

11.7 Exercise. Assume that two maps T1 : X1 → X1 and T2 : X2 → X2 are isomorphic,
i.e. T1 ' T2. Prove that T1 is mixing if and only if T2 is.

11.8 Proposition. The doubling map, the tent map, the quadratic map and the baker’s
map are mixing with respect to their absolutely continuous invariant measures.

Proof. This follows from our proofs of Claims 8.5 and 8.9 (formulas (7) and (8)),
Remark 8.6 and Exercise 11.7. 2

11.9 Proposition. Every Bernoulli shift is mixing.

Proof. See the proof of Theorem 10.14 (formula (18)). 2

11.10 Claim. Circle rotations are never mixing (with respect to the Lebesgue measure).

Proof. Let T (x) = x + a (mod 1) be a circle rotation. If a ∈ ZZ, then T is an
identity and the claim is trivial. Otherwise T−1(x) 6= x. Take a small interval (an
arc) A′ = (x − ε, x + ε) such that T−1(A′) ∩ A′ = ∅. Let A = (x − ε/2, x + ε/2) and
B = A. If (21) holds, then T−nA ∩ A 6= ∅ for all large enough n. On the other hand,
if T−nA∩A 6= ∅ for some n, then T−(n+1)A ⊂ T−1A′ is disjoint from A, a contradiction. 2

Note: if an automorphism T is mixing, then so is T−1. Hence, the mixing of an
automorphism T can be defined by

lim
n→∞

µ(T nA ∩ B) = µ(A) µ(B)

This is so because µ(T nA ∩ B) = µ(A ∩ T−nB).

11.11 Proposition. T is mixing iff for every two functions f, g ∈ L2
µ(X)

lim
n→∞

〈(f ◦ T n) g〉 = 〈f〉 〈g〉 (22)
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Proof. If T is not mixing, we take two sets A and B on which (21) fails and set
f = χA and g = χB, then (22) will fail as well. Let T be mixing. Then (22) follows
from (21) directly, for the characteristic functions f = χA and g = χB of any pair of sets
A,B ⊂ X. By taking linear combinations of characteristic functions, we obtain (22) for
any pair of simple functions. Then we approximate arbitrary functions f, g ∈ L2

µ(X) by
simple functions (in the L2 metric) and use standard integral estimates (including the
Schwarz inequality) to obtain the result. Once again, the boring details are left out. 2

11.12 Remark. Because µ(A) = µ(T−nA), the characteristic equation of the mixing
property (21) can be rewritten as

lim
n→∞

∣
∣
∣µ(T−nA ∩ B) − µ(T−nA) µ(B)

∣
∣
∣ = 0 (23)

In probability theory, the events A and B that satisfy P (A ∩ B) = P (A) P (B) are
called independent. The mixing condition (23) in fact says that T−nA and B become
asymptotically independent as n → ∞.

In other words, the events x ∈ B and x ∈ T−nA are almost independent for large
n. Note that x ∈ T−nA is equivalent to T n(x) ∈ A. Now we can say that the event
x ∈ B (a condition on the initial point x) becomes independent of the event T n(x) ∈ A
(a condition on its image at time n) as n → ∞. Or shortly, the distant future will
become independent of the present as time goes on. Alternatively, thinking of T n(x)
as a present point and x as initial, or past point, we can say that the present becomes
independent of the remote past.

Another way to look at mixing is this. Given a set A ⊂ X, the condition (23) must
hold for every set B, as n → ∞. Then T−nA must be a rather weird set that tends to
overlap with every subset B ⊂ X as n → ∞. One may expect that T−nA “spreads out”
and behaves like an octopus that penetrates with its tentacles every tiny corner of the
space X, see Fig. 10.

T
A

n

AT n

X X

_

_

Figure 10: A set A and its preimage T−nA under a mixing map.

11.13 Remark. In physics and ergodic theory, the quantity

C(f, g) = 〈f g〉 − 〈f〉 〈g〉
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is called the correlation7 between f and g. The quantity

Cn(f, g) = 〈(f ◦ T n) g〉 − 〈f〉 〈g〉

is called the correlation between f and g at time n. Now the mixing property (22) is
equivalent to the convergence of correlations to zero, as time goes on. In this case, physi-
cists say that the correlations decay. For physical theories, it is very important to
know just how fast the correlations decay for particular functions f and g. The rate (or
speed) of the decay of correlations characterizes various physics models.

11.14 Definition. We say that a map T is weakly mixing (with respect to µ) if for
all measurable subsets A,B ⊂ X

lim
n→∞

1

n

n−1∑

i=0

|µ(T−iA ∩ B) − µ(A) µ(B)| = 0

We can also say that the measure µ is weakly mixing if this holds.

11.15 Proposition. If T is mixing, then it is weakly mixing. If T is weakly mixing,
then it is ergodic.

Note: the circle rotation T (x) = x + a (mod 1) is not even weakly mixing.

11.16 Definition. Let k ≥ 2. We say that a map T : X → X is k-mixing, or mixing
of multiplicity k (with respect to µ), if for any measurable subsets A1, A2, . . . , Ak ⊂ X
and 0 ≤ n1 < n2 < · · · < nk

µ(T−n1A1 ∩ T−n2A2 ∩ · · · ∩ T−nkAk) → µ(A1) µ(A2) · · ·µ(Ak) (24)

whenever
min{n2 − n1, n3 − n2, . . . , nk − nk−1} → ∞

We also say that the measure µ is k-mixing if this holds.

The meaning of k-mixing is the asymptotic independence of the sets taken at k dif-
ferent moments of time when the time intervals between them grow.

11.17 Proposition. Mixing is equivalent to 2-mixing. If T is k-mixing, then it is
(k − 1)-mixing for every k ≥ 3.

7In probability theory, the quantity C(f, g) is called the covariance, while the ratio ρf,g =

C(f, g)/
√

C(f, f)C(g, g) is called the correlation. We will use here the physics/ergodic terminology
and call C(f, g) the correlation.
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Proof. Just set Ak = X in the above definition. 2

11.18 Remark. The weak mixing and k-mixing properties are invariant under isomor-
phisms. This generalizes Exercises 7.30 and 11.7.

11.19 Proposition. Every Bernoulli shift is k-mixing for all k ≥ 2.

Proof. As in 10.14, we can approximate arbitrary sets A1, . . . , Ak with finite unions
of cylinders. Thus, it is enough to prove (24) for cylinders only. This generalizes Exer-
cise 10.13, we omit details. 2

11.20 Definition. A map T : X → X preserving a measure µ is said to be Bernoulli
if it is isomorphic to a Bernoulli shift. In this case we also call µ a Bernoulli measure on X.

11.21 Proposition. Any Bernoulli map is k-mixing for all k ≥ 2.

Proof. This follows from 11.18 and 11.19.

11.22 Hierarchy of ergodic properties. As we see, the following hierarchy of
properties (listed from strongest to weakest) takes places:

Bernoulli
⇓

Multiple Mixing
⇓

Mixing
⇓

Weak Mixing
⇓

Ergodicity

Every map that has a higher property, also has the lower properties. Bernoulli is regarded
as the highest degree of ergodicity (or, to some extent, the highest degree of chaos).
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12 Linear Toral Automorphisms

Rich classes of dynamical systems can be constructed by using linear transformations on
a torus.

12.1 Definition. An d-dimensional torus Tord (for short, a d-torus) is a unit cube in
IRd

Kd = {x = (x1, . . . , xd) : 0 ≤ xi ≤ 1 i = 1, . . . , d}
whose opposite faces are identified, i.e. we assume xi + 1 = xi for all i = 1, . . . , d. Alter-
natively, Tord can be defined as the factor space Tord = IRd/ZZd.

Note: the 1-torus Tor1 is just the unit circle introduced in 2.1.

Note: the 2-torus Tor2 is a square with identified opposite sides. One is used to
visualize Tor2 as the surface of a doughnut.

12.2 Definition. Let a = (a1, . . . , ad) ∈ IRd. A translation of the d-torus Tord is

Ta(x) = x + a (mod 1)

i.e. Ta(x1, . . . , xd) = (x1 + a1, . . . , xd + ad), and each xi + ai is taken modulo 1.

Note: if d = 1, the translation Ta is just the rotation of the unit circle Tor1 through
the angle a1.

12.3 Remark. Every translation Ta is a diffeomorphism of the torus Tord . Moreover,
Ta is a linear map and an isometry (i.e., it preserves distances between points and angles
between vectors). Also, for each n ∈ ZZ the nth iteration of Ta is T n

a
= Tna.

12.4 Proposition. Ta preserves the Lebesgue measure m on the torus Tord.

Proof. The derivative DTa is the identity matrix, hence det DTa = 1. Now the in-
variance of the Lebesgue measure follows as in Exercise 5.6(a). 2

12.5 Theorem. The following are equivalent:

(a) Ta is ergodic with respect to the Lebesgue measure;

(b) ∀x ∈ Tord the trajectory {T n
a
(x)}∞n=0 is dense in Tord;

(c) the numbers a1, . . . , ad are rationally independent of 1, i.e.

m0 + m1a1 + m2a2 + · · · + mdad 6= 0 (25)

for any integers m0,m1, . . . ,md ∈ ZZ unless m0 = m1 = · · · = md = 0.
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Proof. We start with the implication (a)⇒(b). By 7.25, if Ta is ergodic, then the
trajectory of almost every point x ∈ Tord is dense. On the other hand, if the trajectory
of at least one point x0 ∈ Tord is dense, then the trajectory of every point x ∈ Tord is
dense. Indeed,

T n
a
(x) = x + na = x0 + na + (x − x0) = T n

a
(x0) + (x − x0)

(all calculations here are done modulo 1). So, to find a subsequence T nk
a

(x) converging
to a given point c ∈ Tord, it is enough to find a subsequence T nk

a
(x0) converging to the

point c − x + x0 (mod 1).
Next we prove the implication (b)⇒(c). Suppose (c) fails, i.e. a nontrivial relation

(25) exists. Consider the trajectory of the point x0 = 0, which consists of the points
xn = T n

a
(0) = na (mod 1). Their coordinates must satisfy the relation

d∑

i=1

mixn,i = n
d∑

i=1

miai = −nm0 = 0 (mod 1)

We now show that the sequence {xn} cannot be dense in Tord. Let M = max{|m1|, . . . , |md|}
and consider a small cube K ′ ⊂ Tord defined by K ′ = {x : 0 ≤ xi ≤ 1/(2dM) for
i = 1, . . . , d}. For every point x ∈ K ′ the relation

∑

i mixi = 0 (mod 1) is equivalent to
∑

i mixi = 0 (without being taken modulo 1). This is just a hyperplane in IRd, which
cannot be dense in any open set, in particular in K ′.

Lastly, we prove the implication (c)⇒(a). The proof uses Fourier analysis. Let Ta be
not ergodic and B ⊂ Tord an invariant set with measure 0 < m(B) < 1. The function
f = χB − m(B) is Ta-invariant and bounded, so it belongs in L2

m(Tord). Consider
functions

φm(x) = e2πi〈m,x〉 = cos 2π〈m,x〉 + i sin 2π〈m,x〉
where m ∈ ZZd and 〈m,x〉 = m1x1 + · · · + mdxd is the scalar product in IRd. These
functions are periodic with period 1 in each coordinate, so that they are well defined
on Tord. They make an orthonormal basis (the Fourier basis) in the space L2

m(Tord) of
complex-valued functions on Tord. This means that if

∫

Tord
f(x) φm(x) dm = 0 ∀m ∈ ZZd (26)

then f(x) = 0 almost everywhere. By using change of variable, we now see that for any
Ta-invariant function f(x)

∫

Tord
f(x) φm(x) dm =

∫

Tord
f(x + a) φm(x) dm

=
∫

Tord
f(y) φm(y − a) dm

= e2πi〈m,a〉
∫

Tord
f(y) φm(y) dm
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By the assumption (c), we have e2πi〈m,a〉 6= 1 for all m ∈ ZZd except m = 0. Therefore,
we get (26) for all m 6= 0. For m = 0 we have φm(x) ≡ 1, hence (26) holds as well for
our function f(x) = χB − m(B). Thus, f(x) = 0 almost everywhere, a contradiction. 2

Note: the translation Ta is not mixing, not even weakly mixing (just like circle rota-
tions).

Next, we restrict ourselves to the 2-torus Tor2 = {(x, y) : 0 ≤ x, y < 1} (just for the

sake of simplicity). Let A =

(

a b
c d

)

be a matrix with integral entries a, b, c, d ∈ ZZ.

Assume that
det A = ad − bc = ±1 (27)

12.6 Definition. Any matrix A with the above properties defines a linear toral
automorphism TA : Tor2 → Tor2 by

TA(x) = Ax (mod 1)

i.e. TA(x, y) = (ax + by (mod 1), cx + dy (mod 1)).

Note: TA is well defined on Tor2 whenever the entries of A are integers.

12.7 Exercise. Show that TA is one-to-one. Hint: if TA(x) = TA(y), then TA(z) = 0
(mod 1) for z = x−y (mod 1). Next consider the system az1+bz2 = m1 and cz1+dz2 = m2

for some m1,m2 ∈ ZZ and show that its only solution (z1, z2) is a pair of integers z1, z2.

12.8 Remark. The map TA is a linear diffeomorphism of the torus Tor2. Moreover, for
every n ∈ ZZ its nth iterate T n

A is T n
A = TAn . In particular, T−1

A = TA−1 (see also Wal-
ters, pp. 14–16, for more details). The point 0 = (0, 0) is always a fixed point: TA(0) = 0.

12.9 Exercise. Show that every point (x, y) ∈ Tor2 with rational coordinates x, y ∈ Q||

is periodic.

12.10 Proposition. TA preserves the Lebesgue measure m on the torus Tor2.

Proof. The derivative DTA is the matrix A itself, hence det DTA = ±1. Now the
invariance of the Lebesgue measure follows as in Exercise 5.6(a).

12.11 Example. Let A =

(

0 1
1 0

)

. The line x = y consists entirely of fixed points,

while all the other points are periodic with period 2, because T 2
A = id. The map TA

“flips” the torus across its main diagonal x = y. There are no dense orbits, hence the
map is not ergodic. Note that the eigenvalues of A are λ = ±1.
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12.12 Example. Let A =

(

1 m
0 1

)

with any m ∈ ZZ. The line y = 0 consists entirely

of fixed points. Every line y = const is invariant under TA. No dense orbits exist, so the
map TA is not ergodic. Note that A has one eigenvalue λ = 1 of multiplicity 2.

Note: if we picture Tor2 as a cylinder with the base circle {(x, y) : 0 ≤ x < 1, y = 0}
and the vertical coordinate y, then TA rotates every horizontal section y = const by the
angle my, since it acts by x 7→ x + my (mod 1). The higher the section, the larger the
angle of rotation, so that the whole cylinder is twisted upward (unscrewed). Such maps
are called twist maps.

Figure 11: A twist map of a cylinder.

12.13 Remark. Examples 12.11 and 12.12 illustrate what ergodic components of a map
may look like. In 12.11, each ergodic component of TA is either a periodic orbit of period
2 or a fixed point (the latter can be ignored since they make a null set). In 12.12, most of
the ergodic components are sections y = c (precisely, such are all sections with irrational
c). The sections y = c for rational c can be further decomposed into periodic orbits or
ignored altogether, since their total measure is zero.

12.14 Example. Let A =

(

1 1
1 0

)

. In this case, the only fixed point is 0, and the

description of the map TA is not so simple. Linear algebra will help us, though. Note
that the eigenvalues of A are

λ1,2 =
1 ±

√
5

2
and the corresponding eigenvectors v1 and v2 are orthogonal. Let L1 and L2 be the
perpendicular lines on Tor2 spanned by the vectors v1 and v2, respectively. Both lines
are invariant under TA. Since λ1 > 1, the line L1 is expanded (“stretched out”) by a
factor of λ1 under TA. On the other hand, |λ2| < 1, so the other line L2 is compressed
(contracted) by a factor of |λ2| under TA (and it is flipped over, because λ2 < 0). Locally,

59



near the fixed point 0, the action of TA is shown on Fig. 12, it looks like a “saddle”. The
orbit of any point near 0 lies on a hyperbola (or a pair of hyperbolas). In differential
equations such fixed points are referred to as hyperbolic.

x

y

L

L

1

2

Figure 12: A fixed point of a hyperbolic toral automorphism.

12.15 Definition. A linear total automorphism TA is hyperbolic if the eigenvalues of
A are real numbers different from ±1.

12.16 Exercise. Show that for any hyperbolic toral automorphism both eigenvalues
are irrational, the absolute value of one of them is greater than 1, and that of the other
eigenvalue is less than 1.

Let λ = min{|λ1|, |λ2|}. Note that λ−1 = max{|λ1|, |λ2|}. Note also that the inverse
matrix A−1 has eigenvalues λ−1

1 and λ−1
2 and the same eigenvectors as A does. So, A−1

contracts L1 by a factor of λ and expands L2 by a factor of λ−1.

12.17 Definition. The line L1 spanned by the eigenvector v1 corresponding to the
larger (in absolute value) eigenvalue of A is called the unstable manifold. It is ex-
panded (“stretched out”) under TA. The line L2 spanned by the eigenvector v2 corre-
sponding to the other, smaller eigenvalue of A is called the stable manifold. Note that
both lines extend infinitely long, they wrap around the torus infinitely many times.

12.18 Exercise. Show that for any hyperbolic toral automorphism the lines L1 and L2

are dense on the torus Tor2. Hint: verify that the equation of the line Li for i = 1, 2
is y = γix where γi = (λi − a)/b is an irrational number by 12.16 (assume that b 6= 0
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for simplicity). For any real number α the points (nα, nαγi) (mod 1) for n = 0, 1, 2, . . .
belong in Li. Now use Theorem 12.5 to show that for some α 6= 0 these points make a
dense set. (Note: your α should be chosen carefully, so that (c) will be satisfied!)

Note: with a little extra effort one can show that for any ε > 0 there is a d > 0 such
that every segment of length d on the line L1 intersects every disk of radius ε > 0 on the
torus Tor2.

12.19 Rectangular partitions. Further analysis of the map TA involves symbolic
dynamics. According to 10.17, one needs to start with a generating partition. Here we
partition the torus Tor2 into rectangles with sides parallel to the stable and unstable lines.
Figure 13(a) shows the partition of the torus into three rectangles for Example 12.14.
The sides of the rectangles are made by pieces of the lines L1 and L2. Fig. 13(b) shows
the images of those three rectangles under TA, respectively. Note that each rectangle is
stretched by TA in the direction of L1 (the unstable direction) and compressed in the
direction of L2 (the stable direction), but it retains its rectangular shape.

(a) (b)

Figure 13: A Markov partition of Tor2 for Example 12.14.

12.20 Proper intersection. Denote the rectangles by R1 (white), R2 (light grey)
and R3 (dark grey). Let’s closely examine the intersections TA(Ri)∩Rj for each pair i, j.
If it is not empty, then it is a subrectangle in Rj, which stretches completely across Rj in
the unstable direction. Also, it is a subrectangle in TA(Ri), which stretches completely
across TA(Ri) in the stable direction. In other words, TA(Ri) intersects Rj properly
(transversely), as illustrated in Fig. 14.

12.21 Definition. A partition of Tor2 into rectangles {Ri}r
i=1 with sides parallel to L1

and L2 is called a Markov partition if all intersections TA(Ri) ∩ Rj, 1 ≤ i, j ≤ r, with
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(a) (b) (c) (d)

proper improper

Figure 14: A proper intersection (a) of TA(Ri) (grey) and Rj (white). The figures (b),
(c), and (d) illustrate improper intersections.

nonempty interior are connected and proper.

A partition shown in Fig. 13(a) is then a Markov partition.

12.22 Lemma. Any Markov partition is generating.

Proof. If not, then some distinct points x 6= y have the same itinerary, i.e. x, y ∈
∩∞

k=−∞T−k
A Rik for some sequence {ik}∞k=−∞. However, the diameter of the set ∩n

k=−nT
−k
A Rik

is O(λn), which converges to zero as n → ∞, a contradiction. 2

Note: it is essential for this proof that the intersections T (Ri) ∩ Rj are connected,
without this assumption Lemma 12.22 may fail.

Recall that a generating partition Tor2 = R1∪· · ·∪Rr into r disjoint subsets gives rise
to a symbolic representation of an automorphism TA : Tor2 → Tor2 by a shift σ : Ωr → Ωr

on a symbolic space with r symbols as defined by 10.15–10.17. By 10.18, every cylinder
Cm,n(im, . . . , in) corresponds to the intersection

Rm,n(im, . . . , in) = ∩n
k=mT−k

A (Rik)

that is, φ−1(Cm,n(im, . . . , in)) = Rm,n(im, . . . , in).

We now study the Lebesgue measure m and the induced measure µ on Ωr.

For each rectangle Ri, denote by si and ui its sides parallel to the stable direction (L2)
and the unstable direction (L1), respectively. Then m(Ri) = siui. Due to the properness
of intersections, if TARi ∩ Rj has nonempty interior, then m(TARi ∩ Rj) = λsiuj, where
λ = min{|λ1|, |λ2|}.
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12.23 Lemma. (a) For any integers m < n and any im, im+1, . . . , in the set Rm,n(im, . . . , in)
either has empty interior (and then zero measure) or has measure

m(Rm,n) = λn−msimuin

(b) The set Rm,n(im, . . . , in) has nonempty interior if and only if TA(Rik) ∩ Rik+1
has

nonempty interior for every k = m, . . . , n − 1.

Proof is a simple geometric inspection. 2

12.24 Definition. The matrix of transition probabilities is an r × r matrix Π =
(πij) with entries

πij =
m(TARi ∩ Rj)

m(Ri)
=

{

λuj/ui if int(TARi ∩ Rj) 6= ∅
0 otherwise

The stationary probability vector is the row vector p = (p1, . . . , pr) with components

pi = m(Ri) = siui

Note: pΠ = p, i.e. p is a left eigenvector for the matrix Π with eigenvalue 1. In other
words, it remains invariant (stationary) under the right multiplication by Π.

Note: for each i we have
∑

j πij = 1. Matrices with nonnegative entries whose rows sum
up to one are called stochastic matrices.

Note: πij is the fraction of Ri that is mapped into Rj by TA. We interpret πij as the
probability for a point starting in Ri to move into Rj.

12.25 Lemma. For any integers m < n and any im, . . . , in the intersection Rm,n(im, . . . , in)
has measure

m(Rm,n(im, . . . , in)) = pimπimim+1
· · · πin−1in

12.26 Definition. A measure µ on Ωr is called a Markov measure with a transition
probability matrix Π = (πij) of size r × r and a stationary probability vector p =
(p1, . . . , pr) if for every cylinder Cm,n(im, . . . , in) its measure is

µ(Cm,n(im, . . . , in)) = pimπimim+1
· · · πin−1in

This model is known in probability theory as a Markov chain. This analogy explains the
term Markov partition.

12.27 Corollary. The Lebesgue measure m on Tor2 corresponds to the Markov mea-
sure µ on Ωr. The dynamical systems (Tor2, TA,m) and (Ωr, σ, µ) are isomorphic.
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Now the study of the hyperbolic toral automorphism TA reduces to the study of the
shift σ on Ωr with the Markov measure µ. Surprisingly, this reduction makes things a
lot simpler. A little piece of probability theory will help us.

12.28 Notation. For k ≥ 1, denote by π
(k)
ij the elements of the matrix Πk (the kth

power of Π). Note that pΠk = p for all k ≥ 1.

12.29 Exercise. Show that

π
(k)
ij =

m(T k
ARi ∩ Rj)

m(Ri)

12.30 Exercise. Let C = Cm,n(im, . . . , in) and C ′ = Cm′,n′(im′ , . . . , in′) be two cylinders
such that n < m′. Let t = m′ − n. Show that

µ(C ∩ C ′) = µ(C) µ(C ′) π
(t)
inim′

/pim′

Hint: do that first for t = 1 and then use induction on t. A helpful formula is
C = ∪r

i=1Cm,n+1(im, . . . , in, i).

12.31 Lemma. There is an s ≥ 1 such that the matrix Πs has all positive entries, i.e.
π

(s)
ij > 0 for all 1 ≤ i, j ≤ r.

Proof. For large s > 1, the set T s
A(Ri) is a very long narrow rectangle, one long side

of which lies on the line L1. Then by Exercise 12.18 (and the remark after it), T s
A(Ri)

intersects every rectangle Rj of the Markov partition. Now 12.29 completes the proof. 2

12.32 Theorem (Limit Theorem for Markov Chains). If Πs has all positive en-

tries for some s > 0, then for all 1 ≤ i, j ≤ r we have π
(t)
ij → pj as t → ∞.

Proof. We outline the argument. Fix 1 ≤ j ≤ r and let n, t ≥ 1. Since Πn+t = ΠnΠt,

π
(n+t)
ij =

r∑

k=1

π
(n)
ik π

(t)
kj

Let δn = mini,k π
(n)
ik ≥ 0. Note that maxi,k π

(n)
ik ≤ 1 − δn. Now let

mt = min
k

π
(t)
kj and Mt = max

k
π

(t)
kj

(remember j is fixed). The following estimate is rather elementary:

(1 − δn)mt + δnMt ≤ π
(n+t)
ij ≤ δnmt + (1 − δn)Mt (28)
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Hence, Mt+n ≤ Mt and mt+n ≥ mt. Next we show that Mt − mt → 0 as t → ∞. Let
t = ms + n with 0 ≤ n < s. Then Mt − mt ≤ Mms − mms. Now, put n = s and
t = (m − 1)s in (28) and get

Mms − mms ≤ (1 − 2δs) (M(m−1)s − m(m−1)s)

Since δs > 0, we have Mms − mms < Cλm−1 where C = Ms − ms and λ = 1 − 2δs < 1.
Therefore, π

(t)
ij → qj as t → ∞ with some qj ≥ 0 (independent of i). This implies

eiΠ
t → q as t → ∞ for each i = 1, . . . , r, where ei is the ith canonical basis row-vector

and q = (q1, . . . , qr). By linearity, pΠt → q as t → ∞, hence q = p. 2

Two important facts follow from the above proof. First, the stationary vector p is
unique. Second, the convergence π

(t)
ij → pj is exponentially fast (in t).

12.33 Corollary. For any two cylinders C,C ′ ⊂ Ωr we have

lim
n→∞

µ(C ∩ σ−n(C ′)) = µ(C) µ(C ′)

Proof. This follows from 12.30, 12.31 and 12.32.

12.34 Proposition. The shift σ : Ωr → Ωr with the Markov measure µ is mixing, and
so is the original hyperbolic toral automorphism TA.

Proof. This follows from 12.33 and standard approximation arguments used in the
proof of 10.14.

12.35 Remark. The hyperbolic toral automorphism TA is actually Bernoulli, but the
proof of this fact is rather sophisticated, we omit it.
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13 Lyapunov Exponents

Recall that the baker’s transformation expands (stretches) the unit square X horizontally
and contracts it (or compresses) vertically. The hyperbolic toral automorphism TA ex-
pands Tor2 along L1 and contracts it along L2. Such expansion and contraction happen
to be quite a common phenomena for smooth maps and, in particular, for many physical
models. To study these phenomena, we need a piece of linear algebra.

13.1 Facts (from Linear Algebra). Let A be a d × d matrix (with real entries),
and assume that det A 6= 0. For a nonzero vector u ∈ IRd, consider the sequence {Anu},
n ∈ ZZ. We would like to see if An expands or contracts the vector u as n → ∞ and
n → −∞.

Let {λj}, 1 ≤ j ≤ q (q ≤ n), be all distinct roots (real and complex) of the char-
acteristic polynomial PA(λ) = det(λI − A). We arrange them so that λ1, . . . , λr are
all the distinct real roots and λr+1, λ̄r+1, . . . , λs, λ̄s are all the distinct conjugate pairs
of complex roots. Denote by mj, 1 ≤ j ≤ s, the respective multiplicities of the roots.
Jordan theorem (the real canonical form) says that the roots λj (the eigenvalues of A)
are associated to A-invariant generalized eigenspaces Ej, 1 ≤ j ≤ s, whose respective
dimensions equal dim Ej = mj for 1 ≤ j ≤ r and dim Ej = 2mj for r < j ≤ s (note: in
the latter case the space Ej is associated to the pair λj, λ̄j, rather than to a single root
λj). Moreover, IRd = ⊕s

j=1Ej. We recall that det A 6= 0, hence λj 6= 0 for all j.
Now, if u ∈ Ej is an eigenvector (such a vector only exists for j ≤ r), then Anu = λn

j u,
hence

ln ‖Anu‖ = n ln |λj| + ln ‖u‖
for all n ∈ ZZ. While this is not true for any vector u ∈ Ej, it is still true that

lim
n→±∞

1

n
ln ‖Anu‖ = ln |λj| ∀u ∈ Ej, u 6= 0 (29)

This shows that when |λj| > 1, the vector Anu grows exponentially fast as n → ∞ and
shrinks exponentially fast as n → −∞. If |λj| < 1, then it is vice versa. If |λj| = 1, then
there is no exponential growth or contraction, but there might be a slow (subexponential)
growth or contraction of the vector Anu, see an example in 13.5.

13.2 Exercise. A complete proof of the equation (29) might be quite lengthy and
tedious. But you can at least verify it in the simple case dim Ej = 2. There are two
principal subcases here. If λj is a real root of multiplicity 2, then A restricted to Ej is

given by a Jordan matrix J =

(

λj 1
0 λj

)

in some basis. Verify that Jn =

(

λn
j nλn−1

j

0 λn
j

)

for all n ∈ ZZ and then derive (29). If λj = a + bi is a complex root and b 6= 0,

then the corresponding Jordan canonical block is J =

(

a b
−b a

)

. Verify that Jn =
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|λj|n
(

cos nϕ sin nϕ
− sin nϕ cos nϕ

)

for some ϕ ∈ [0, 2π) and all n ∈ ZZ, and then derive (29).

For an extra credit, try to prove (29) in any dimension.

13.3 Definition. The numbers χj = ln |λj| that appear in (29) are called the charac-
teristic exponents or the Lyapunov exponents of the matrix A.

Note: some distinct eigenvalues λi 6= λj may correspond to the same Lyapunov ex-
ponent, this happens whenever |λi| = |λj|. In this case each nonzero vector u ∈ Ei ⊕ Ej

satisfies (29).

13.4 Proposition (Lyapunov decomposition). Every nonsingular real matrix A
has distinct Lyapunov exponents χ1 > χ2 > · · · > χm (with m ≤ s) and there is a
decomposition IRd = E1 ⊕ · · · ⊕ Em such that A(Ej) = Ej and

lim
n→±∞

1

n
ln ‖Anu‖ = χj ∀u ∈ Ej, u 6= 0 (30)

The number dim Ej is called the multiplicity of the Lyapunov exponent χj. We also
call Ej the characteristic spaces for A.

13.5 Remark. We have
∑

j

χj · dim Ej = ln | det A|

because det A equals the product of all the eigenvalues of A (counting multiplicity).

13.6 Examples. For the matrices A1 =

(

0 1
1 0

)

and A2 =

(

1 1
0 1

)

(these are taken

from Examples 12.11 nd 12.12, respectively) all Lyapunov exponents are zero. The same

is true for the matrix A3 =

(

0 1
−1 0

)

, whose eigenvalues are ±i. Note that An
2 does

expand and contract vectors, but very slowly (at most linearly in n).
On the other hand, for any matrix A defining a hyperbolic toral automorphism TA

(see 12.15) one Lyapunov exponent is positive, χ1 = ln λ−1 > 0, and the other is negative,
χ2 = ln λ < 0. Note that χ1 + χ2 = 0, because det A = ±1.

13.7 Definition. A matrix A and the corresponding linear map A : IRd → IRd are called
hyperbolic if none of the eigenvalues of A (real or complex) lie on the unit circle |z| = 1.

Equivalently, we have the following principle:.
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A is hyperbolic iff all the Lyapunov exponents of A are different from zero

13.8 Definition. The A-invariant subspaces

Es = ⊕χj<0Ej, Eu = ⊕χj>0Ej and Ec = Ej|χj=0

are called stable, unstable, and neutral (or central) subspaces, respectively. Note
that

IRd = Es ⊕ Eu ⊕ Ec

If the matrix A is hyperbolic, then E c = {0}, hence E c can be omitted from the above
decomposition.

The equation (29) easily implies

lim sup
n→±∞

1

n
ln ‖Anu‖ < 0 ∀u ∈ Es, u 6= 0

and

lim inf
n→±∞

1

n
ln ‖Anu‖ > 0 ∀u ∈ Eu, u 6= 0

Let the matrix A have at least one nonzero Lyapunov exponent χi 6= 0. Denote
χ = min{|χi| : χi 6= 0} and λ = e−χ, Note that χ > 0 and λ < 1.

13.9 Proposition. For any ε > 0 there is a K > 0 such that for all n ≥ 0

‖Anu‖ ≤ K(λ + ε)n‖u‖ and ‖A−nu‖ ≥ K−1(λ + ε)−n‖u‖ ∀u ∈ Es

and

‖Anu‖ ≥ K−1(λ + ε)−n‖u‖ and ‖A−nu‖ ≤ K(λ + ε)n‖u‖ ∀u ∈ Eu

Proof. It is enough to prove the above bounds for unit vectors only. For every unit
vector u there is a K = K(ε,u) such that all these bounds hold, but K may depend on u.
Then we pick an orthonormal basis e1, . . . , ek in Es (resp., Eu), ensure the above bounds
with the same constant K(ε) for all the vectors e1, . . . , ek. Then we use the triangle
inequality to derive the proposition for all unit vectors u in E s and Eu. 2

Thus, vectors u ∈ Eu grow exponentially fast under An as n → ∞ and shrink expo-
nentially fast as n → −∞. For vectors u ∈ E s, it is exactly the opposite. Now what
happens to other vectors in u ∈ IRd?
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13.10 Corollary. For any vector u /∈ Eu ∪ Es and any ε > 0 there is a K > 0 such
that for all n ∈ ZZ

‖Anu‖ ≥ K(λ + ε)−|n|‖u‖
that is, the vector u grows under An exponentially fast in both time directions: as
n → +∞ and as n → −∞.

Next, we extend the above results to nonlinear maps.

13.11 Definition. Let U ⊂ IRd be an open set and T : U → IRd a smooth one-to-one
map with a fixed point x, i.e. T (x) = x. Then the matrix A = DxT acts on tangent
vectors u ∈ TxIR

d, and the tangent space TxIR
d can be naturally identified with IRd. Note

that DxT
n = (DxT )n = An by the chain rule.

Assume that det A 6= 0. The Lyapunov exponents of the matrix A are called the
Lyapunov exponents of the map T at the point x. The corresponding subspaces
Es, Eu, Ec ⊂ TxIR

d are called the stable, unstable, and neutral (or central) subspaces,
respectively, for the map T at the point x.

Note: the subspaces Es, Eu, Ec are invariant under DxT but not necessarily under the
map T itself. On the other hand, DxT is a linear approximation to the map T at the
point x. This allows us to obtain the following theorem, whose proof we omit.

13.12 Theorem (Hadamard-Perron). There exist two submanifolds W s ⊂ U and
W u ⊂ U such that

(a) W s ∩ W u = {x};

(b) the spaces Es and Eu are tangent to W s and W u, respectively, at the point x;

(c) T (W s) ⊂ W s and T−1(W u) ⊂ W u;

(d) T n(y) → x for every y ∈ W s and T−n(y) → x for every y ∈ W u, as n → ∞.

We omit the proof, but remark that the manifold W u is constructed as a limit of
(T nEu) ∩ V (x), as n → ∞, where V (x) is a sufficiently small neighborhood of x. The
existence of this limit is proved by the contraction mapping principle. Similarly, W s is
constructed as a limit of (T−nEs) ∩ V (x), as n → ∞.

Since A = DxT is a linear part of the map T at x, it is easy to obtain the following
corollary to 13.9 and 13.12:

13.13 Corollary. For any ε > 0 there is a neighborhood V (x) of the point x and a
K > 0 such that for all n ≥ 0

dist(T ny, x) ≤ K(λ + ε)n · dist(y, x) ∀y ∈ W s ∩ V (x)
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and
dist(T−ny, x) ≤ K(λ + ε)n · dist(y, x) ∀y ∈ W u ∩ V (x)

Locally, near the point x, the map T acts as shown on Fig. 15.

E

E

Figure 15: The action of T near a hyperbolic fixed point x.

13.14 Definition. W s and W u are called the stable and unstable manifolds, re-
spectively, for the map T at the point x. The map T is called hyperbolic at a fixed
point x (and then x is called a hyperbolic fixed point for T ) if dim E c = 0. In this
case dim W s+ dim W u = d.

13.15 Definition. A hyperbolic point x is called a source (a repeller) if dim E s = 0
(hence Eu coincides with TxIR

d). It is called a sink (an attractor) if dim Eu = 0 (hence
Es coincides with TxIR

d). It is called a saddle (a truly hyperbolic point) if both E s and
Eu are not trivial.

13.16 Remark. Let x be a saddle point and y 6= x another point very close to x. If
y ∈ W u, then the trajectory T ny moves away from x exponentially fast for n > 0, at least
until T ny leaves a certain neighborhood of x. If y ∈ W s, then the trajectory T ny moves
away from x exponentially fast for n < 0. Now, if y /∈ W u ∪ W s, then the trajectory
T ny moves away from x exponentially fast for both n > 0 and n < 0. This fact is known
as the separation principle: nearby trajectories tend to separate exponentially fast,
either in the future or in the past or (in most cases) both.

All the above definitions and results extend to any diffeomorphism T : U → T (U) ⊂
M on an open subset U ⊂ M of a Riemannian manifold M , rather than U ⊂ IRd. A
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Riemannian structure in M is necessary for the norm ‖ · ‖ to be well defined on M .
Henceforth we assume that T is defined on an open subset of a Riemannian manifold M .

13.17 Remark. All the above definitions and results easily apply to a periodic point
x ∈ U rather than a fixed point. If T p(x) = x, we can just consider T p instead of T .

Note: DxT
n = DT n−1xT · · ·DTxT · DxT by the chain rule.

Next, we turn to nonperiodic points. This is the most interesting and important part
of the story.

13.18 Definition. Let the map T n be differentiable at a point x ∈ M for all n ∈ ZZ.
Assume that there are numbers χ1 > · · · > χm and the tangent space TxM is a direct
sum of subspaces E1 ⊕ · · · ⊕ Em such that if 0 6= u ∈ Ei, then

lim
n→±∞

1

n
ln ‖(DxT

n)u‖ = χi (31)

Then the values χi are called the Lyapunov exponents of the map T at the point x.
The number dim Ei is called the multiplicity of the Lyapunov exponent χi. The spaces
Ej are called characteristic subspaces at x.

The subspaces

Es = ⊕χi<0Ei, Eu = ⊕χi>0Ei and Ec = Ej|χj=0

are called stable, unstable, and neutral (or central) subspaces of TxM , respectively.

We note that the existence of the Lyapunov exponents χi and the subspaces Ei is not
guaranteed for any point x ∈ U , as an example will show soon. We say that a point x
has all Lyapunov exponents if χi and Ei exist.

13.19 Remark. If a point x ∈ U has all Lyapunov exponents, then so do points T n(x)
for all n ∈ ZZ. Moreover, the points T n(x) have the same Lyapunov exponents (with
the same multiplicity) as x does, and the characteristic subspaces are invariant along the
trajectory of x:

(DxT
n)(Ei(x)) = Ei(T

nx)

for all n ∈ ZZ and each i.

In particular, observe that the Lyapunov exponents χi and their multiplicities dim Ei

are T -invariant functions.

13.20 Example. Let TA : Tor2 → Tor2 be a hyperbolic toral automorphism. Then
all Lyapunov exponents exist everywhere on Tor2, and they are χ1 = ln λ−1 > 0 and
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χ2 = ln λ < 0. The corresponding subspaces E1 and E2 are parallel to the lines L1 and
L2, respectively.

13.21 Example. Let T : X → X be the baker’s transformation of the unit square X.
Let X ′ ⊂ X be the set of points where T n is differentiable for all n ∈ ZZ. Then for every
x ∈ X ′ all Lyapunov exponents exist, and they are χ1 = ln 2 > 0 and χ2 = − ln 2 < 0.
The corresponding subspaces E1 and E2 are parallel to the x axis and y axis, respec-
tively. Note that T±n fails to be differentiable on the lines x = k/2n and y = m/2n,
with k,m = 0, 1, . . . , 2n. Hence m(X ′) = 1, i.e. all Lyapunov exponents exist almost
everywhere.

0 1/2 1

1

Figure 16: The map in Example 13.22.

13.22 Example. Let T : X → X be a diffeomorphism of the unit circle X = S1 given
by T (x) = x + 1

3π
sin 2πx, where 0 ≤ x < 1 is the cyclic coordinate on X. We have two

fixed points here, x0 = 0 and x1 = 1/2. Lyapunov exponents exist at both fixed points:
χ(x0) = ln |T ′(x0)| = ln(5/3) > 0 and χ(x1) = ln |T ′(x1)| = ln(1/3) < 0. Since λ(x0) > 0,
the point x0 is unstable (a repeller). Likewise, x1 is a stable point (an attractor). For
any point x ∈ (0, 1/2) we have T n(x) → x1 and T−n(x) → x0 as n → ∞. Hence, by the
chain rule, for any nonzero tangent vector u ∈ Tx(X) we have

lim
n→−∞

1

n
ln ‖(T n)′xu‖ = ln(5/3) 6= ln(1/3) = lim

n→∞

1

n
ln ‖(T n)′xu‖

This shows that the limit in (31) does not exist. The same conclusion holds for any
x ∈ (1/2, 1).

13.23 Remark. In the last example, Lyapunov exponents only exist at two fixed points,
x0 and x1, and nowhere else on X. Hence, Lyapunov exponents seem to be very scarce on
X in any “reasonable” sense: topologically, with respect to the usual Lebesgue measure,
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by simple count. But none of these considerations are relevant in the dynamical sense,
where only invariant measures count. The Lebesgue measure is not invariant under T , so
it does not characterize this map. It is not hard to see that any invariant measure in this
example is pδx0

+(1−p)δx1
with some 0 ≤ p ≤ 1, compare this to Exercise 2.26(e). Hence,

with respect to any invariant measure, Lyapunov exponents do exist almost everywhere!

It is remarkable that the above fact is very general, and this is the content of the
Oseledec8 multiplicative ergodic theorem, which we call shortly Oseledec’s theorem.

13.24 Theorem (Oseledec). Assume that M is a compact manifold and T : M → M
is a C1 diffeomorphism preserving a Borel probability measure µ. Then there exists a
T -invariant set N ⊂ M , µ(N) = 1, such that for every point x ∈ N all Lyapunov expo-
nents exist.

First of all, it is enough to prove the theorem for ergodic measures µ, because then
we can apply Ergodic Decomposition Theorem 7.15 to any nonergodic invariant measure
(see Remark 7.21). So, we assume from now on that µ is ergodic.

We will only prove this theorem for surfaces, i.e. for dim M = 2. The proof will be
done in two major steps. The first one consists in proving the following theorem.

13.25 Theorem (Upper Lyapunov Exponent). Under the above assumptions, there
is a χ+ ∈ IR such that

lim
n→+∞

1

n
ln ‖DxT

n‖ = χ+

for almost every point x ∈ M . Here ‖DxT
n‖ = sup‖u‖=1 ‖DxT

nu‖ is the norm of the
matrix DxT

n.

Proof. By the chain rule,

‖DxT
n+m‖ ≤ ‖DxT

n‖ ‖DT nxT
m‖

Let Fn(x) = ln ‖DxT
n‖, then

Fn+m(x) ≤ Fn(x) + Fm(T nx) (32)

This condition is referred to as the subadditivity of the sequence of functions {Fn}.
Now 13.25 follows from the next general statement:

13.26 Theorem (Subadditive Ergodic Theorem). Let T : X → X be a trans-
formation preserving an ergodic measure µ, and {Fn} ∈ L1

µ(X), n ≥ 1, a sequence of

8The name is pronounced Oseledets.
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integrable functions on X such that (32) holds for almost every x ∈ X and all n,m ≥ 1.
Then there is a χ ∈ IR ∪ {−∞} such that

lim
n→+∞

1

n
Fn(x) = χ

for almost every point x ∈ X.

13.27 Remarks. In Theorem 13.25, F1(x) = ln ‖DxT‖ is a continuous function on M ,
because T is C1. Hence there is an upper bound

Fmax := sup
x∈M

F1(x) < ∞ (33)

By iterating the subadditivity condition (32) we obtain for all x ∈ M

1

n
Fn(x) ≤ 1

n

n−1∑

i=0

F1(T
ix) ≤ Fmax (34)

Also, by the chain rule (DT nxT
−n)(DxT

n) = I (the identity matrix), hence

1 = ‖I‖ ≤ ‖DxT
n‖ ‖DT nxT

−n‖ (35)

therefore

1

n
Fn(x) =

1

n
ln ‖DxT

n‖ ≥ − 1

n
ln ‖DT nxT

−n‖ ≥ − ln max
x∈M

‖DxT
−1‖ =: Fmin > −∞ (36)

As a result, χ+ in 13.25 is finite and χ+ ∈ [Fmin, Fmax].

The proof of Subadditive Ergodic Theorem is given in Pollicott, pp. 37–40. We sketch
the principal steps here, assuming the bounds (33) and (36) for simplicity.

13.28 Lemma (on subadditive sequences). If {an}, n ≥ 1, is a sequence of real
numbers and an+m ≤ an + am for all n,m ≥ 1, then an/n converges as n → ∞ and

lim
n→∞

an/n = inf
n≥1

{an/n}

The proof of Lemma 13.28 is elementary and we leave it as an exercise. We now
continue the proof of Subadditive Ergodic Theorem 13.26.

The subadditivity condition (32) and the invariance of µ imply
∫

Fn+m dµ ≤ ∫

Fn dµ+
∫

Fm dµ. Hence, by 13.28, there is a limit

lim
n→∞

1

n

∫

X
Fn dµ = χ := inf

{
1

n

∫

X
Fn dµ

}

Next, let

F+(x) = lim sup
n→∞

1

n
Fn(x) and F−(x) = lim inf

n→∞

1

n
Fn(x)
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By subadditivity,
1

n
Fn(x) ≤ 1

n
F1(x) +

1

n
Fn−1(Tx)

Letting n → ∞ gives F+(x) ≤ F+(Tx) as well as F−(x) ≤ F−(Tx).

13.29 Lemma. If an integrable function F : X → IR has the property F (x) ≤ F (Tx)
for almost every x ∈ X, then F (x) = F (Tx) almost everywhere, i.e. F is T -invariant.

Proof. Let ∆(x) = F (Tx) − F (x). Then ∆(x) ≥ 0 a.e. and
∫

∆ dµ = 0, hence
∆(x) = 0 a.e.

Thus, the functions F−(x) and F+(x) are T -invariant and therefore constant almost
everywhere (by the ergodicity of µ). Denote their values by F̄− and F̄+, respectively.

We now prove that F̄− = F̄+. Fix a small ε > 0 and define

n−(x) = min
{

n ≥ 1 :
1

n
Fn(x) < F̄− + ε

}

Choose nε ≥ 1 so large that µ{x : n−(x) > nε} < ε. Denote Aε = {x : n−(x) > nε}.
Define

n(x) =

{

n−(x) if n−(x) ≤ nε

1 otherwise

Fix a point x ∈ X. For N ≥ 1 let

kN = #{0 ≤ i ≤ N − 1 : T ix ∈ Aε}

Define a sequence 0 = n0 < n1 < · · · inductively by ni+1 = ni +n(T nix) for all i ≥ 0. Let
j = max{i : ni ≤ N}, and note that N − nj < nε. By using the subadditivity condition
(32) and our definitions

FN(x) ≤
j−1
∑

i=0

Fni+1−ni
(T nix) + FN−nj

(T njx)

Note that if T nix ∈ Aε, then ni+1−ni = 1 and F1(T
nix) ≤ Fmax. Otherwise Fni+1−ni

(T nix)) ≤
(ni+1 − ni)(F̄− + ε). Also, FN−nj

(T njx) ≤ (N − nj)Fmax ≤ nεFmax. Hence,

FN(x) ≤ (kN + nε)Fmax + (N − kN − nε)(F̄− + ε)

By the ergodic theorem, kN/N → µ(Aε) < ε as N → ∞ for almost every x ∈ X, hence
F+(x) ≤ F̄− + 2ε. Since ε > 0 is arbitrary, F̄+ = F̄−.

Thus, for a.e. x ∈ M

lim
n→∞

1

n
Fn(x) = F̄+ = F̄−

Finally, by (34) and (36), we have Fmin ≤ 1
n
Fn(x) ≤ Fmax, and then by Dominated

Convergence Theorem F̄+ = F̄− = χ.
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This proves Theorem 13.26, and thus 13.25. 2

This completes the first major step in the proof of 13.24. We turn to the second one
starting with some extensions of Theorem 13.25.

13.30 Corollary (Upper Lyapunov Exponents with Shift).

(a) We have

lim
n→+∞

1

n
ln ‖DT−nxT

n‖ = χ+

for almost every point x ∈ M .

(b) There is a χ− ∈ IR such that

lim
n→+∞

1

n
ln ‖DxT

−n‖ = lim
n→+∞

1

n
ln ‖DT nxT

−n‖ = χ−

for almost every x ∈ M .

(c) Lastly, χ+ + χ− ≥ 0.

Proof. Consider the function Gn(x) = ln ‖DT−nxT
n‖. By the chain rule Gn+m(x) ≤

Gn(x) + Gm(T−nx), so that {Gn(x)} is a subadditive sequence of functions in the sense
of (32), but now for the map T−1, which preserves the same measure µ. By Theorem
13.26 there is a χ′ such that limn→∞

1
n
Gn(x) = χ′ almost everywhere. Using the notation

of the proof of 13.25 we observe that Gn(x) = Fn(T−nx), hence
∫

Fn dµ =
∫

Gn dµ for
every n ≥ 1. Therefore,

χ+ = inf
{

1

n

∫

X
Fn dµ

}

= inf
{

1

n

∫

X
Gn dµ

}

= χ′

so the claim (a) is proved. To prove (b), we just apply 13.25 and 13.30(a) to the map
T−1. Lastly, according to the chain rule, cf. (35),

1

n
ln ‖DxT

n‖ +
1

n
ln ‖DT nxT

−n‖ ≥ 1

n
ln ‖DxT

0‖ = 0

Taking the limit as n → +∞ yields (c). 2

13.31 Corollary. For almost every x ∈ M there is a sequence nk → ∞ as k → ∞
such that

lim
k→∞

1

2nk

ln ‖DT−nkxT
2nk‖ = χ+

A similar statement also holds for χ−.
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Proof. By Theorem 13.25, for every k ≥ 1 and almost every y ∈ M , there is an mk(y)
such that for all m ≥ mk(y) we have

∣
∣
∣
∣

1

m
ln ‖DyT

m‖ − χ+

∣
∣
∣
∣ <

1

k

Clearly, there is an Mk ≥ 1 such that µ{y : mk(y) < Mk} > 0. Fix any such Mk and
let Ak = {y : mk(y) < Mk}. By Exercise 7.24, the trajectory of almost every point
x ∈ M visits Ak infinitely many times (now both in the future and the past, since T is
an automorphism). Hence, for a.e. x ∈ M there is an nk > Mk such that T−nkx ∈ Ak.
This implies

∣
∣
∣
∣

1

2nk

ln ‖DT−nkxT
2nk‖ − χ+

∣
∣
∣
∣ <

1

k

This proves Corollary 13.31. 2.

We now outline the proof of Oseledec’s theorem 13.24 referring to Pollicott, pp. 31–36,
for some more details.

13.32 Lemma (from Linear Algebra). If B is a d × d matrix, then there exists a
symmetric positive semidefinite matrix A = AT such that

(a) A2 = BT B;

(b) ‖Au‖ = ‖Bu‖ and 〈Au, Av〉 = 〈Bu, Bv〉 for all vectors u,v ∈ IRd.

(c) There are orthogonal unit vectors e1, . . . , ed such that Be1, . . . , Bed are also orthog-
onal vectors.

If B is not singular, then A is positive definite.

Proof. Since BT B is a symmetric positive semidefinite matrix, then it has real eigen-
values βi ≥ 0 and corresponding orthogonal unit eigenvectors e1, . . . , ed. Therefore,
BT B = QDQT , where D = diag(β1, . . . , βd) and Q is an orthogonal matrix (whose

columns are the vectors e1, . . . , ed). Let D1/2 = diag(β
1/2
1 , . . . , β

1/2
d ), then

BT B = QD1/2D1/2QT = QD1/2QT QD1/2QT

and we can set A = QD1/2QT . The claim (a) and the fact AT = A are obvious. To prove
(b), just note that 〈Bu, Bv〉 = 〈BT Bu,v〉 = 〈A2u,v〉 = 〈Au, Av〉. Now, observe that

{e1, . . . , ed} are eigenvectors of A with corresponding eigenvalues λ1 = β
1/2
1 , . . . , λd =

β
1/2
d . Hence, by (b) we have 〈Bei, Bej〉 = 〈Aei, Aej〉 = λiλj〈ei, ej〉. If i 6= j, then Bei

and Bej must be orthogonal9, which proves (c). Setting i = j, we obtain another useful

9In linear algebra, the vectors e1, . . . , ed are called the singular vectors and λ1, . . . , λd the singular

values of the matrix B. This is the content of Singular Value Decomposition (SVD) theorem. It is easy
to see that if B is invertible, then the singular values of B−1 are λ−1

1
, . . . , λ−1

d and its singular vectors
are the normalized vectors Be1, . . . , Bed.
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identity: ‖Bei‖ = λi. 2

Now, fix a point x ∈ M . For each n ∈ ZZ denote Bn(x) = DxT
n and let An(x) be the

corresponding symmetric positive definite matrix defined in 13.32. Let λ
(n)
1 (x) ≥ λ

(n)
2 (x)

be the eigenvalues of An(x) and E
(n)
1 (x), E

(n)
2 (x) the corresponding eigenspaces spanned

by unit vectors e
(n)
1 (x) and e

(n)
2 (x), respectively. Note that λ

(n)
i (x) > 0 and E

(n)
1 (x) is

orthogonal to E
(n)
2 (x), i.e. e

(n)
1 ⊥ e

(n)
2 . We can choose e

(0)
j ∈ E

(0)
j arbitrarily and then

adjust the orientation of the other vectors e
(n)
j , n 6= 0, so that 〈e(n)

j , e
(n−1)
j 〉 ≥ 0 for all

n ∈ ZZ and for each j = 1, 2. Observe that ‖Bn(x)‖ = ‖An(x)‖ = λ
(n)
1 (x).

By 13.25, for almost every x ∈ M there exists a limit

χ1 := lim
n→∞

1

n
ln ‖Bn(x)‖ = lim

n→∞

1

n
ln λ

(n)
1 (x)

Also, by Corollary 13.30(b), there exists a limit

χ2 := − lim
n→∞

1

n
ln ‖B−n(x)‖ = − lim

n→∞

1

n
ln λ

(−n)
1 (x)

Note that χ1 = χ+ and χ2 = −χ−, hence by 13.30(c) we have χ1 ≥ χ2. These are the
characteristic Lyapunov exponents in the statement of Oseledec’s theorem 13.24.

If χ1 > χ2, then we need also to construct the characteristic subspaces E1 and E2,
which we do next (assuming χ1 > χ2).

Claim 1. The following limits exist:

e±j = lim
n→∞

e
(±n)
j for j = 1, 2 (37)

This follows from certain elementary geometric estimates, we refer to Pollicott, pp. 33-34.
It is shown there that the convergence in (37) is exponentially fast, i.e.

‖e(±n)
j − e±j ‖ ≤ Ce−δn (38)

for some constants C, δ > 0 and all n ≥ 0, j = 1, 2.
Now we define

E1 = span(e−2 ) and E2 = span(e+
2 )

We note that while the Lyapunov exponents χj, j = 1, 2, are defined by the dominant

eigenvalues λ
(±n)
1 , the characteristic subspaces Ej are spanned by the limit eigenvectors

lim e
(±n)
2 corresponding to the other (smaller) eigenvalues λ

(±n)
2 , which is an interesting

fact.

Fig. 17 illustrates our construction. There we assumed that χ1 > 0 and χ2 < 0, so
that we would have exponential growth and contraction of vectors.
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TD xn

(-n)

e

2

1

2

e

e

(n)

(-n)

1
(n)

e

DxT -n
x

x
T -nx T n

Figure 17: Two orthonormal bases at a point x, one for DxT
n and the other for DxT

−n.
The contracting vectors e

(±n)
2 are shown bold – they give rise to E1 and E2.

Claim 2. The vector e+
1 grows under DxT

n exponentially with the rate χ1:

lim
n→∞

1

n
ln ‖DxT

n(e+
1 )‖ = χ1

Similarly, limn→∞
1
n

ln ‖DxT
−n(e−1 )‖ = −χ2.

This follows from certain elementary geometric estimates, we refer to Pollicott, p. 35.

Claim 3. The families of subspaces E1(x) and E2(x) are DxT -invariant. Equivalently,
DxT (e±2 (x)) = β±(x) e±2 (Tx) for some scalar functions β±(x).

Indeed, consider an arbitrary nonzero vector u and let u = c+
1 e+

1 + c+
2 e+

2 be its

decomposition in the basis {e+
1 , e+

2 }, and u = c
(n)
1 e

(n)
1 + c

(n)
2 e

(n)
2 be its decomposition in

the basis {e(n)
1 , e

(n)
2 } for all n ≥ 0. Of course, c

(n)
j → c+

j as n → ∞, for j = 1, 2, according

to Claim 1. If c+
1 6= 0, then |c(n)

1 | ≥ |c+
1 |/2 > 0 for all large enough n, hence DxT

n(u)
will grow exponentially at the rate χ1 as n → ∞ by Claim 2, precisely

c+
1 6= 0 =⇒ lim

n→∞

1

n
ln ‖DxT

n(u)‖ = χ1 (39)

Now, when c+
1 = 0, then |c(n)

1 | < const e−δn by (38). By a little more detailed estimation,
one obtains

c+
1 = 0 =⇒ lim sup

n→∞

1

n
ln ‖DxT

n(u)‖ ≤ max{χ1 − δ, χ2} (40)

Since the limits in (39) and (40) are different, Claim 3 is proved. Note: the families of
subspaces spanned by the limit dominant eigenvectors, e+

1 (x) and e−1 (x), are generally
not (!) invariant under DxT .

Claim 4. The spaces E1 and E2 are distinct, i.e. the vectors e+
2 and e−2 are not parallel.
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Indeed, suppose E1 = E2. Let v ∈ TT−nxM be an arbitrary unit vector at the
point T−nx. Let v = c1e

(n)
1 (T−nx) + c2e

(n)
2 (T−nx) be its decomposition in the basis

{e(n)
1 (T−nx), e

(n)
2 (T−nx)}. Then

u := DT−nxT
n(v) =

c1

λ
(−n)
1 (x)

e
(−n)
1 (x) +

c2

λ
(−n)
2 (x)

e
(−n)
2 (x)

Recall that 1
n

ln λ
(−n)
1 (x) → −χ2 and 1

n
ln λ

(−n)
2 (x) → −χ1 as n → ∞. Our assumption

E1 = E2 and (38) imply u = c′1e
(n)
1 + c′2e

(n)
2 with some c′1, c

′
2 satisfying

lim sup
n→∞

sup
v

1

n
ln |c′1| ≤ max{χ2, χ1 − δ}

and

lim sup
n→∞

sup
v

1

n
ln |c′2| ≤ χ1

Since e
(n)
1 and e

(n)
2 are eigenvectors for An(x), we see that

DxT
nu = DT−nxT

2n(v) = c′1λ
(n)
1 e

(−n)
1 (T nx) + c′2λ

(n)
2 e

(−n)
2 (T nx)

Therefore,

lim sup
n→∞

1

2n
ln ‖DT−nxT

2n‖ ≤ max

{

χ1 + χ2

2
, χ1 −

δ

2

}

< χ1

which contradicts Corollary 13.31. Claim 4 is proved.

We are now ready to show that for every nonzero vector u ∈ E1

lim
n→±∞

1

n
ln ‖DxT

n(u)‖ = χ1 (41)

as required by the definition of Lyapunov exponents 13.18. For n → +∞, this follows
from (39) (note: by Claim 4 the vector u cannot be parallel to e+

2 , hence it has a nonzero
projection onto e+

1 ). Now, recall that by Claim 3 we have ‖DxT (u)‖ = |β−(x)| ‖u‖ and
‖DxT

−1(u)‖ = |1/β−(T−1x)| ‖u‖. Let G(x) = ln |β−(x)|, then

lim
n→∞

1

n
ln ‖DxT

n(u)‖ = lim
n→∞

1

n

n−1∑

i=0

G(T ix) = G+(x)

in the notation of Section 9, and we just have seen that G+(x) = χ1 almost everywhere.
On the other hand,

lim
n→−∞

1

n
ln ‖DxT

n(u)‖ = lim
n→−∞

1

|n|
|n|
∑

i=1

G(T−ix) = G−(x)
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and we have G−(x) = G+(x) almost everywhere by 9.4. This completes the proof of
(41). The corresponding limit for vectors u ∈ E2 is computed similarly. Hence we proved
Oceledec Theorem in the main case χ1 > χ2.

If χ1 = χ2, then the spaces Ej, j = 1, 2, need not be constructed, and the argument
is much simpler, we refer to Pollicott, p. 36, and leave the details as an exercise. 2

Lyapunov exponents are the key tool in the study of smooth dynamics. Interestingly,
they exist even for maps that are only differentiable almost everywhere, rather than ev-
erywhere. The following extension of Oceledec’s theorem takes care of such maps:

13.33 Theorem (Oseledec Theorem, Extended). Let U ⊂ M be an open subset
of a manifold M . Let T : U → M be a C1 diffeomorphism of U onto T (U) preserving a
probability measure µ on M . Assume that

∫

M
ln+ ‖DxT‖ dµ < ∞ and

∫

M
ln+ ‖DxT

−1‖ dµ < ∞ (42)

where ln+ a = max{0, ln a}. Then there exists a T -invariant subset N ⊂ M , µ(N) = 1,
such that for every point x ∈ N all Lyapunov exponents exist.

Note: the assumption (42) is necessary to ensure the integrability of functions Fn(x)
in Subadditive Ergodic Theorem 13.26.

Oseledec Theorem contains a clause that we have omitted so far. We state it now
without proof. It deals with angles between the characteristic subspaces Ej. Even though
these subspaces are not necessarily orthogonal to each other, the angle between them can-
not become too small, in the following sense.

13.34 Addendum. Let x ∈ M be a point where all Lyapunov exponents χ1 > · · · > χm

exist. For any subset S ⊂ {1, . . . ,m} let γS(x) denote the angle between the spaces
⊕j∈SEi and ⊕j /∈SEj in TxM . Then for almost every x ∈ M

lim
n→±∞

1

n
ln γS(T nx) = 0

i.e. the angles between the characteristic subspaces can only approach zero very slowly
(more slowly than any exponential function).

13.35 Theorem (Lyapunov Exponents versus Volume). Let Jn(x) = | det DxT
n|

be the Jacobian of the map T n at x (this is the factor by which T n changes volume in
an infinitesimal neighborhood of x ∈ M). Then for almost every x

lim
n→±∞

1

n
ln Jn(x) =

m∑

j=1

χj dim Ej
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i.e. the asymptotic rate of change of volume equals the sum of all Lyapunov exponents
(counting multiplicity).

Proof. For simplicity, assume that dim M = 2 and χ1 > χ2. Pick any nonzero
vectors e1 ∈ E1 and e2 ∈ E2. The area of the parallelogram spanned by e1, e2 equals
‖e1‖ ‖e2‖ sin γ(x), where γ(x) is the angle between E1 and E2 in TxM . Therefore,

Jn(x) =
‖DxT

ne1‖ ‖DxT
ne2‖ sin γ(T nx)

‖e1‖ ‖e2‖ sin γ(x)

Taking the logarithm, dividing by n and letting n → ±∞ proves the theorem. Note
that the term containing sin γ(T nx) is eliminated by 13.34. In the general case, when
dim M > 2, some elementary but boring geometric estimates must be involved, so we do
not elaborate. 2

13.36 Corollary. Assume that ln J1(x) ∈ L1
µ(M). Then

∫

M
ln J1(x) dµ =

m∑

j=1

χj dim Ej

i.e. the average one-step rate of change of volume equals the sum of all Lyapunov expo-
nents (counting multiplicity).

Proof. By the chain rule,

Jn(x) = J1(x) · · · J1(T
ix)

Taking the logarithm, dividing by n and letting n → ±∞ proves the theorem in view of
13.35 and Ergodic Theorem 9.2.

13.37 Corollary. Let the invariant measure µ be absolutely continuous with density
f(x) with respect to the Lebesgue measure (volume). Assume that ln f(x) ∈ L1

µ(M).
Then

m∑

j=1

χj dim Ej = 0

i.e. the sum of all Lyapunov exponents vanishes.

Proof. Note that J1(x) = f(x)/f(Tx), hence

∫

M
ln J1(x) dµ =

∫

M
ln f(x) dµ −

∫

M
ln f(Tx) dµ = 0

by the invariance of µ. 2
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14 Dynamical Systems with Continuous Time

So far we have studied measurable maps T : X → X and their iterations T n, n ∈ ZZ,
interpreting n as time. Our time variable n was restricted to integers only. Naturally, in
real life and in physical sciences, time is a continuous variable that can take all real values.

If we allow the time variable t take all real values, then for any initial point x ∈ X,
its image Stx must be defined for all t ∈ IR. Hence, we need to define a one-parameter
family of transformations St : X → X, where t ∈ IR. Note that St+sx = St(Ssx) for
every x ∈ X, so that St+s = St ◦ Ss. Hence the transformations St make a group with
respect to composition. In particular, S0 = id, the identity map.

There are two ways to look at such a system St : X → X. One way is to fix some
t’s and consider the corresponing maps St on X, hence the entire system is viewed as an
uncountable collection of maps of X into itself, which are related to each other by the
group rule St+s = St◦Ss. The other way is to fix some x’s and consider the corresponding
trajectories (orbits) St(x), −∞ < t < ∞. Often these orbits are continuous (or even
smooth) curves in X. Note that orbits of different points either coincide or are disjoint,
hence they foliate X.

14.1 Definition. Let X be a measurable space. A dynamical system with continuous
time (also called a flow) is a one-parameter family {S t} of measurable maps on X such
that

(a) St+s = St ◦ Ss (the group property);

(b) for every measurable function F : X → IR the function G(x, t) = F (S tx) is mea-
surable on the product space10 X × IR.

The condition (b) ensures that the orbits Stx of individual points x ∈ X are not “too
wild”, but “nice enough”.

Commonly, flows are defined by differential equations as explained next.

14.2 Main Class of Flows. Let M be a smooth Riemannian manifold and v(x) a
smooth vector field11 on M . Then the differential equation

ẋ(t) = v(x(t)) (43)

has a smooth and unique solution x(t) passing through every point x ∈ M .

10The σ-algebra on the product space X× IR is generated by sets A×B, where A ⊂ X is a measurable
set and B ⊂ IR is a Borel set.

11This is a function assigning a tangent vector v(x) ∈ Tx(M) to every point x ∈ M , which smoothly
depends on x.
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Now, for any x ∈ M and t ∈ IR we define St(x) = x(t), where x(t) is the solution of
the above differential equation with initial condition x(0) = x.

One can interpret v(x) as a velocity vector field on M .

14.3 Remark. The solution x(t) of the equation (43) with initial condition x(0) = x
always exists for small enough t. But it may fail to exist globally, i.e. for large t ∈ IR.

One can remedy this situation by requiring that M be a complete manifold and v(x)
be a bounded vector field. This is certainly true whenever M is a smooth compact mani-
fold, for example. We are not going into this technical discussion, and will always assume
that the solutions of (43) exist globally, so that S t is defined for all t ∈ IR.

14.4 Examples.

(a) Let X = IRd and v ∈ IRd a fixed vector. Then the differential equation ẋ = v
defines a flow St, which is simply a parallel translation of IRd along the vector v
with constant speed;

(b) Let X = S1 be a unit circle and a ∈ IR a fixed number. Then the equation ẋ = a
defines a flow on S1, which is a continuous rotation (revolution) of S1 at constant
speed.

Many concepts and results that we have developed for maps, easily extend to flows.

14.5 Definition. A flow St : X → X preserves a measure µ if µ(St(A)) = µ(A) for
all measurable subsets A ⊂ X and all t ∈ IR.

Note: both flows in Examples 14.4 preserve the Lebesgue measure. In the case (a)
that measure is infinite, though, so we must say that S t has no invariant measures.

14.6 Definition. A measurable set A ⊂ X is invariant under the flow S t if St(A) = A
for all t ∈ IR. A function f : X → IR is invariant under the flow S t if f(Stx) = f(x) for
all t ∈ IR and all x ∈ X (a function is almost everywhere invariant if the above holds for
a.e. x ∈ X).

Note: in Example 14.4(b) the only invariant sets are X = S1 and ∅. All invariant
functions are constant.

14.7 Definition. A flow St : X → X is ergodic with respect to an invariant measure
µ (we also say that a measure µ is ergodic) if any St-invariant set A ⊂ X has measure 0
or 1. Equivalently: St is ergodic if any a.e. invariant function is a.e. constant. (Compare
this to 7.12 and 7.23.)
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14.8 Remark The flow in Example 14.4(b) is ergodic. It is interesting to note that for
some t 6= 0 the map St will be an identity map, so it cannot be ergodic. Hence, the
ergodicity of the flow St does not imply the ergodicity of any particular map S t.

The map St (for a given t ∈ IR) is called the time t map.

14.9 Definition. For a function f : X → IR its (forward and backward) time averages
f±(x) are defined by

f±(x) = lim
T→±∞

1

T

∫ T

0
f(St(x)) dt

(Compare this to 9.1 and 9.4.)

14.10 Theorem (Birkhoff-Khinchin Ergodic Theorem for Flows). Let S t :
X → X preserve a measure µ and f : X → IR be an integrable function, i.e. f ∈ L1

µ(X).
Then

(a) For almost every point x ∈ X the functions f±(x) defined above exist and coincide,
i.e. f+(x) = f−(x) a.e.

(b) The function f±(x) is St-invariant. Moreover, if f±(x) exists, then f±(Stx) exists
for all t and f±(Stx) = f±(x).

(c) f± is integrable and
∫

X
f± dµ =

∫

X
f dµ

(d) If µ is ergodic, then f±(x) is constant almost everywhere and

f±(x) =
∫

X
f dµ for a.e. x ∈ X

14.11 Definition. A flow St : X → X is mixing with respect to an invariant measure
µ (we also say that a measure µ is mixing) if for any sets A,B ⊂ X we have

lim
t→±∞

µ(A ∩ St(B)) = µ(A) µ(B)

Equivalently: St is mixing if for any functions f, g ∈ L2
µ(X) we have

lim
t→±∞

〈(f ◦ St) g〉 = 〈f〉 〈g〉

(Compare this to 11.5 and 11.11.)

14.12 Remark. If a flow St is mixing, then every map St, t 6= 0, is also mixing. (Com-
pare this to 14.8.) On the other hand, if St is mixing for some t 6= 0, this does not imply
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that the flow St is mixing. (Compare this to 14.13.)

14.13 Definition. A flow St is called a Bernoulli flow if the map St is Bernoulli for
every t ∈ IR.

It is interesting (but we do not give a proof) that if S t is Bernoulli for some t ∈ IR,
then St is Bernoulli for every t ∈ IR.

14.14 Example (Linear Flow on a Torus). Let Tord be a d-dimensional torus, cf.
12.1, and a = (a1, . . . , ad) ∈ IRd a fixed vector. Define a flow St

a
on Tord by

St
a
(x) = x + ta (mod 1)

i.e. St
a
(x1, . . . , xd) = (x1 + ta1, . . . , xd + tad), and each xi + tdi is taken modulo 1. (Com-

pare this to 12.2.)

a

x

S t

Figure 18: Linear flow on the torus.

Alternatively, one can define the linear flow on Tord by differential equations ẋ(t) = a
in the spirit of 14.2. Note that every coordinate xi changes periodically with period 1/ai

(hence, with frequency is ai). The flow St is also called a conditionally periodic flow,
and the numbers ai are called frequencies. It is easy to verify, that S t

a
preserves the

Lebesgue measure m on Tord, see also 14.18 below.

14.15 Theorem. The following are equivalent:

(a) St
a

is ergodic;

(b) ∀x ∈ Tord the orbit {St
a
(x)}, t > 0, is dense in Tord;

(c) the numbers a1, . . . , ad are rationally independent, i.e.

m1a1 + m2a2 + · · · + mdad 6= 0 (44)

for any integers m1, . . . ,md unless m1 = · · · = md = 0.

86



The proof of this theorem very much repeats that of 12.5. The differences are minor
and can be easily worked out.

14.16 Remark. Let d = 2 in the above theorem. Then either S t
a

is ergodic, or a1/a2

is a rational number. In the latter case there is a T > 0 such that ST
a
(x) = x for every

point x ∈ Tor2. Hence, we arrive at an alternative: on a 2-D torus all the orbits are
either periodic or dense.

14.17 Remark. The flow St
a

is never mixing. In fact, all maps St
a
, t ∈ IR, are isometries,

i.e. they preserve distances and angles on Tord, so this flow is a very regular (as opposed
to chaotic) dynamical system, despite its ergodicity for some a ∈ IRd.

There is a simple criterion for the invariance of the Lebesgue measure under a smooth
flow:

14.18 Lemma. Let X ⊂ IRd be an open domain and St a flow defined by a differential
equation, see 14.2. Then St preserves the Lebesgue measure m on X iff the divergence
of the vector field v vanishes:

div v =
∂v1

∂x1

+ · · · + ∂vd

∂xd

= 0

at every point x ∈ X. (Compare this to 5.6(a).)
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Figure 19: Change of volume by the flow St.

Proof. It is a well known fact in vector analysis that div v is the rate of change of
volume by the vector field v. More precisely, let x(s), 0 ≤ s ≤ t, be a segment of an
orbit of the flow. Take an infinitesimal ball B0 of volume V0 around the point x(0) and
denote by V (t) the volume of the image St(B0), see Fig. 19. Then

Vt

V0

= exp
[∫ t

0
div v(x(s)) ds

]
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This proves the lemma. 2

The following fact extends 14.18 to more general flows and measures.

14.19 Theorem (Liouville). Let X ⊂ IRd be an open domain and St a flow defined
by a differential equation, see 14.2. Then St preserves a measure µ with a continuous
density f(x) on X iff the divergence of the vector field fv vanishes:

div(fv) =
∂(fv1)

∂x1

+ · · · + ∂(fvd)

∂xd

= 0

at every point x ∈ X.

Proof. In terms of the previous lemma, the invariance of the measure with density
f(x) means that

f(x(t)) Vt = f(x(0)) V0

hence

f(x(t)) exp
[∫ t

0
div v(x(s)) ds

]

= f(x(0))

Differentiating with respect to t and cancelling the exponential factor yields

〈grad f,v〉 + f div v = 0

which is equivalent to div(fv) = 0. 2

14.20 Example. In classical mechanics, the motion of objects is governed by Newto-
nian equations constructed in the following way. Consider a system of n objects (parti-
cles) with masses m1, . . . ,mn. Denote their coordinates by q1, . . . , qn and momenta by
p1, . . . , pn (for simplicity, let all the particles move on a line, so that qi’a and pi’s are
one-dimensional variables). The Newtonian equations are

q̇i = pi/mi and ṗi = Fi (45)

for 1 ≤ i ≤ n, where Fi is the force acting on the i-th particle. Classical forces (gravita-
tional, etc.) only depend on the particle positions, not velocities, i.e. Fi = Fi(q1, . . . , qn).
For example, the gravitational force is obtained by

Fi(q1, . . . , qn) = − ∂

∂qi

U(q1, . . . , qn)

where U(q1, . . . , qn) is the potential energy of the system.
The differential equations (45) define a flow on the 2n-dimensional space with coor-

dinates (q1, . . . , qn, p1, . . . , pn), which is called the phase space of the mechanical system.
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14.21 Remark. The resulting flow on the phase space preserves the Lebesgue measure
by Lemma 14.8 (indeed, all the partial derivatives involved in 14.8 vanish). This is a
fundamental fact in classical mechanics. It is also called Liouville Theorem.

14.22 Hamiltonian Systems. More generally, the laws of classical mechanics can be
expressed by a system of differential equations

q̇i =
∂

∂pi

H ṗi = − ∂

∂qi

H (46)

where the function H(q1, . . . , qn, p1, . . . , pn) is the so called Hamiltonian. In the above
example with gravitational forces

H(q1, . . . , qn, p1, . . . , pn) =
n∑

i=1

p2
i

2mi

+ U(q1, . . . , qn)

This is a classical expression for the total energy of the system: it is the sum of the
kinetic energy and potential energy.

Lastly, note that a Hamiltonian flow always preserves the Hamiltonian itself, i.e. H
is an invariant function under the flow. This follows from (46) by

d

dt
H(q1(t), . . . , qn(t), p1(t), . . . , pn(t)) =

n∑

i=1

q̇i ×
∂

∂qi

H +
n∑

i=1

ṗi ×
∂

∂pi

H = 0

In physics this fact is called the conservation of energy.
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