
Applications of Mathematics MA 794
N. Chernov and I. Knowles

Foreword

In this course, we will discuss various applications of mathematics in sciences, industry,
medicine and business. The main objective is to prepare the students to possible em-
ployment in nonacademic world. The course will cover basic topics in numerical analysis,
applied linear algebra, differential equations, statistics, computer programming, as well
as discussion of specific applied problems on which our faculty are working. The course
will give the students some experience and expertise in applied areas of mathematics.
Even those pursuing an academic career may benefit from the experience gained in this
course.

Tentative syllabus

In Fall 2002, we plan to cover the following topics:

• Basic concepts of numerical analysis: Computer arithmetic, Conditioning, Numer-
ical stability, Rates of convergence.

• Solving equations in IR1 and IRn.

• Optimization algorithms: Golden section, Steepest descent, Newton-Raphson, Sim-
plex method, Levenberg-Marquardt, Simulated annealing.

• Random number generators, Monte-Carlo methods.

• Statistical data processing. Maximum likelihood estimation. Least squares fit.

• Neural networks (time permitting).

In Spring 2003, the emphasis will be on learning programming languages and software
packages and doing computer projects.

Students’ work

The students are expected to do exercises assigned in class and turn in solutions in
writing.

Individual reading projects will be assigned, on which the students will either write
a report or give a presentation in class.

Computer projects will be assigned later (most likely, in Spring 2003).

1

Grading policy

In Fall 2002, the students will be graded on a pass/fail basis. In Spring 2003, everyone
will receive a letter grade that will reflect his/her performance for the year.

References

1. L. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM 1997.

2. D. Kincaid and W. Cheney, Numerical Analysis, 2nd Ed., Brooks/Cole, 1996.

3. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in
Fortran, 2nd Ed., Cambridge U. Press, Cambridge, 1992. Alternatively: Numerical
Recipes in C, 2nd Ed., Cambridge U. Press, Cambridge, 1993. Available on-line at
http://www.library.cornell.edu/nr/nr index.cgi (as well as many other web sites).

Other books and/or journal papers may be used as well.

There is no need to buy or copy these articles. The instructor will provide copies of
relevant pages and his own notes regularly.

2

1 Conditioning in Numerical Analysis

Numerical analysis deals with numerical (computer) solutions of mathematical problems
and respective algorithms of such solutions. A good and passionate discussion of the
nature and goals of numerical analysis can be found in book [1], on pp. 321–327. It is
highly recommended for (hopefully, enjoyable) reading. Here we begin with basic defini-
tions, following Lecture 12 in [1].

A problem in numerical analysis is to take the initial data (input) and find/compute
a solution (output). Both input and output consist of one or more real numbers, so we
can think of the input and the output as vectors in IRn, n ≥ 1.

1.1 Definition of a problem
Solving a problem is equivalent to constructing a function f : X → Y from one

normed vector space X to another normed vector space Y .
The function f is usually continuous everywhere except some well defined bad points

(singular points).
Unless stated otherwise, we assume here that X = IRn and Y = IRm with some

m, n ≥ 1, and the norm in X and Y is the Euclidean norm.

1.2 Example
Given a quadratic equation ax2 +bx+c = 0, find its roots. This can be done by using

the canonical formula

x1,2 =
−b ±

√
b2 − 4ac

2a

(the case a = 0 requires a special treatment, though). The coefficients a, b, c are the input
data and the roots x1, x2 are the output data. Hence, X = IR3 and Y = IR2. The function
X → Y is defined on the domain b2 − 4ac ≥ 0. It is easy to see that it is continuous
everywhere except a = 0.

1.3 Definition of an absolute condition number
The absolute condition number κ̂ of a problem f : X → Y at a point x ∈ X is

κ̂ = κ̂(f, x) = lim
δ→0

sup
‖δx‖≤δ

‖δf‖
‖δx‖

where δf = f(x + δx) − f(x).

If f is differentiable at x with derivative J(x) (note that J(x) is an m × n matrix),
then κ̂ = ‖J(x)‖. This follows from the definition of a norm of a matrix.

3

1.4 Definition of a relative condition number
The relative condition number κ of a problem f : X → Y at a point x ∈ X is

κ = κ(f, x) = lim
δ→0

sup
‖δx‖≤δ

(

‖δf‖
‖f‖ /

‖δx‖
‖x‖

)

where δf = f(x + δx) − f(x).

If f is differentiable at x with derivative J(x) (which is an m × n matrix), then

κ =
‖J(x)‖

‖f(x)‖/‖x‖

1.5 Discussion: relative versus absolute condition numbers
If the input data are perturbed by a small amount, then the output will be perturbed

by some amount, too. The absolute condition number gives a maximum factor by which
perturbations of input are multiplied to produce perturbations of output. In other words,
if the input data are known to be accurate to within ε, the output data will be accurate
to within κ̂ ε. The relative condition number is a similar factor, but it corresponds to
the relative accuracy of our data.

Now, do we really need two different condition numbers? Actually, one is enough.
But which one should we use? There are many reasons why it is relative accuracy
that we should care about in practical applications, rather than absolute accuracy. To
demonstrate this, consider a very practical example - the price of merchandize. When
you buy a bottle of soda, its price may be, for example, 89 cents or $1.19. When you buy
a TV set, it may cost $139 or $195. When you buy a car, it price tag is, for example,
$15,650 or $24,990. When you buy a house, the seller may ask $156,000 or $225,900. Do
you see the trend? In most cases, both sellers and buyers operate with 3–4 significant
(nonzero) digits, i.e. their business has a natural level of relative accuracy – between 1%
and 0.1%. The absolute accuracy does not seem to have practical value, even in the
world of dollars and cents.

In Chapter 2 we will see that the computer arithmetic is also based on relative accu-
racy. We will only use relative condition number, and from now on forget the absolute
condition number. Whenever we mention a condition number, we always mean the rela-
tive condition number.

Here is another interpretation of a (relative) condition number κ. It allows us to
determine the number of digits in the output that we can trust. For example, if the
input x is known to p decimal digits, i.e. ‖δx‖/‖x‖ = O(10−p), and κ = 10q, then the
output y will have about p − q accurate digits, i.e. ‖δy‖/‖y‖ = O(10−(p−q)).

4

A problem is well-conditioned if κ is small (e.g., 1, 10, 102), and ill-conditioned if κ is
large (e.g., 106, 1010).

Note: Definition 1.4 is not perfect, it has some weak points when applied to scientific
computations. We will discuss its weak points later.

1.6 Example
Consider the trivial problem of multiplication x 7→ cx where c 6= 0 is a fixed scalar.

Then

κ =
|c|

|cx|/|x| = 1

Hence, multiplication by a scalar is always well-conditioned.

1.7 Example
Consider the problem of multiplying two numbers (x, y) 7→ xy. Then J = (y, x) and

‖J‖ =
√

x2 + y2, so

κ =

√
x2 + y2

|xy|/
√

x2 + y2
=

|x|
|y| +

|y|
|x|

Hence, the multiplication of two numbers is well-conditioned if they are comparable in
absolute value, but it may be ill-conditioned otherwise.

This last conclusion is actually inaccurate, we will see later a different, more ac-
curate viewpoint. Generally, multiplication (and division) are considered to be always
well-conditioned in numerical analysis, unlike subtraction and division. The alleged ill-
conditioning in this example just demonstrates the imperfection of our Definition 1.4.

1.8 Exercise
Find the condition number of the division x 7→ c/x, where c 6= 0 is a scalar, and of

the division of two numbers (x, y) 7→ x/y.

1.9 Example
Consider the problem of computing the square root x 7→ √

x for x > 0. We have

κ =
1/(2

√
x)√

x/x
=

1

2

This problem is always well-conditioned.

When the condition number happens to be less than 1, it might be also misleading.
Literally, it tells us that the accuracy of the output y is higher than that of the input
x. But this rarely happens in practice and is something clearly counterintuitive (we will
elaborate later). It is safer to define the condition number κ by

κ = max

{

1, lim
δ→0

sup
‖δx‖≤δ

(

‖δf‖
‖f‖ /

‖δx‖
‖x‖

)}

5

(compare this to our Definition 1.4). Then the condition number in Example 1.9 would
be equal to 1.

1.10 Example
Consider the subtraction of two numbers (x, y) 7→ x − y. We have

κ =

√
2

|x − y|/
√

x2 + y2
=

√
2x2 + 2y2

|x − y|
This is well-conditioned if x− y is comparable to max{|x|, |y|} and ill-conditioned other-
wise.

The above ill-conditioning is not an artifact of our Definition 1.4, this is a real thing.
It is well known in numerical analysis that subtracting two nearly equal numbers leads
to a catastrophic cancellation and must be avoided if at all possible.

1.11 Exercise
Find the condition number for the addition (x, y) 7→ x + y.

1.12 Example
A matrix A of size m × n defines a linear map IRn → IRm. Its condition number at

x ∈ IRn is

κ(A, x) = ‖A‖ ‖x‖
‖Ax‖

If A is a square matrix (m = n) and is nonsingular (det A 6= 0), we can take maximum
with respect to x and obtain

κ(A) = max
x 6=0

κ(A, x) = ‖A‖ ‖A−1‖

This is the definition of the condition number of a matrix adopted in linear algebra.

Recall: the condition number of a square n×n matrix A is the quotient of its largest
and smallest singular values:

κ(A) =
σ1

σn

1.13 Theorem (see [1], page 94)
Let A be a square nonsingular matrix. Consider the problem of solving the system

of linear equations Ax = b. Assuming that A is fixed, it defines a map b 7→ x according
to x = A−1b. The condition number of this problem is

κ = ‖A−1‖ ‖b‖‖x‖ ≤ ‖A‖ ‖A−1‖ = κ(A)

6

1.14 Theorem (see [1], page 95)
Let A be a square nonsingular matrix. Consider the problem of solving the system

of linear equations Ax = b. It defines a map (A, b) 7→ x according to x = A−1b. The
condition number of this problem is

κ = ‖A‖ ‖A−1‖ = κ(A)

The proofs of Theorems 1.13 and 1.14 are also provided in Applied Linear Algebra,
MA 660.

1.15 Example
The calculation of the roots of a polynomial, given its coefficients, is a classic example

of an ill-conditioned problem. Consider a rather simple polynomial

P (x) =
20
∏

i=1

(x − i) = a0 + a1x + · · · + a19x
19 + x20

studied by Wilkinson (see pages 92–93 of [1] and page 77 of [2]). This polynomial happens
to have a huge condition number

κ ≈ 5.1 × 1013

The illustration on page 93 of [1] shows a disastrous effect of ill-conditioning. A historical
note on page 77 of [2] presents an interesting story of Wilkinson’s discovery.

1.16 Exercise
Prove that the quadratic polynomial

P (x) = (x − 1)2

has infinite condition number:
κ = ∞

(formally, here we consider a map IR3 → IR2 defined in 1.2, and then κ is the respective
condition number at the point (1,−2, 1).)

1.17 Example
The calculation of eigenvalues and eigenvectors of a matrix is another example of an

ill-conditioned problem. To illustrate this, consider two matrices

[

1 1000
0 1

]

,

[

1 1000
0.001 1

]

,

7

which have eigenvalues {1, 1} and {0, 2}, respectively. On the other hand, if a matrix is
symmetric (more generally, if it is normal), then its eigenvalues are well-conditioned.

Recall facts from Applied Linear Algebra: it is possible to define and compute the
condition number of any eigenvalue for any square matrix. In particular, the condition
number of a simple eigenvalue λ of a square matrix A is defined by κ(λ) = 1/|y∗x| where
x and y are the corresponding right and left unit eigenvectors. For symmetric and normal
matrices, the vectors x and y are always parallel, hence κ(λ) = 1, but generally we can
only say that κ(λ) ≥ 1. We will not these facts, though.

8

2 Machine Arithmetic

2.1 Binary numbers
A bit is a binary digit, it can only take two values: 0 and 1. Any natural number N

can be written, in the binary system, as a sequence of binary digits:

N = (dn · · ·d1d0)2 = 2ndn + · · ·+ 2d1 + d0

For example, 5 = 1012, 11 = 10112, 64 = 10000002, etc.

2.2 More binary numbers
To represent more numbers in the binary system (not just positive integers), it is

convenient to use the numbers ±N ×2±M where M and N are positive integers. Clearly,
with these numbers we can approximate any real number arbitrarily accurately. In other
words, the set of numbers {±N × 2±M} is dense on the real line. The number E = ±M
is called the exponent and N the mantissa.

Note that N × 2M = (2kN) × 2M−k, so the same real number can be represented in
many ways in the form ±N × 2±M with different M and N .

2.3 Floating point representation
We return to our decimal system. Any decimal number (with finitely many digits)

can be written as
f = ±.d1d2 . . . dt × 10e

where di are the decimal digits of f , and e is an integer. For example, 18.2 = .182×102 =
.0182 × 103, etc. This is called a floating point representation of decimal numbers. The
part .d1 . . . dt is called the mantissa and e is the exponent. By changing the exponent
e with a fixed mantissa, d1 . . . dt, we can move (“float”) the decimal point, for example
.182 × 102 = 18.2 and .182 × 101 = 1.82.

2.4 Normalized floating point representation
To avoid unnecessary multiple representations of the same number (such as .182×102

and .0182 × 103 which represent one number, 18.2), we require that d1 6= 0. We say
the floating point representation is normalized if d1 6= 0. Then .182 × 102 is the only
normalized representation of the real number 18.2.

For every positive real f > 0 there is a unique integer e ∈ ZZ such that g := 10−ef ∈
[0.1, 1). Then f = g × 10e is the normalized representation of f . So, the normalized
representation is unique.

9

2.5 Other number systems
Now suppose we are working in a number system with base β ≥ 2. By analogy with

2.3, the floating point representation is

f = ±.d1d2 . . . dt × βe

where 0 ≤ di ≤ β − 1 are digits,

.d1d2 . . . dt = d1β
−1 + d2β

−2 + · · · dtβ
−t

is the mantissa and e ∈ ZZ is the exponent. Again, we say that the above representation
is normalized if d1 6= 0, this ensures uniqueness.

2.6 Machine floating point numbers
Any computer can only handle finitely many numbers. Hence, the number of digits

di’s is necessarily bounded, and the possible values of the exponent e are limited to a
finite interval. Assume that the number of digits t is fixed (it characterizes the accuracy
of machine numbers) and the exponent is bounded by L ≤ e ≤ U . Then the parameters
β, t, L, U completely characterize the set of numbers that a particular machine system
(or a particular computer) can handle. The most important parameter is t, the number
of significant digits, or the length of the mantissa. (Note that the same computer can
use many possible machine systems, with different values of β, t, L, U , see 2.8.)

2.7 Remark
The maximal (in absolute value) number that a machine system can handle is M =

βU(1 − β−t). The minimal positive number is m = βL−1.

2.8 Examples
Most computers use the binary system, β = 2. Many modern computers (e.g., all

IBM compatible PC’s) conform to the IEEE floating-point standard (ANSI/IEEE Stan-
dard 754-1985). This standard provides two systems. One is called single precision, it is
characterized by t = 24, L = −125 and U = 128. The other is called double precision, it
is characterized by t = 53, L = −1021 and U = 1024. The PC’s equipped with the so
called numerical coprocessor (which is built-in on all Pentium class chips) also use a dif-
ferent internal system called temporary format, it is characterized by t = 65, L = −16381
and U = 16384.

2.9 Relative errors
Let x > 0 be a positive real number with the normalized floating point representation

with base β
x = .d1d2 . . . × βe

where the number of digits may be finite or infinite. We need to represent x in a machine
system with parameters β, t, L, U . If e > U , then x cannot be represented (an attempt to

10

store x in a computer memory or perform calculation that results in x should terminate
the computer program with error message OVERFLOW, which means that the attempted
number is too large). If e < L, the system may either represent x by 0 (in many cases,
this is a reasonable action) or terminate the program with error message UNDERFLOW
– an attempted number is too small. If e ∈ [L, U] is within the proper range, then the
mantissa has to be reduced to t digits (if it is longer than t or infinite). There are two
standard ways to do this reduction:

(i) just take the first t digits of the mantissa of x, i.e. .d1 . . . dt, and drop (“chop off”)
the rest;

(ii) round off to the nearest available machine number, i.e. take the mantissa

{

.d1 . . . dt if dt+1 < β/2

.d1 . . . dt + .0 . . . 01 if dt+1 ≥ β/2

Denote the obtained number by fl(x) (the computer floating point representation of x).
The relative error in this representation can be estimated as

fl(x) − x

x
= ε or fl(x) = x(1 + ε)

where the maximal possible value of ε is

εmachine =

{

β1−t for chopped arithmetic
1
2
β1−t for rounded arithmetic

The number εmachine is called the machine epsilon or machine precision.

2.10 Examples
a) For the IEEE floating-point standard with chopped arithmetic in single precision

we have εmachine = 2−23 ≈ 1.2× 10−7. In other words, approximately 7 decimal digits are
accurate.

b) For the IEEE floating point standard with chopped arithmetic in double precision
we have εmachine = 2−52 ≈ 2.2 × 10−16. In other words, approximately 16 decimal digits
are accurate.

2.11 Experimental search
The quantity εmachine is the most important characteristic of a machine system. If you

work on a computer with an unknown machine arithmetic, you can determine εmachine

experimentally by running the following program:

Step 1: Set x = 1.

Step 2: Compute y = 1 + x.

11

Step 3: If y = 1, stop, otherwise reset x = x/2 and go back to Step 2.

The resulting number x will be (approximately) εmachine.
The smallest and largest numbers m and M available in a machine system are less

important, since practical computations rarely reach these limits. But if you need them,
these numbers can also be determined experimentally, in an obvious manner.

2.12 Exact machine numbers
Which real numbers x ∈ IR can be represented exactly in a machine system? Besides

zero, these are rational numbers whose binary mantissa does not exceed t significant bits
and whose binary exponent lies between L and U . For example:

(a) 1, −2, 355, −65001, 0.5 = 2−1, and 210 + 2−7, are exact machine numbers in
both single and double precision arithmetics (note that the binary mantissa of the
number 210 + 2−7 is 18 bits long);

(b) 220 +2−8 is an exact machine number in double precision but not in single precision
(its binary mantissa is 29 bits long, which exceeds 24 bits);

(c) The following numbers are not exact in either single or double precision: 0.1 (its
binary mantissa is infinite!), 21200 (the number itself is too large), 2−1200 (this
number is too small), 1045 (its binary mantissa is finite but too long), 245 + 2−15

(its binary mantissa is 61 bits long).

In computer programming, it helps to keep these rules in mind.

2.13 Computational errors
Let x and y be two real numbers represented in a machine system by fl(x) and fl(y),

respectively. An arithmetic operation x ∗ y, where ∗ is one of +,−,×,÷, is performed
by a computer in the following way. The computer finds fl(x) ∗ fl(y) (first, exactly) and
then represents that number in the machine system. The result is

z := fl(fl(x) ∗ fl(y))

Note that, generally, z is different from fl(x ∗ y), which is the machine representation of
the exact result x∗y. Hence, z is not necessarily the best representation for x∗y. In other
words, the computer makes additional round-off errors during computations. Assuming
that fl(x) = x(1 + ε1) and fl(y) = y(1 + ε2) we have

fl(fl(x) ∗ fl(y)) = (fl(x) ∗ fl(y))(1 + ε3) =
(

[x(1 + ε1)] ∗ [y(1 + ε2)]
)

(1 + ε3)

where |ε1|, |ε2|, |ε3| ≤ εmachine.

2.14 Axioms of Floating Point Arithmetic
Textbook [1] states two axioms of machine number systems:

12

A1. For any real number x ∈ IR within the proper range (either m < |x| < M or x = 0)
there exists ε with |ε| < εmachine such that

fl(x) = x(1 + ε)

A2. For all machine numbers x, y there exists ε with |ε| < εmachine such that

fl(x ∗ y) = (x ∗ y)(1 + ε)

2.15 Multiplication and Division
For multiplication, we have

z = xy(1 + ε1)(1 + ε2)(1 + ε3) ≈ xy(1 + ε1 + ε2 + ε3)

so the relative error is (approximately) bounded by 3εmachine. A similar estimate can be
made in the case of division.

2.16 Addition and Subtraction
For addition, we have

z = (x + y + xε1 + yε2)(1 + ε3) = (x + y)

(

1 +
xε1 + yε2

x + y

)

(1 + ε3)

The relative error is now small if |x| and |y| are not much bigger than |x + y|. The error,
however, can be very large if |x+y| ≪ max{|x|, |y|}. This effect is known as catastrophic
cancellation. A similar estimate can be made in the case of subtraction x−y: if |x−y| is
not much smaller than |x| or |y|, then the relative error is small, otherwise we may have
a catastrophic cancellation.

2.17 Example
Consider the system of equations

(

0.01 2
1 3

)(

x
y

)

=

(

2
4

)

The exact solution is x = 200/197 = 1.015 . . . and y = 196/197 = 0.995
Now, to demonstrate the effect of round off errors, let us solve this system with the

chopped arithmetic with base β = 10 and t = 2 (i.e. working with a two digit mantissa)
by the standard Gaussian elimination method. We do not need a computer for this,
the job can be done manually. The result is x = 0 and y = 1. The value of x is very
inaccurate, its relative error is 100%.

Note: solving equations in machine arithmetic is different from solving them exactly.
We ‘pretend’ that we are computers, and so we are subject to the strict rules of machine

13

arithmetic, in particular we are limited to t significant digits. As we notice, these limi-
tations may lead to unexpectedly large errors in the end.

2.18 Exercise
Solve the system in 2.17 in a machine arithmetic with β = 10 and t = 3. Any im-

provement? [Answer: x = 2. Still, the relative error in x is about 100%.]

2.20 Exercise
Compute the value z = (x − y)2 in two ways:

z = (x − y) × (x − y) and z = x × x − 2 × x × y + y × y

for x = 1 and y = 0.98 by using the system with the rounded arithmetic with base β = 10
and t = 2. How come one of the results is negative? See also a plot on page 79 of [2].

14

3 Numerical Stability

Consider again a problem f : X → Y of numerical analysis. When it is solved by a
computer, the input data x has to be converted to its machine floating point version
fl(x). Therefore, the computer can, at best, find f(fl(x)), instead of f(x). The relative
error of the output is related to the relative error of the input, which is known to be less
than εmachine, via the condition number defined in 1.4. This gives us the estimate

‖f(fl(x)) − f(x)‖
‖f(x)‖ ≤ κ(f, x) εmachine (1)

This may be bad enough already, when the problem is ill-conditioned. However, in reality
things appear to be even worse, since the computer does not evaluate f(fl(x)) precisely,
apart from trivial cases. The computer executes a certain program that normally involves
many arithmetic operations and other functions, like square root or logarithms. As the
program runs, more and more round-off errors are made at each step and the errors
compound toward the end. As a result, the computer program transforms the (machine)
input fl(x) into a (machine) output ỹ which is generally different from f(fl(x)). We
denote the composite transformation x 7→ fl(x) 7→ ỹ by ỹ = f̃(x), which defines another
function f̃ : X → Y . It depends not only on the machine system but even more on the
algorithm that is used to evaluate f .

Recall Exercise 2.20: the same function z = (x − y)2 can be evaluated in two ways.
Both ways are theoretically equivalent and practically appeared almost identical, but we
obtained different results (one of them positive and the other, paradoxically, negative).

So, let a problem f : X → Y be solved on a computer with a particular algorithm
defining another function f̃ : X → Y . The accuracy of the algorithm at a point x ∈ X
can be characterized by the relative error

‖f̃(x) − f(x)‖
‖f(x)‖

Since the numerical algorithm for evaluating f cannot be more accurate than the exact
function f , we do not expect the above relative error to be smaller than the relative error
(1) estimated by κ(f, x) εmachine. But we may hope that it will not be any larger either.
In other words, a good algorithm should not magnify the errors caused already by the
round-off of x and conditioning, as expressed by (1). If this is the case, the algorithm is
said to be stable.

3.1 Definition (stable algorithm)
An algorithm f̃ is stable if for each x ∈ X

‖f̃(x) − f(x̃)‖
‖f(x̃)‖ = O(εmachine)

15

for some x̃ with
‖x̃ − x‖
‖x‖ = O(εmachine)

In words,

A stable algorithm gives nearly the right answer to nearly the right question.

3.2 Definition (backward stable algorithm)
An algorithm f̃ is backward stable if for each x ∈ X

f̃(x) = f(x̃)

for some x̃ with
‖x̃ − x‖
‖x‖ = O(εmachine)

In words,

A backward stable algorithm gives exactly the right answer to nearly the right question.

This is a tightening of the previous definition in that O(εmachine) is replaced by zero.
Hence, a backward stable algorithm is always stable (but not vice versa).

x

x

x

y

y

~

~

fl()
f

f

f
~

Figure 1: Numerical stability of an algorithm.

16

3.3 Remark
The notation O(εmachine) is understood in a usual way: we say that g = O(εmachine) if

there is a constant C > 0 such that

|g/εmachine| ≤ C

as εmachine → 0. Of course, the last limit is purely hypothetical, since in practice the
machine accuracy is always a fixed quantity.

The constant C > 0 in Definitions 3.1 and 3.2 is supposed to be uniform in x ∈ X,
see [1]. However, for practical purposes it is more important that C > 0 is reasonably
small, something like 10 or 102 (in the same sense in which κ(f, x) should be small for a
problem to be well conditioned, recall Discussion 1.5).

The following relations are simple but useful:

(a) (1 + O(εmachine))(1 + O(εmachine)) = 1 + O(εmachine)

(b)
√

1 + O(εmachine) = 1 + O(εmachine)

(c) (1 + O(εmachine))
−1 = 1 + O(εmachine)

3.4 Theorem
The arithmetic operations +,−,×,÷ are backward stable.

Proof. See [1], pp. 108–109, for the proof of backward stability for subtraction. The
proofs for other operations are similar. 2

3.5 Examples
The scalar product of vectors x, y ∈ IRn defined by c = xT y is backward stable. The

tensor product of vectors A = xyT is stable, but not backward stable. The operation
x 7→ x + 1 is stable but not backward stable. For details, see [1], page 109.

¿From practical viewpoint, there is little or no difference between stability and back-
ward stability. If an algorithm is stable, it is good for all practical purposes. Backward
stability just happens to be easier to verify analytically, this is why we care about it.

3.6 Theorem
Suppose a backward stable algorithm is applied to solve a problem f : X → Y with

condition number κ. Then the relative errors satisfy

‖f̃(x) − f(x)‖
‖f(x)‖ = O(κ(f, x) εmachine)

Proof. See [1], page 111.

17

3.7 Exercise
Does the above theorem hold for stable algorithms? Under what additional condition

does it hold for stable algorithms?

[Answer: the condition is ‖f(x)‖/‖f̃(x)‖ = O(1).]

3.8 Exercise
Compare two algorithms for computing the function z = (x − y)2:

z = (x − y) × (x − y) and z = x × x − 2 × x × y + y × y

(again recall 2.20). Determine if each of them is backward stable, stable but not backward
stable or unstable.

3.9 Example
Suppose we are going to find the larger root of a quadratic equation x2 + px + q = 0

assuming (for simplicity) that p2 − 4q ≫ εmachine. A classical formula

x =
−p +

√
p2 − 4q

2

gives a simple but, generally, numerically unstable algorithm (after the previous exercise,
this should come as no surprise). Precisely, for p < 0 the above formula is stable, for
p > 0 one should use a modified version

x =
2q

−p −
√

p2 − 4q

In this way one avoids catastrophic cancellations.

3.10 Example
Suppose one needs to compute

y = 1 − cos x

for x ≈ 0. Using the exact formula y = 1 − cos x would be very unstable and give very
inaccurate results (figure out, why!). A numerically stable algorithm is based on the
Taylor expansion:

y =
x2

2!
− x4

4!
+ · · ·

Of course, one cannot evaluate an infinite series on a computer, so a partial sum has to be
used. How many terms one actually needs to take depends on a particular application.
But even one term, y ≈ x2/2, would be much more accurate than the exact formula
y = 1−cos x for small x’s. We emphasize this fact, which may be not so easily acceptable
by mathematically minded people:

18

An approximate formula may be numerically more accurate
than a theoretically exact formula.

Why does this happen? Here is an explanation. We need to distinguish between two
types of errors in numerical calculations. When an infinite series S =

∑∞
1 ai is approx-

imated by a partial sum Sn =
∑n

1 ai, the difference is Sn − S called a truncation error.
Similarly, suppose an iterative algorithm is designed to compute a sequence of numbers
an converging to a limit a∗. Since the algorithm has to stop at some time, it will return
the current value an as an approximation to a∗, and then an − a∗ will be the truncation
error. Truncation errors occur “by design”, they are inevitable and independent of the
machine arithmetic (they would occur even if our computers had infinite precision). On
the other hand, round-off errors occur in all floating point computations and depend on
our machine precision.

In the above example, the direct formula y = 1− cos x involves no truncation errors,
but a large round-off error (for small x). On the contrary, the approximative formula
y ≈ x2/2 involves a small truncation error and a small round off error. The combined
error is still small, compared to the round off error of the direct formula.

3.11 Remarks.
As you now realize, the development of a numerically stable algorithm is a tricky

business. It is, in a sense, finding a safe path through a mine field or through swamps (or
both). Often one begins with a straightforward algorithm, which may or may not work
well even in typical cases, and then one tests the algorithm, discovers various pitfalls and
drawbacks, and find detours and corrections.

The history of numerical analysis is full of examples of problems for which it took
years or decades to find a satisfactory (numerically stable and accurate) solution. A
classical example is the linear least squares problem (studied in MA660). A simple (and
theoretically exact) solution based on normal equations was used throughout until the
1970s. Then researchers came to a conclusion that it was dangerously unstable. Another
algorithm, based on the QR decomposition, became popular. It was more expensive
(in terms of computer time) but numerically stable and theoretically still exact. In the
1990s, yet another algorithm, based on SVD, made its way into the market. It is even
more expensive than QR but its practical accuracy is higher than that of QR (a nice
example is provided in [1] on pp. 137–143). It is interesting that the SVD algorithm is
not exact in the theoretical sense, it involves an iterative procedure that converges to the
exact solution. We will return to this issue in Chapter 8.

The above historical excursion is quite instructive. It frequently happens in applied
mathematics that simple and theoretically exact algorithms are numerically unstable and
inaccurate. In this case one needs to find a stable and accurate algorithm, even if the lat-
ter is more complicated, computationally expensive, and based on approximations rather

19

than exact formulas.

3.12 Exercise
Suppose we want to compute

S =
∞
∑

n=1

1

n2

(in theory, it equals π2/6). Our computer program evaluates a partial sum

S ′ =
N
∑

n=1

1

n2

where N is the largest integer such that 1/N2 > εmachine (further terms, with n > N ,
may be ignored since they will not alter the result). Estimate the relative error of this
algorithm. Is it O(εmachine) or larger?

3.13 Exercise
Now suppose that in the previous exercise the series is summed up from right to left:

S ′′ =
N
∑

n=1

1

(N − n + 1)2

where N is the same as before. Estimate the relative error of this algorithm.

Compare 3.12 and 3.13. How would you evaluate the sum of a series on a computer
– add numbers in an increasing order or in a decreasing order?

3.14 Exercise
The following series (known as harmonic series) is divergent:

S =
∞
∑

n=1

1

n

However, if one adds these numbers, from left to right, on a computer, one arrives at
a finite answer, since the terms 1/n < εmachine will no longer alter the sum. Can you
estimate the result in single precision? Can you estimate the result in double precision?
To answer these questions, you do not have to run a computer program. However, if you
are familiar with any programming language (BASIC, FORTRAN, PASCAL, C) you can
easily run the corresponding program on a computer and obtain a numerical result.

Note: it is common to verify the accuracy of a computer algorithm by running it in
single precision and then in double precision. If the results are far from each other, as in
the above example, neither one can be trusted. If they are close to each other, one hopes
(fingers crossed!) that the results are accurate.

20

4 Rates of Convergence

Iterative algorithms were mentioned in the previous section. Many problems do not
admit exact solutions, and then numerical schemes involving some sort of successive
approximation are applied. (We have seen that even if exact solutions are available,
sometimes iterative algorithms are more stable and/or accurate.)

A typical iterative procedure produces a sequence of points yn ∈ Y that supposedly
converges to the exact solution y. Here we discuss the rates of convergence, i.e. the speed
of convergence to zero of the sequence

en = ‖yn − y‖/‖y‖

4.1 Preliminaries
In mathematics, a sequence converging to zero may do so with different speeds. For

example, an = 1/n or, more generally, an = 1/nb (here b > 0 is a constant), converges to
zero slowly. On the contrary, the sequence an = 1/2n, or, more generally, an = qn (here
q < 1 is a constant), converges rapidly. Rarely one encounters sequences that decrease
faster than qn for some q < 1.

However, in numerical analysis, the sequence an = qn is regarded as one of the slowest
(!) to converge. One frequently encounters sequences that converge to zero as an = q2n

or an = q3n

, etc. This is formalized in the following definitions.

4.2 Linear convergence in numerical analysis
A sequence an is said to converge to zero linearly if

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≤ λ

for some λ < 1. If the ratio |an+1/an| is approximately λ (or if |an+1/an| → λ as n → ∞),
then λ is called the rate of convergence. In that case, asymptotically, an ∼ const · λn.

4.3 Quadratic convergence in numerical analysis.
A sequence an is said to converge to zero quadratically if

|an+1| ≤ C|an|2

for some C > 0. In that case, asymptotically, an ∼ const · λ2n

for some λ > 0, see
Exercise below.

Similarly, one says that a convergence is cubic in the case

|an+1| ≤ C|an|3

for some C > 0. And more generally, a convergence of order β > 0 means that

|an+1| ≤ C|an|β

21

for some C > 0.

One may wonder if such a fast convergence is indeed possible. We will see later that
many good numerical algorithms do achieve quadratic or even cubic convergence. Next
we will explain what various speeds of convergence mean in terms of numerical accuracy.

4.4 Exercise
Let a sequence an converge to zero and satisfy |an+1| ≤ C|an|2 with some C > 0 for

all n ≥ 1. Prove that an < C1λ
2n

with some C1 > 0 and λ < 1.

4.5 More on linear convergence
Suppose we have a sequence of approximations {yn} that converges to a limit y linearly

at a rate λ = 0.5. Is it fast or slow? We see that each approximation is nearly twice
as close to the limit as the previous one. Sounds good? But in terms of the number of
accurate binary digits (bits) in the value of yn, our convergence guarantees exactly one
more accurate bit at each approximation. Suppose that the initial guess y0 is at a relative
distance 0.5 from the limit, i.e. |y0 − y|/|y| ≈ 0.5, i.e. just one significant bit is accurate.
Then, in order to achieve a full accuracy in single precision, we need 22 approximations.
In double precision, we will need as many as 51 approximations. (Note that if λ = 0.8
or 0.9, then the number of necessary approximations would be much higher than that.)

Normally, each approximation yn requires one iteration of an algorithm. Thus, we
are talking about 22 or even 51 iterations here. In many applications, every iteration is
quite expensive and making 20-50 iterations is a luxury one cannot afford. Besides, the
longer the program runs, the more round-off errors are compounding, and the accuracy
is inevitably diluted. A good numerical algorithm should converge in no more than 10
iterations, and one regards a convergence in 3-5 iterations as a high quality certificate.

But how is such a fast convergence possible?

4.6 More on quadratic convergence
Suppose now we have a sequence of approximations {yn} that converges to a limit

y quadratically, |yn+1 − y| ≤ C|yn − y|2, and assume that C = 1 for simplicity. In
terms of binary digits, our convergence guarantees that the number of accurate bits in
the value of yn doubles with each approximation. For example, if we start with just
one accurate bit, then we get 2, 4, 8, 16, 32, 64, . . . bits in subsequent approximations.
In 4-5 iterations, one reaches full accuracy in single precision and in 5-6 iterations one
reaches full accuracy in double precision! This is what one expects from a good algorithm.

If a sequence yn converges cubically, then the number of accurate bits triples with
each approximation. Starting with one accurate bit, one gets 3, 9, 27, 81, . . . accurate bits
at subsequent approximations. One could only wish that our computers handled data
with such precision. But the cubic convergence is a top class performance that practical
algorithms rarely achieve.

22

5 Solving Equations

The most fundamental problem in numerical analysis is to solve an equation

f(x) = 0

where x ∈ IR is an independent variable and f : IR → IR a given function. This problem
admits a natural generalization to IRn, when one solves a system of equations

f(x) = 0

where x ∈ IRn is an independent vector and f : IRn → IRm a given map. In this case one
normally requires that m = n (the number of equations equals the number of unknowns,
otherwise the system may be overdetermined for m > n and underdetermined for m < n).

This topic is nicely covered in textbooks [2] (see chapter 3) and [3] (see chapter 9) to
which we refer for a detailed reading. We only emphasize the main points here.

5.1 Formalities
At first sight, solving an equation f(x) = 0 does not look like a “problem” as defined

by 1.1. What are input data? What are output data? Well, in practical applications
the formula specifying the function f(x) normally contains some variable coefficients or
parameters, which we may consider as input data (for example, if f is a polynomial of
degree k, then its k + 1 coefficients make input data).

Next, the solution of f(x) = 0 may not exist, and if it does it may not be unique. So
what are the output data? Well, if there is no solution (for some particular values of the
input data) then the map f : X → Y involved in Definition 1.1 is not defined at that
particular input vector x ∈ X. A more difficult (conceptually) is the case of multiple
solutions – what are the output data then? Well, in practical applications there is often
a “desired” root (or a few “desired” roots) of an equation (as compared to many other
roots which, while solving the equation f(x) = 0, have no practical significance – we call
them “false roots”). The number of “desired” roots is usually well defined (often, just
one). When practical considerations permit to distinguish the desired root from all the
other roots, then we consider the desired root as the output data. This allows us to fit
the topic of solving equations into the framework of Definition 1.1.

5.2 Practical remarks
When a function y = f(x) is evaluated on a computer, a machine number ỹ = f̃(x)

is obtained (as we explained earlier in the beginning of Section 3). Of course, ỹ here is
generally different from y = f(x) (hopefully, they differ by O(εmachine), but this is not
always guaranteed). In particular, it is well possible that f(x) = 0 but f̃(x) 6= 0. Or
vice versa, f̃(x) = 0 but f(x) 6= 0. Since the computer only deals with f̃ and has no clue
about f , then how should it find a root x of the function f?

For example, the equation f(x) = x4−4x3 +6x2−4x+1 = 0 has a unique root x = 1.
The numerical version f̃ of this function f is plotted on page 79 of [2]. It shows that f̃

23

crosses the x axis many times (about 25 times on the plot in the book) and has multiple
zeroes. Textbook [2] correctly states that in this example any number in the interval
(0.981, 1.026) could be taken as a good approximation to the true root. Numerically, all
the numbers in this interval “solve” the original equation equally well, and no algorithm
can (or should) find the root any more accurately.

The trouble in the above example is, of course, caused by the derivatives of f that
vanished at the root.

On the other hand, when df/dx is large or infinite at a root (as, for instance, happens
with the function f(x) = (x − π)1/3 at the point x = π), then the function may cross
the x axis too rapidly without even taking on a zero value or any sufficiently small value
(say, of order εmachine).

A very weird example of that sort is provided by the formula

f(x) = 3x2 +
1

π4
ln
[

(π − x)2
]

+ 1 (2)

see Section 3.0 in [3]. This function is smooth everywhere except x = π. Theoretically,
it takes on all real values and has two distinct zeroes, both very close to π. However, if
one plots this function by a graphical calculator or a computer software such as MAPLE,
one would only see a parabola-like curve lying entirely above the line y = 1. In fact, the
function dips below zero only in the ridiculously small interval of about x = π ± 10−667

(see Section 9.1 of [3] and a remark below). How would you detect such an interval (or
a root, for that matter) on a computer whose machine precision is, say, 10−16?

[In Fall 2002, our student Gaston Brouwer investigated the above function by using
MAPLE and found the textbook formula (2) somewhat inaccurate. He considered the
function

fc(x) = 3x2 +
1

π4
ln [(π − x)2] + c

with a variable c. Then he writes

fc(π + ε) = 3π2 + 6πε + 3ε2 +
2

π4
ln |ε| + c

and for ε very small he obtains

fc(π + ε) ≈ 2

π4
ln |ε| + 3π2 + c

Furthermore
2

π4
ln |ε| + 3π2 + c = 0 ⇐⇒ ε = ±e−π4(3π2+c)/2

With MAPLE he finds:

e−π4(3π2+c)/2 ≈ 0.362 · 10−647 for c = 1

e−π4(3π2+c)/2 ≈ 0.255 · 10−668 for c = 2

24

Therefore, the free term in (2) should be equal to 2, rather than 1. This is an excellent
example of numerical analysis!]

5.3 Machine approximations to solutions
The moral of the above examples is that the computer should classify x as a root

whenever f̃(x) is small (of order O(εmachine)) or whenever the plot of f̃ crosses the x
axis. So we arrive at numerical criteria for finding roots of equations: we call x a good
approximation to a root of an equation f(x) = 0 if either of the following conditions
holds:

• |f̃(x)| ≤ Cεmachine.

• there are two nearby numbers x′ < x < x′′ such that |x′′ − x′|/|x| ≤ Cεmachine and
f̃(x′) and f̃(x′′) have opposite signs (or one of these values is zero).

Here C should be of order 10k with some small k (such as k = 1, 2, 3). In fact, one can
play with C to adjust the performance of computer algorithms. Setting C to a small
value C ≈ 10 makes the criteria very tight. While this may allow you to find a more
accurate approximation to the true root in some cases, it may turn out “too tight” in
some other cases, so that the computer will just fail to find any root! On the other hand,
setting C ≈ 102 or even C ≈ 103 should guard against failures in most cases, but the the
obtained approximation to a root may not be the best possible.

5.4 Bracketing
The second criterion in 5.3 leads to the following basic principle:

If f̃(a) and f̃(b) for some a < b have opposite signs, then there is
at least one good approximation to a true root between a and b.

Here we do not suppose that a and b are close to each other or that f̃(a) and f̃(b)
are small. This is a general principle. It is one of a few facts in numerical analysis that
guarantee the existence of a solution to a problem. Textbook [3] strongly recommends
that one holds on to this principle and includes it (as a safety check) in all computer
programs for solving equations.

It is common to replace f̃ by f in the above principle (and other rules discussed below),
assuming that the corresponding values are close enough. However, strictly speaking, the
above principle is not always valid when one substitutes f for f̃ .

5.5 Bisection (interval halving) method
The simplest algorithm for solving equations in one variable is based one the above

principle alone. It is called bisection (or interval halving) method, see 3.1 in [2] or 9.1 in
[3]. We only record here some important features and practical aspects of this method:

25

• The method converges linearly. More precisely, if xn is the n-th approximation to
the root x found by this method (i.e., xn is the midpoint of the n-th interval), then
|xn −x| ≤ C/2n, where C is the length of the initial interval. Linear convergence is
slow. As a rule, it takes 20–25 iterations to approximate a root in single precision
and 50–55 iterations in double precision, cf. 4.5.

• In practical implementations, it is advisable to set a limit on the number of iter-
ations, i.e. to terminate the program if the number of iterations exceeds a preset
maximum value of, say, 60. This prevents the program from accidentally entering
an infinite cycle which results in “freezing” the computer.

• In order to determine whether f(a) and f(b) have opposite signs, one should not
multiply these numbers. Not only is the multiplication rather expensive, compu-
tationally, but it can result in underflow or overflow breaking down the execution
of your program. A safer (and possibly cheaper) way is to compare sgn(f(a)) and
sgn(f(b)), where sgn stands for a function extracting the sign of a real number,
which is available in many computer languages.

• To find the midpoint of an interval (a, b) one should not compute (a + b)/2. There
are documented examples where the so computed number lies outside of the interval
[a, b], due to round-off errors of addition, see p. 81 in [2]. A safer way is to keep
record of the half interval length e = (b − a)/2 and then compute the midpoint by
a + e. The half-length e can be easily updated at each iteration (we simply divide
it by two).

5.6 The Newton method
A classical method for finding zeroes of differentiable functions is the Newton method

(also called the Newton-Raphson method). See Section 3.2 in [2] and Section 9.4 in [3]
for detailed descriptions with examples. We only record here some important features
and practical aspects of this method:

• The method requires a starting point x0 (called, colloquially, an initial guess), which
must be provided by the user (i.e., by you). The performance of the method (and
the final result) would usually depend on the point x0 you provide, so beware! If x0

is close enough to the desired root, the method will quickly find it, otherwise it may
wander around forever, or converge to a false root, or dash to infinity (diverge),
sometimes in spectacular ways, see examples in [2] and [3].

• When you select a good starting point x0 making the method converge to the
desired root, the speed of convergence is usually quadratic. More precisely, if xn

is the n-th approximation to the root x found by this method, then the errors
en = |xn − x| are related by

en+1 ≃ Ce2
n

where C ≈ f ′′(x)/2f ′(x). Hence, the convergence is quadratic whenever f ′(x) 6= 0.

26

• The quadratic convergence of the Newton method means that the number of ac-
curate digits in the root approximation double at every iteration, see 4.6 and an
example on p. 92 of [2]. Normally, 5-6 iterations are sufficient to achieve a maximal
possible accuracy in double precision. This is very fast. The rapid convergence
constitutes the main virtue of the algorithm. (Still, it is advisable to set a limit on
the number of iterations to, say, 20, which would prevent the program from being
accidentally trapped in an infinite cycle.)

• Despite the well known facts about possible divergence of the Newton method, it is
widely applied as is, without any safety features or checkpoints. Occasional cases
of divergence are attributed to a bad choice of the initial guess x0, and one simply
restarts the method from another initial point.

• There are, however, simple ways to guard against possible divergencies and failures.
At the very least, make sure that |f ′(xn)| > ε with some tolerance ε > 0 before
dividing by f ′(xn). Using bracketing in some way would be a good idea, too, see
Section 9.4 in [3]. Textbook [3] suggests several hybrids of rapidly convergent but
unsafe algorithms with the safe but slow bisection method (see Sections 9.3, 9.4
and 9.7 in [3]).

• Yet another way of controlling the convergence in the Newton method is based on
the minimization of [f(x)]2, it will be discussed below, in 5.22.

• When the derivative f ′(xn) is evaluated inaccurately (which might happen by mis-
take or by design, see below), the Newton method may still converge but slow
down dramatically – the convergence is frequently reduced from quadratic to lin-
ear. There are many attempts in various applications to save on (often expensive)
computation of f ′(xn) and approximate the derivative somehow. It often pays off
but the resulting slowdown of convergence should be taken into account. A more
detailed account of this issue is given in [3].

• When the derivative f ′ is not available, it is rather tempting to approximate f ′(x)
by a finite difference scheme, such as

f ′(x) ≈ f(x1) − f(x2)

x1 − x2

for some x1 ≤ x ≤ x2, and then use the Newton method anyway. This is not
advisable. The resulting round off errors and/or truncation errors are usually too
big and spoil the entire process, see [3].

• If f ′(x) = 0 (which happens, for example, at the so called multiple roots of poly-
nomials), then the convergence of the Newton method is slow (most likely, linear).
In this case other, more specialized methods work better, but they are too special
to be included in our course.

27

• There are some instances when the convergence of the Newton method is guaranteed
theoretically – for example, when the function f(x) is convex, see Theorem 2 on
page 91 in [2]. Similar statements can be made about concave functions. If such a
guarantee is available, one does not need additional safety features and can rely on
the barebone Newton method – the fastest algorithm for solving equations.

As an exercise, state a theorem about the convergence of the Newton method for a func-
tion f(x) concave on an interval (a, b) (no need to provide a proof).

5.7 Exercises
Do problems 6 and 14 on pages 96–97 of [2].

5.8 Remark
The Newton method for solving equations is approximative by design. It finds a se-

quence of numbers xn that presumably converges to the root but normally never reaches
the root. One might think that exact solutions, when available, are more accurate nu-
merically. This is frequently wrong. To demonstrate the triumph of iterative methods
over exact formulas, we will solve a simple quadratic equation

x2 + px + q = 0

The following numerical experiment can be done on any PC. Let one of the roots be
x1 = 1/3 = 0.333 . . . and define the other root to be x2 = x1+d, where d is an exponential
random variable with mean µ. One can generate a value of d (we plan to discuss random
number generators later) and compute x2 = x1 + d. Then one computes the coefficients
p = −(x1 + x2) and q = x1x2. After that, one can solve the above equation by any
method and find the smaller root x1 (which is exactly equal to 1/3) numerically. Let us
compare three particular methods:

(E1) theoretically exact but numerically unstable formula (recall Example 3.9)

x =
−p −

√
p2 − 4q

2

(E2) theoretically exact and numerically stable formula (recall Example 3.9)

x =
2q

−p +
√

p2 − 4q

(NM) Newton method starting at the point x0 = x1 − d (a symmetric image of the other
root across the root x1) and making exactly 8 iterations (for simplicity).

The following table presents the average error (the average distance of the numerically
computed solution from the true value of x1 = 1/3) over 106 trials, for each of these three
methods, as µ increases:

28

µ E1 E2 NM

102 3 × 10−15 2 × 10−17 2 × 10−18

104 3 × 10−13 2 × 10−17 2 × 10−18

106 3 × 10−11 2 × 10−17 2 × 10−18

108 3 × 10−9 2 × 10−17 2 × 10−18

1010 3 × 10−7 2 × 10−17 2 × 10−18

One can see that the accuracy of the exact but unstable algorithm E1 deteriorates
steadily as µ → ∞. The exact stable solution E2 and the Newton method NM remain
very accurate. But the Newton method somehow happens to be 10 times more accurate
than the exact solution...

5.9 Secant method and false position method
Two more algorithms covered in many numerical courses are the secant method and

the false position method. See Section 3.3 in [2] and 9.2 in [3]. We only make a few
comments here:

• These methods do not require the derivative of f(x) but they somehow manage to
direct the search for a root along the slope of f . In that, they are simpler than the
“sophisticated” Newton method but more clever than the “dumb” bisection.

• These two methods neither converge as fast as the Newton method nor enjoy the
guaranteed linear convergence of the bisection method.

• When the secant method converges, the convergence is of order

α =
1 +

√
5

2
≈ 1.62

Since α > 1, the convergence is superlinear. But α < 2, so the convergence is slower
than quadratic. Therefore, in terms of speed, this method is somewhere between
the bisection and the Newton. The secant method, just like the Newton, is prone
to divergence and failures.

• The speed of convergence for the false position method cannot be estimated theo-
retically, its order may be anywhere between 1 and 2, i.e. between quadratic and
linear, depending on the particular function f . Moreover, when the convergence is
linear, it can be arbitrarily slow, i.e. it can be characterized by en+1 ≃ ρen with ρ
arbitrarily close to one. So the false position method may be even slower than the
bisection. When applying the false position, you never know if you are lucky to
converge fast or if it will take almost forever.

Overall, these two methods may occasionally provide good alternatives to the classical
Newton and bisection, but they have many limitations and pitfalls.

29

5.10 Exercise
Do problem 7 on page 105 of [2].

5.11 Fixed-point method
Here is probably the simplest and most naive method for solving equations. Suppose

we have an equation f(x) = 0. First, let us somehow transform it into the form x = g(x).
Then, starting at some point x0, we apply the iterative scheme xn+1 = g(xn).

Assuming that the sequence xn converges to some limit x∗ = lim xn, it is easy to see
that x∗ = g(x∗), provided g is continuous at x∗, hence x∗ is a solution of f(x) = 0. What
can be simpler?

5.12 Examples

(a) To solve a quadratic equation

x2 − 3x + 2 = 0 (3)

one can “split off” one x and rewrite it as x = x2 − 2x + 2, then use the iterative scheme
xn+1 = x2

n − 2xn + 2.

(b1) To solve a quadratic equation

2x2 + x − 1 = 0 (4)

one can separate x from the other terms as x = 1 − 2x2, then use the iterative scheme
xn+1 = 1 − 2x2

n.

(b2) Obviously, one can rewrite the same equation in many ways so that it takes form
x = g(x). The previous equation (4) can be written as x = (1 − 2x2 + x)/2, and then
one can use the iterative scheme xn+1 = (1− 2x2

n + xn)/2 to solve it. Thus, we now have
two schemes for solving the same equation. How do they compare? We will see below.

(b3) Yet another modification of the same equation (4) is x = (2x2 − 1 + 10x)/9, which
leads to the iterative scheme xn+1 = (2x2

n−1+10xn)/9. Is it any better than the previous
two? We will see below.

The crucial question here is: does a given fixed point scheme converge to the desired
root? The answer is given by the following theorem:

5.13 Fixed point theorem
Suppose x∗ is a fixed point of a function g, i.e. x∗ = g(x∗). Then:

(a) if |g′(x∗)| < 1, then x∗ is a stable fixed point. The iterative scheme xn+1 = g(xn)
converges to x∗ provided the initial guess x0 is close enough to x∗.

30

(b) if |g′(x∗)| > 1, then x∗ is an unstable fixed point. The iterative scheme xn+1 = g(xn)
never converges to x∗.

(c) if |g′(x∗)| = 1, then x∗ is a neutral point. The iterative scheme xn+1 = g(xn) may
or may not converge to x∗, depending on more subtle factors such as g′′(x∗).

There are other versions of this theorem based on contraction principle, see p. 108 of [2].

5.14 Remarks
If xn → x∗, the convergence is linear: |xn+1 − x∗| ≃ λ|xn − x∗| with λ = |f ′(x∗)|.

In one exceptional case, when f ′(x∗) = 0, the convergence is superlinear (most likely,
quadratic).

The moral of this theorem: one should rewrite a given equation f(x) = 0 as x = g(x)
in a clever way, so that g′ will be as small as possible at the desired root. At least, |g′|
must be less than one, so that the convergence will be possible at all.

5.15 Examples
In Example 5.12(a), one root is x = 1, and at that root g′ = 0, hence the convergence

to x = 1 is superlinear. The other root is x = 2 and there g′ = 2, so the point x = 2
is unstable. One can easily verify that the fixed point iterations converge to x = 1 from
any starting point x0 ∈ (0, 2). If x0 < 0 or x0 > 2, then the iterations diverge to infinity.

Equation (4) has roots x = −1 and x = 0.5. For the fixed point scheme in Example
5.12(b1), both roots are unstable, so there is no convergence to either root. In fact, when
the initial point x0 is chosen randomly in (−1, 1), then with probability one the sequence
xn will be dense in the interval (−1, 1) and will have a chaotic behavior. This fact is
known in the theory of dynamical systems and covered in MA 760.

However, equation (4) admits fixed point schemes that converge to its roots. The
scheme in 5.12(b2) converges to the root x = 0.5 (which is then stable), and the one in
5.12(b3) converges to the other root x = −1.

5.16 Exercise
Do problem 7 on page 113 of [2].

5.17 Systems of equations: generalities
We now turn to equations in several variables, expressed by f(x) = 0, where x ∈ IRn is

an independent vector and f : IRn → IRm a given map. One normally requires that m = n
(the number of equations equals the number of unknowns). For example, if m = n = 2,
one has a system of two equations with two unknowns.

First of all, there is a bad news for us. There is no analogue of the safest bisection
method, and no analogue of any kind of bracketing, see a discussion in 9.6 of [3]. Thus,
solving systems of equations may be a much more unpleasant and frustrating task than
solving one-variable equations. In many practical applications, one never feels safe and
never knows if a solution exists in a given domain or not. No algorithm can guarantee

31

that a root will be found. There are not many algorithms available to us in any case.
Essentially, there are two general methods at our disposal: the fixed point method and
the Newton method.

5.18 Fixed point method in several variables
Given an equation f(x) = 0 with m = n, one may rewrite it as x = g(x) with some

g : IRn → IRn and then apply the iterative procedure xk+1 = g(xk).
This is simple, naive, but way too often used in practice...

5.19 Fixed point theorem in several variables
There is an analogue of Theorem 5.13 in several variables. However, its full version

is very complicated, we only sketch here its main clauses. Let x∗ be a fixed point of a
function g, i.e. x∗ = g(x∗). Let D = Dg(x∗) be the derivative of g at the fixed point x∗

(note: D is the n × n matrix of partial derivatives of all components of g with respect
to all components of x). Let λ1, . . . , λn be all the eigenvalues of the matrix D.

(a) if |λi| < 1 for all i, then x∗ is a stable fixed point. The iterative scheme xk+1 = g(xk)
converges to x∗ provided x0 is chosen close enough to x∗.

(b) if |λi| > 1 for all i, then x∗ is an unstable fixed point. The iterative scheme
xk+1 = g(xk) never converges to x∗.

(c) if |λi| > 1 for some i and |λi| > 1 for other i, then x∗ is a saddle point. The
iterative scheme xk+1 = g(xk) does not converge to x∗, unless it starts in a special
submanifold of IRn that is attracted to x∗. This is very unlikely, and in a sense the
probability of convergence is zero.

(d) If |λi| = 1 for all i, then x∗ is a neutral point. The iterative scheme xk+1 = g(xk)
may or may not converge to x∗, depending on more subtle factors such as the second
derivative of g at x∗.

Here we only listed principal cases, some other combinations of these cases may occur.

5.20 Practical remarks
The criteria of convergence listed in Theorem 5.19 are impractical, their verification

is often out of the question (computing the eigenvalues of D is usually even more difficult
than solving the equation itself). Therefore, one has to design a fixed point method
intuitively, by trial and error method. The only reliable criterion of convergence is ex-
perimental testing.

5.21 Newton method in several variables
This method is more frequently called Newton-Raphson method. It is based on the

iteration scheme
xk+1 = xk − [Df(xk)]

−1f(xk)

32

see a detailed description on pages 91–94 of [2] and in Section 9.6 of [3]. We only
emphasize a few crucial points here:

• Practically, at each iteration one solves a system of linear equations

[Df(xk)]pk = f(xk)

and then updates the approximation by xk+1 = xk − pk. Solving this system
is usually done by the simplest method – Gaussian elimination (also called LU
decomposition). There is no need to compute the inverse of the matrix Df(xk).

• One stops iterations whenever one of the three conditions holds: (the norm of) the
function ‖f(xk)‖ is small, or (the norm of) the update ‖hk‖ is small, or the number
of iterations exceeds a predefined limit. The choice of the norm is up to the user.
One of the best choices is the 1-norm, i.e. ‖f‖ =

∑n
i=1 |fi|.

• The convergence is, generally, quadratic. Precisely, it is quadratic if the matrix
Df(x) is nonsingular.

• The Newton method requires an initial guess x0 supplied by the user, and the
performance of the method is usually very sensitive to the choice of x0, recall our
discussion in 5.6.

• When the derivative of f is evaluated inaccurately, the Newton method may still
converge but slows down.

• When the derivative Df is not available, it is tempting to approximate it by some
finite difference schemes, but this is not advisable. The resulting round off errors
and/or truncation errors are usually too big and spoil the entire process, see [3].

5.22 Improving the Newton method by an ad-hoc control
The Newton method is powerful but sometimes “too powerful”. It has an unfortunate

tendency to “overshoot” – see illustrations in 9.4 of [3]. Since there is no bracketing in
several variables, one has to use another way to control the Newton procedure and redirect
it if it overshoots.

One such idea of an ad-hoc control is to require the norm of the function f decrease
at every iteration. Let

h =
1

2
‖f‖2 =

1

2
f · f

(the 1/2 is put for convenience) be the half 2-norm of the function f . As long as the
Newton iterations make h decrease, i.e. h(xk+1) < h(xk), they are accepted. However, if
h(xk+1) ≥ h(xk) for some k, then the point xk+1 is rejected, and some other rule is used
instead to recompute xk+1.

5.23 Backtracking

33

What exactly do we do if a point xk+1 is rejected? In most cases, this happens when
xk+1 lands too far beyond the root. In this case one should attempt to “step back”
somewhat.

Let us restrict the function f to the line from the current point xk to the next at-
tempted point xk+1. Denote by p = xk+1−xk the corresponding vector and consider the
function

g(λ) = h(xk + λp)

Note that g(0) = h(xk) and g(1) = h(xk+1), and since the point xk+1 was rejected, we
have g(1) > g(0). All we want is find a 0 < λ < 1 such that g(λ) < g(0).

This procedure is called the Newton method with backtracking.
Until the early 1970s, standard practice was to minimize g(λ) by using some general

methods (we will learn some of them later). But those methods are often computation-
ally expensive. In this case they are just wasteful, since the precise minimization of g(λ)
gives very little advantage (remember, we will have to resume the Newton method from
the new point xk +λp anyway). There are simpler and faster ways to find some λ ∈ (0, 1)
such that g(λ) < g(0).

5.24 A fast line search
Here is one such way, see Section 9.7 in [3]. It is easy to see that

g′(0) = ∇h · p < 0

Therefore, if λ is small enough, then g(λ) < g(0). But at the same time we do not want
λ to be too small, since then the improvement would be too little.

A reasonable strategy is this. One uses the available values of g(0), g(1) and the
derivative g′(0) to approximate the function g by a quadratic polynomial q(λ) such that
q(0) = g(0), q(1) = g(1) and q′(0) = g′(0) (such a polynomial is unique, by the way).
The minimum of q(λ) can be easily found, we call it λ1. Note that since q(1) > q(0), we
have 0 < λ1 < 0.5.

It can happen again that g(λ1) > g(0). Then one proceeds similarly, approximating
g by a quadratic or cubic polynomial on the smaller interval (0, λ1) and minimizing that
polynomial, until one finds λ such that g(λ) < g(0). See details in 9.7 of [3].

5.25 Remarks
This additional control makes the Newton method safer and more stable. In fact,

the method is forced to decrease the function h, hence it can no longer wander off or
jump back and forth periodically. Does this enforce convergence to a root of the given
equation? Not quite. The method actually tries to minimize the function h, and it
may converge to a local minimum of h. The book [3] claims that this is quite rare in
practice, though, and suggests that if this does happen, one should simply restart the
Newton method with a new initial point x0. The book calls the Newton method with
backtracking, somewhat ambitiously, a globally convergent method for nonlinear systems
of equations.

34

6 Minimization of Functions

6.1 Introduction
In the end of the previous chapter (Sections 5.22–5.25), we have seen an instance of

the so called minimization problem: given a function F : IRn → IR, one wants to find its
minimum Fmin and the point (or points) where F attains its minimum:

xmin := argminF (x)

Alternatively, one may want to maximize a function F , i.e. find its maximum and the
point (or points) where the maximum is attained:

xmax := argmaxF (x)

Of course, by simply changing F to −F one can convert the maximization of F to
the minimization of −F , and vice versa. So it is enough to discuss one of these two
(essentially, equivalent) problems, and it is customary to restrict the discussion to the
minimization problem.

In applications, one often minimizes losses, expenses, cost, labor, etc.. One also
maximizes profit, output, production, etc. This class of practical problems is referred
to as optimization. Mathematically, this means the minimization or maximization of a
certain function F , which is called the objective function or cost function.

In what follows, we restrict the discussion to the minimization problem.

6.2 General remarks
Not all functions have minima. In order to have a minimum, the function F must

be at least bounded below, i.e. F (x) ≥ c for some c ∈ IR and all x. In that case F ,
at least, has an infimum, but not necessarily a minimum. For example, the function
F (x) = (1 + x2)−1 has inf F = 0, but it does not have a minimum. That is, for every x
there is another x′ such that F (x′) < F (x). (This sounds all too trivial... until you run
into such a function practically. Suppose your boss wants you to minimize this function
for an applied problem, where you have to produce numerical values of Fmin and xmin,
which are at least approximately correct; you obviously conclude that Fmin should be set
to 0, but which point would you present as an approximation to xmin?)

Now we assume that a function F has a minimum Fmin. In many applications, it is
not the value of Fmin, but rather the point xmin = argmin F (x), which is of practical
interest. Such a point exists, but may not be unique. The function F may attain its
minimum at more than one point, for example, the function y = cos x has a minimum
ymin = −1 attained at points xmin = π + 2kπ, k = 0,±1,±2, In this case we have
so called multiple minima. Often any of them would give a satisfactory solution to a
practical problem, but some confusion may arise.

Now assume, for simplicity, that F has a unique minimum, i.e. there is a unique
point xmin = argmin F (x). How do we find it? It may happen that there are other

35

points x′ 6= xmin where the function F has local or relative minima (as opposed to the
global or absolute minimum at xmin). Local minima may not be what we want to find,
our objective is presumably the global minimum. But many numerical algorithms work
“locally”, examining values of the function F at selected points and their neighbors, as
we will see below. Hence, numerical algorithms are very likely to find a local minimum of
the objective function, but not necessarily a global one. See an illustration in Section 10.0
of [3]. There is, generally, no way a numerical algorithm can “see the entire function”
F (x), so it has no way of distinguishing a local minimum from a global one. Some
recent algorithms attempt to do just that, see Simulated Annealing in Section 10.9 of
[3], but they are quite complicated and slow (besides, they may also converge to a local
minimum).

Most of the minimization algorithms are, therefore, designed to find a local minimum
of the objective function. If this is not satisfactory in a particular application, some extra
work needs to be done to find a global minimum, but this is usually not the responsibility
of the algorithm per se. We will only discuss here algorithms that aim at finding a local
minimum of a given function.

6.3 Warning
We have outlined several difficulties that may arise in a minimization problem. Now

we give a mild warning. One might suggest a purely “numerical” (and unfortunately,
almost useless) solution to a minimization problem as follows. A function F (x) has
its “computer implementation” F̃ (x), see the beginning of Section 3. The “numerical
version” F̃ of the function F is defined on machine numbers and produces machine
numbers. So, it has a finite domain and a finite range! Therefore, it always has a
minimum. And one may now attempt to find that minimum F̃min and the machine
number

x̃min = argmin F̃

at which it is attained. This is a bad idea. First of all, the amount of computations
needed to find F̃min and x̃min is prohibitively high. Besides, that minimum is not what
we want. We want a good approximation to an actual (global or local) minimum point
xmin. Such an approximation can be found much faster than F̃min and x̃min. Our first
question is this: when we say “good approximation”, then how good is good?

6.4 Stopping Rule
It is common to assume that the function F (x) is smooth, and hence its first derivative

(gradient) vanishes at a local minimum xmin. Therefore, it has a quadratic behavior

F (xmin + dx) = F (xmin) + O(‖dx‖2)

Since the function cannot be possibly computed more accurately than to within εmachine,
the argument xmin cannot be estimated more accurately than to within O(

√
εmachine). It is

then common to adopt the following stopping rule for iterative minimization algorithms:

36

one stops iterations {xn} once

‖xn+1 − xn‖ ≤ εtolerance ≈ O(
√

εmachine) (5)

The book [3] recommends to set the value of εtolerance to 10−4 in single precision and
3 × 10−8 in double precision. These requirements are significantly lower than those we
imposed in Chapter 5 when solving equations. But there is no need to make the rule (5)
more stringent – it is dictated by the smoothness considerations.

We now consider a one-variable minimization problem: minimize a function F : IR →
IR.

6.5 Golden section
It is remarkable that the one-variable minimization problem admits bracketing of the

minimum of F , similar to the bracketing of a root in Section 5.4. One needs three points
a < b < c such that F (b) < F (a) and F (b) < F (c). If such points are found, there is
a local minimum of F between a and b, as one can easily see. This simple fact can be
used to restrict the search to the interval (a, c) and somehow narrow it down to pinpoint
the local minimum. (In a way similar to the bisection algorithm for solving equations
described in Section 5.5.)

In fact, there exists an analogue of the bisection method, which is called the golden
section algorithm. It is described in 10.1 of [3]. We only make a few comments here:

• The method converges linearly. More precisely, if xn is the n-th approximation
to the minimum xmin found by this method, then |xn − xmin| ≤ Cλn, where λ =
(
√

5−1)/2 ≈ 0.618 and C > 0 is the length of the initial interval c−a bracketing the
minimum. This convergence is a little slower than the convergence of the bisection
method, where we had |xn − x∗| ≤ Cλn with λ = 0.5. On the other hand, our
stopping rule (5) is less restrictive than the stopping rule used in solving equations.
Generally, we need about 20 iterations in single precision and 40–45 iterations in
double precision to estimate a local minimum.

• The golden section method is absolutely stable and reliable. It cannot possibly fail,
and it will always produce a local minimum of F in due course.

Below we mention some modifications of the golden section designed to speed up the
convergence.

6.6 Brent method
This is a rather complicated and tricky algorithm based on the golden section and

the idea of the secant method mentioned in Section 5.9. It is described in Section 10.2
of [3]. Its convergence is linear in worse cases and superlinear in better cases.

6.7 One-dimensional search with first derivatives

37

The golden section method and Brent method do not require the evaluation of the
function’s derivative. However, if we can evaluate it, we may want to use it to our ad-
vantage and improve the convergence. A particular algorithm of this sort is described in
Section 10.3 of [3]. Its convergence again varies between linear and superlinear.

6.8 The Newton method
Another powerful method can be used if the second derivative of the objective function

F is available. Then one can find the minimum by Newton’s iterations

xn+1 = xn − F ′(xn)/F ′′(xn) (6)

This is a classical Newton algorithm for minimizing smooth functions. Many remarks
we made about the Newton method in Section 5.6 apply also to (6). In particular, the
convergence is quadratic if the initial guess is chosen closely enough to a local minimum
of F . We make additional important remarks here:

6.9 Remarks
Newton’s method (6) is actually designed to solve the equation F ′(x) = 0 rather than

find a local minimum of F . Thus, it is just as likely to converge to a local maximum
or a saddle point. More precisely, if F ′′ > 0, the iterations approach a local minimum,
but if F ′′ < 0 they move toward a local maximum. Indeed, note that the Newton
method is based on the approximation of the function F by a quadratic polynomial
P (x) = ax2 + bx + c that agrees with F at the point xn up to the second derivative, i.e.
such that P (xn) = F (xn), P ′(xn) = F ′(xn), and P ′′(xn) = F ′′(xn) (in this case one says
that the parabola y = ax2 + bx + c is an osculating curve to the function y = F (x)).
Then xn+1 is simply the vertex (extremum) of the polynomial P (x). Now, it is easy to
check that xn+1 is the minimum of P when F ′′(xn) > 0 and the maximum of P when
F ′′(xn) < 0. Therefore, the Newton method logically leads to a local minimum of F
when F ′′(xn) > 0 and to a local maximum of F when F ′′(xn) < 0.

6.10 An ad-hoc control
In 5.22 we discussed an ad-hoc control improving the behavior of the Newton method

for solving equations. We now adapt it to the minimization problem. The control is
based on the following ideas:

First of all, we see that the condition F ′′(xn) > 0 is essential for convergence to a min-
imum and should be enforced. Second, we will require that the values of F decrease from
iteration to iteration. That is, a Newton step should be accepted if F (xn+1) < F (xn)
and rejected otherwise. In the case of rejection, one needs to reduce the step, i.e. move
xn+1 closer to xn. This is equivalent to increasing F ′′(xn) in (6).

6.11 A scheme for improving the Newton method
The following practical algorithm combines the principles outlined above. It uses an

38

additional (control) parameter λ > 0. The Newton step (6) is redefined to be

xn+1 = xn − F ′(xn)

F ′′(xn) + λ
(7)

It is accepted under two conditions:

F ′′(xn) + λ > 0 and F (xn+1) < F (xn) (8)

If either one fails, we reject xn+1, increase λ (say, by multiplying it by a large constant
factor, such as 10) and recompute xn+1. We keep increasing λ until the above two
conditions hold. This is bound to happen since for very large λ we will be making a tiny
step in the direction where F (x) decreases.

When both conditions (8) hold, we accept the new approximation xn+1 and decrease
λ (by multiplying it by a small constant factor, such as 0.1 or even 0.01). Then we
proceed to the next iteration.

Note that when the iterations xn are far from a local minimum, the algorithm (7) is
forced to make smaller steps in the direction where F decreases (this prevents aimless
wandering so characteristic of the classical Newton method (6)). Once the iterations xn

get close enough to a local minimum, λ will rapidly decrease and the algorithm will speed
up to the minimum at a quadratic speed.

Now we discuss the multivariate minimization problem of minimizing a function
F : IRd → IR, where d ≥ 2.

6.12 The Newton method in several variables
The Newton method 6.8 and its improvement 6.11 extend to multivariate functions

almost without changes. We only highlight the differences here. The derivative F ′ is now
replaced by the gradient vector ∇F = (∂F/∂x1, . . . , ∂F/∂xd), and the second derivative
F ′′ is replaced by a d × d matrix (called the Hessian matrix)

H =

(

∂2F

∂xi∂xj

)

, 1 ≤ i, j ≤ d

The Newton step is expressed by

xn+1 = xn − [H(xn)]−1 ∇F (xn)

Note: in practice, we do not need to invert the Hessian matrix, but rather solve the
system of linear equations H(xn)u = ∇F (xn) for u. Since the Hessian matrix H(xn) is
symmetric (and should also be positive definite, see below), we can apply fast and stable
routines such as Cholesky decomposition to solve this system and find u.

An improvement of the Newton method uses an additional control parameter λ > 0.
The modified Newton step now looks like

xn+1 = xn − [H(xn) + λI]−1 ∇F (xn) (9)

39

where I is the identity matrix. We accept xn+1 if

F (xn+1) < F (xn) and H(xn) + λI > 0

where the last inequality means that the matrix H(xn) + λI is positive definite.
We note that as λ increases, the displacement vector xn+1 − xn not only shrinks but

also aligns in the direction opposite to the gradient vector ∇F (xn). This guarantees that
for sufficiently large λ we have F (xn+1) < F (xn). In other aspects, the method described
in 6.9–6.11 remains unchanged in any dimension.

The above scheme (9) using the control parameter λ is known as Levenberg-Marquardt
correction to the Newton method.

6.13 Steepest descent
Another method for minimizing functions of several variables is called the steepest

descent. Here one takes a current approximation xn and restricts the function F to the
line passing through xn in the direction of to the gradient vector ∇F (xn). One gets a
one variable function

f(η) = F (xn − η∇F (xn))

where η > 0 is a new variable (compare this to Section 5.23). Then one finds the
minimum of f(η) by using any of the one-dimensional search schemes (e.g., the golden
section, or Brent method, or others) and takes the point xn+1 = xn − η∇F (xn) as the
next approximation.

This method is very old and known to be quite slow. Not only it requires expensive
minimization of a one variable function at every iteration, but also the number of itera-
tions is very likely to be quite high in typical cases, see an illustration in Section 10.5 of
[3]. This method is therefore not recommended in most cases.

6.14 Final remarks
Two more minimization algorithms, the simplex method and the simulated annealing,

are not discussed in these notes. They are assigned as independent projects and will be
presented in class by the students who select them.

We have now covered the basics of numerical analysis, except matrix computations,
which are the subject of Applied Linear Algebra MA 660.

Next we move to applications of mathematics in real world. Two major areas where
mathematics is traditionally (and extensively) applied to practical problems (in science,
industry, business, medicine, etc.) are these:

• Modelling by differential equations and numerical solutions of such equations.

• Probabilistic modelling and using statistical methods to process experimental data.

In the next chapter we describe some statistical applications.

40

7 Statistical Data Processing

For those who are not familiar with statistics, the following toy example demonstrates
its basic principles. (We assume, however, some knowledge of probability theory.)

7.1 A toy example
Suppose a few people are polled before an election day on their political affiliation.

The results of the poll are recorded by a sequence

D R R D R R D R

where D stands for democrats and R for republicans. What can one conclude? Is there
anything a mathematician can do with these experimental data?

First, we set up a probabilistic model. Assume that there is a large pool of voters,
each supporting either democrats or republicans. This is our probability space. It is
divided into two subsets (events), D and R. Denote the proportion of voters supporting
democrats (the probability of D) by p and the proportion of voters supporting republicans
(the probability of R) by q = 1−p. Next, assume that our eight persons have been selected
randomly and independently for the poll. In other words, an independent sample of n = 8
points is taken from the probability space (one says that the sample has size 8). Each
point may belong to D with probability p or to R with probability q. The probability of
the entire sequence recorded in the poll is thus pqqpqqpq = p3q5 = p3(1 − p)5.

Of course, p is unknown, so the probability L = p3(1−p)5 is a function of the unknown
parameter p. It is called the likelihood function.

In statistics, one tries to estimate (predict) the unknown parameter(s). This can be
done, for example, by maximizing the likelihood function. Such a method is called the
maximum likelihood estimation (MLE).

In our toy example, L has a unique maximum. To find it, we take logarithm of L

ln L = 3 ln p + 5 ln(1 − p)

then the maximum of L is found by a simple calculation

d lnL

dp
=

3

p
− 5

1 − p
= 0

Solving this equation gives p = 3/8. This is an estimate of the unknown parameter p
found from the available experimental data. To distinguish an estimate of p from the
true (and still unknown) value of p, the estimate is denoted by p̂, so in our case p̂ = 3/8.

7.2 Analysis of our toy example
Several important observations should be made at this point:

• The likelihood function L only depends on the number of D’s and the number
of R’s. The order in which D’s and R’s were observed in the poll is irrelevant.

41

Furthermore, it is enough to know the number of D’s (call it nD), then the number
of R’s can be easily computed by n − nD, where n = 8 is the size of the sample.
Hence one can simplify the recording of experimental data: there is no need for
keeping track of the entire sequence of D’s and R’s, it is enough to record the
number of D’s alone. Such a number is called a sufficient statistic.

• The likelihood function L depends on the unknown parameter(s). The point in the
parameter domain where L is maximized is called the maximum likelihood estimate
(MLE). In almost all practical applications, the MLE is the best possible estimate
of the unknown parameters, see below.

• For the practical maximization of L, it is often convenient to take its logarithm
first, and then differentiate with respect to the parameter(s).

7.3 A more serious example
Suppose one has several experimentally obtained real numbers x1, x2, . . . , xn repre-

senting some random quantity. What can one conclude?
Again, we need to set up a probabilistic model. Usually, the numbers x1, . . . , xn are

obtained from the same experiment that was repeated n times. Then x1, . . . , xn are values
of a random variable obtained independently. If the random variable has density function
fθ(x), where θ ∈ IRk is a parameter (vector), then the joint density function of our n
values x1, . . . , xn is L(θ) = fθ(x1)fθ(x2) · · ·fθ(xn). Again, this is called the likelihood
function corresponding to the given sample x1, . . . , xn.

[A remark on terminology: In probability theory, fθ(x1) · · ·fθ(xn) is called a joint
probability density function. It depends on x1, . . . , xn, while θ is not regarded as its
argument. In statistics, x1, . . . , xn are known (from experiment), and θ is a primary goal,
so the same function now depends on θ only and goes by a different name – the likelihood
function.]

Next, in most cases of statistical analysis, the probability distribution is assumed
to be normal (gaussian). Probability theory provides a basis for this assumption – the
central limit theorem. Later we discuss some other distributions.

Assuming that x1, . . . , xn are normal random variables with mean µ and variance σ2

(these are our parameters) gives

L(µ, σ2) =
(

1

2πσ2

)n/2

exp

[

−
∑

(xi − µ)2

2σ2

]

Taking logarithm gives

ln L = −n

2
ln(2πσ2) −

∑

(xi − µ)2

2σ2

It is convenient to modify this expression by noticing that

∑

(xi − µ)2 =
∑

x2
i − 2µ

∑

xi + nµ2

42

The values M1 =
∑

xi and M2 =
∑

x2
i are called the first and second moments of the

data sample, respectively. Then we obtain

ln L = −n

2
ln(2πσ2) − M2 − 2µM1 + nµ2

2σ2

Since the likelihood function L only depends on M1 and M2, they are our sufficient
statistics. We no longer need to know the entire sample x1, . . . , xn, it is enough to
store the two moments M1 and M2. [Furthermore, these moments can be conveniently
computed “on-line”, as the data arrives: after receiving an experimental number xi one
updates the moments by the obvious rules M1 = M1 + xi and M2 = M2 + x2

i , and then
xi can be discarded (erased from the computer memory).]

The unknown parameters µ and σ2 can be estimated by maximizing the likelihood
function. A direct calculation gives

µ̂ =
M1

n
=

1

n

∑

xi

and

σ̂2 =
M2

n
−
(

M1

n

)2

=
1

n

∑

(xi − µ̂)2

7.4 Remark
One can estimate unknown parameters in many different ways. For example, µ can

be estimated by any of these formulas:

µ̂1 =
x1 + x2

2
, µ̂2 =

xmax + xmin

2
, µ̂3 = xmed, µ̂4 = x100

1 − x3
2

here xmed is the median of the sample. One may argue that the first three formulas make
some sense, while the last one is completely ridiculous. Generally, however, any function
g(x1, . . . , xn) may be called an estimate of an unknown parameter, see next.

7.5 Definition (Estimate)
If x1, . . . , xn is a sample from a random variable whose distribution depends on an

unknown parameter θ ∈ IRk, then any function IRn → IRk is called an estimate of θ based
on x1, . . . , xn.

7.6 Remarks
With such a general definition, of course, we need some ways to assess the quality

of an estimate and compare various estimates, since some of them are definitely better
than others. We first emphasize that an estimate θ̂ is a function of random numbers
x1, . . . , xn, hence it is a random variable itself. As such, it has mean value and variance.
The mean values of the estimates µ̂ and σ̂2 in Example 7.3 can be easily computed (we
leave this as an exercise):

E(µ̂) = µ, E(σ̂2) =
n − 1

n
σ2

43

This means that, on the average, our estimate µ̂ coincides with µ, and our estimate σ̂2

differs from σ2 by a small relative error 1/n.

7.7 Definition (Unbiased estimates)
An estimate θ̂ of an unknown parameter θ is said to be unbiased if E(θ̂) = θ. If an

estimate is biased, then the difference E(θ̂) − θ is called the bias of θ̂.

7.8 Remarks
The estimate µ̂ is unbiased. So is µ̂1 in 7.4. The estimates µ̂2 and µ̂3 are also unbiased

for the normal random variables of 7.3.
The estimate σ̂2 is biased, but one can make it unbiased by a slight modification. Let

σ̂2 =
M2

n − 1
− M2

1

n(n − 1)
=

1

n − 1

∑

(xi − µ̂)2

This estimate does not maximize the likelihood function L, but it is unbiased. Most
experimenters prefer the unbiased version of σ̂2 to the maximum likelihood version. In
statistics, µ̂ is called the sample mean and the unbiased version of σ̂2 is called the sample
variance.

7.9 Definition (Variance of estimates)
The accuracy of an estimate θ̂ can be measured by the mean square error

Q(θ̂) = E[(θ̂ − θ)2]

It is easy to derive (we leave this as an exercise) that

Q(θ̂) = Var(θ̂) + [Bias(θ̂)]2

The mean square error, therefore, is made up by the variance and the squared bias of θ̂.
The variance of θ̂ characterizes random (statistical) errors, while the bias constitutes a
systematic error.

In most applications, the bias is relatively easy to eliminate. Often unbiased estimates
are available, and if not, one can make the bias much smaller than typical statistical

errors, i.e. ensure that |Bias(θ̂) | ≪ σθ̂ =
√

Var(θ̂). Therefore, for such estimates

Q(θ̂) ≈ Var(θ̂)

Best estimates have smaller variances. Optimal estimates have minimum variance.

7.10 Theorem (Rao-Cramer lower bound)
It turns out, that the minimal variance of an estimate can be found exactly in each

problem. Given a density function fθ(x), there is a precise formula for the minimum

44

variance of estimates θ̂ (assuming that those estimates are unbiased). This formula is
known as Rao-Cramer lower bound:

Var(θ̂) ≥ 1

n
∫

[∂ ln fθ(x)/∂θ]2fθ(x) dx

=
−1

n
∫

[∂2 ln fθ(x)/∂θ2]fθ(x) dx

The integrals, of course, are taken over IR. (Miraculously, these two integrals are negative
of each other, this is why the above two fractions are equal.)

If θ̂ is biased but its bias is small enough (in the sense |Bias(θ̂) | ≪ σθ̂), then the
above bound is valid approximately.

7.11 Remarks

(a) The two integrals in the respective denominators of 7.10 are the expectations

E

[

∂ ln fθ(x)

∂θ

]2

and E

[

−∂2 ln fθ(x)

∂θ2

]

sometimes one is easier to compute than the other.

(b) While we stated the Rao-Cramer lower bound for continuous random variables, it
is also valid for discrete distributions with summations replacing integrations.

(c) When θ ∈ IRk is a parameter vector, i.e. k ≥ 2, then the integrands in 7.10 become
k×k matrices. Precisely, the square of the first partial derivative [∂ ln fθ(x)/∂θ]2 is
replaced by the outer (tensor) product of the gradient vector with itself, ∇θfθ(x)⊗
∇θfθ(x). The second partial derivative ∂2 ln fθ(x)/∂θ2 is replaced by the Hessian
matrix of fθ(x). Taking the reciprocals in 7.10 is replaced by taking the inverses of
the corresponding matrices.

(d) For large n, the Rao-Cramer bound is O(1/n), hence the average errors of good
estimates are of order 1/

√
n. This is expressed in a “rule of thumb” popular in

practice: n experimental data render statistical estimates accurate to within 1/
√

n.
For example, a sample of size n = 100 may give one accurate digit, then a sample
of size n = 10, 000 would give two digits, etc. To obtain one additional digit we
need to increase n by a factor of 100.

7.12 Definition (Statistical efficiency)
In many problems, an estimate whose variance attains the Rao-Cramer lower bound

can be computed. Such estimates are said to be statistically efficient or statistically op-
timal. The above estimate of µ, see 7.3, is statistically efficient.

45

7.13 Exercise
Compute the variance of µ̂ in 7.3.

7.14 Exercise
Compute the Rao-Cramer lower bounds for µ̂ and σ̂2 in Problem 7.3. (Note: when

differentiating the density function, treat σ2 as a parameter, not σ. Hint: the corre-
sponding matrix, after integration, must be diagonal.) Compare the variance of µ̂ with
its lower bound (Hint: they must be equal).

7.15 Definition (Asymptotic efficiency)
In many cases, the efficiency can only be achieved asymptotically, as n → ∞. An

estimate θ̂ is said to be asymptotically efficient if its variance satisfies

lim inf
n→∞

[n Var(θ̂)] =
1

∫

[∂ ln fθ(x)/∂θ]2fθ(x) dx

=
−1

∫

[∂2 ln fθ(x)/∂θ2]fθ(x) dx

The estimates of σ2 introduced in 7.3 and 7.8 are (both) asymptotically efficient, see next.

7.16 Exercise
Compute the variances of the estimates σ̂2 discussed in 7.3 and 7.8.
This is a lengthy exercise and can be done is several steps:

(a) Consider a more general estimate

σ̂2 = C
∑

(xi − µ̂)2 = C(M2 − M2
1 /n)

with some C = C(n). Note that C = 1/n and C = 1/(n − 1) for the particular
estimates introduced in 7.3 and 7.8.

(b) Show that

σ̂2 = C





n − 1

n

∑

x2
i −

1

n

∑

i6=j

xixj





(c) Verify that so defined σ̂2 is invariant under the shift of data, i.e. it remains un-
changed if all xi are replaced by xi + b with a constant b. Hence we can replace xi

by xi − µ, and so effectively assume that µ = 0.

(d) Compute E(σ̂2).

(e) Show that

[σ̂2]2 = C2





(n − 1)2

n2

∑

x4
i +

n2 − 2n + 3

n2

∑

i6=j

x2
i x

2
j + · · ·





46

where the terms not shown involve products of xi’s with odd degrees, hence with
zero mean.

(e) Compute E[σ̂2]2. Recall that E(x4
i) = 3σ4.

(f) Compute Var(σ̂2).

7.17 Exercise
Compute the accuracy of σ̂2 introduced in 7.16 (a) by using the definition 7.9. Show

that the biased version of σ̂2 introduced in 7.3 is more accurate than the unbiased ver-
sion found in 7.8. Find the value of C for which the corresponding estimate is the most
accurate.

7.18 Theorem (Efficiency of MLE estimates)
Under very general conditions, maximum likelihood estimates are asymptotically effi-

cient. We refer to statistical textbooks for precise statements. This well known theorem
is the main reason for the wide popularity of MLE in practical problems.

7.19 Exercise
Sometimes MLE’s take quite an unexpected form. Let x1, . . . , xn be sampled from

a uniform distribution on an unknown interval (a, b). Estimates a and b by maximizing
the likelihood function.

7.20 Weighted averages
Let us modify Example 7.3 slightly. Assume now that for each i = 1, . . . , n the

value xi is normal N(µ, diσ
2), where µ and σ2 are unknown parameters, and di are

some known factors. This happens, for example, when the x1, . . . , xn are experimental
measurements made with different precision (by different tools/guages). One may know
relative accuracies of those measurements, i.e. Var(xi)/Var(xj). In this case, as one can
easily compute, the MLE of µ is

µ̂ =

∑

wixi
∑

wi
, wi =

1

di

So µ̂ is a weighted average of xi’s, with weights given by wi = 1/di. Weighted averages
are used in many practical applications, see below.

7.21 MLE of a mean value for an arbitrary distribution.
Here we generalize 7.3 further. Assume that x1, . . . , xn have an arbitrary distribution

with an unknown mean value. Precisely, let the density function be f(x−µ), where f(x)
is a fixed density function satisfying

∫

xf(x) dx = 0, so that the mean value of each xi is
indeed µ. Here µ will be the only unknown parameter. Then the likelihood function is

L(µ) = f(x1 − µ) · · ·f(xn − µ)

47

Taking logarithm and differentiating with respect to µ shows that the MLE satisfies the
equation

∑

−f ′(xi − µ)

f(xi − µ)
= 0 (10)

Generally, there is no obvious ways of solving this equation for µ. However, one trick is
very common in practice. One rewrites the above equation as

∑

− f ′(xi − µ)

(xi − µ) f(xi − µ)
(xi − µ) = 0

and then obtains

µ =

∑

wixi
∑

wi
, wi = − f ′(xi − µ)

(xi − µ) f(xi − µ)
(11)

This gives µ as a weighted average of xi’s (we retain the negative sign here to make
the weights positive, at least for any unimodal function f). Of course, our “weights” wi

depend on µ itself, so this is not really a “solution”. However, this suggests a fixed-point
scheme for a numerical solution of (10), recall our 5.11–5.15.

When implementing the fixed-point method, one needs an initial guess µ0. Then one
computes wi’s by using µ0, and then finds µ1 by the weighted average formula (11). Next
one recomputes wi’s by using µ1 and finds µ2 as the weighted average. Since the weights
are recomputed at every iterations, such an algorithm is referred to as reweight procedure.
It is a common method for computing the MLE of a mean value in many applications.

7.22 Exercise
Show that wi = const in (11) if and only if f is a normal density. Therefore, the

classical sample mean is only appropriate for normal random variables.

7.23 Example: A contaminated sample
In some applications, a sample x1, . . . , xn from a normal distribution N(µ, σ2) is

contaminated by “noise”. That is, most xi’s are indeed sampled from N(µ, σ2), but a
few come from a very different distribution, usually with a variance much larger than
σ2. We call them noisy observations. In many cases, those can be seen graphically as
points lying far from the bulk of the sample, such points are also called outliers. There
is, however, no a priory rule for detection and removal of all noisy observation.

The model of a contaminated sample is a mixture of two densities: a normal N(µ, σ2)
density f(x) (the main part) and another density h(x) (the background noise):

g(x) = pf(x) + qh(x) (12)

where p+q = 1. Here p and q represent proportions of “good” and “bad” observations in
the sample (note that p/q is called the signal-to-noise ratio). The “noisy” density h(x)
can be also normal N(µ1, σ

2
1) with some σ1 ≫ σ. Alternatively, h(x) may be a uniform

density
h(x) = 1/L for a < x < a + L

48

and we assume that a < µ < a + L and σ ≪ L. We are interested in estimating µ, and
for simplicity regard σ2, a, L, p and q as known quantities. A typical example: p = 0.9,
q = 0.1, a = 0, L = 100, σ = 2.

The density (12) resembles a gaussian bell-shaped curve, but unlike the normal den-
sity, it has heavy tails.

The MLE of µ can be found by the reweight procedure described in 7.21, with the
weights wi given by the formula (11):

wi = − g′(xi − µ)

(xi − µ) g(xi − µ)
=

1

σ2

pf(xi − µ)

pf(xi − µ) + qh(xi − µ)

(the constant factor 1/σ2 is, of course, irrelevant and can be removed). It is not hard to
plot wi as a function of xi (by using MAPLE, for instance). It is a unimodal function
with a maximum at xi = µ, it is almost symmetric about xi = µ, and it practically
vanishes for |xi − µ| ≥ 4σ. Since the weight wi characterizes the “contribution” of xi to
the average (11), the values xi’s far from µ (outliers) are practically eliminated by our
weighting system. Estimates that detect and eliminate outliers (noise) are said to be
robust, see next.

7.24 Definition (Robust estimates)
An estimate µ̂ is said to be robust if it remains accurate when the sample is con-

taminated by outliers. (Almost) equivalently, we can say that a robust estimate remains
accurate for probability distributions different from normal, especially for those with
heavy tails. (It is customary to say that robust estimates are “distribution-free”.)

7.25 Examples of robust estimates
A simple example of a robust estimate is trimming, in which one removes a certain

proportion (say, 5% or 10%) of the observations from the upper end and/or from the
lower end of the sample. Precisely, let

x(1) ≤ x(2) ≤ · · · ≤ x(n)

be order statistics (they are obtained simply by ordering the given sample x1, . . . , xn).
Then one estimates µ by

µ̂ =
x(n1)+1 + · · ·+ x(n2)

n2 − n1

with n1 = [r1n] and n2 = n − [r2n] for some r1, r2 ≥ 0. This removes r1n smallest
observations and r2n largest observations.

For r1 = r2 = 0 we recover the classical (nonrobust) sample mean. When r1 and r2

grow, the estimate becomes increasingly robust. For r1 = r2 = 0.5 one obtains the median
xmed (recall Remark 7.4), which is an extremely robust estimate. In many applications,
where the distribution of xi’s is completely unknown and is expected to behave “wildly”,
xmed is the safest estimate of the mean value.

49

However, robust estimates are less accurate than the classical sample mean in the
case of pure (not contaminated) normal random variables. In particular, the median is
not statistically efficient, one can compute its variance and find that it is larger than the
Rao-Cramer lower bound.

7.26 Practical algorithms
The reweight procedure described in 7.21 requires an initial guess. It is clear that

the wrong guess µ0 (for example, such that |µ0 − µ| > 10σ) could screw up the whole
procedure, because it would immediately suppresses all good observations and “focus”
on a few noisy points converging to their average.

To improve the performance of the reweight procedure, one can use a version of
“simulated annealing”. It requires an external control parameter T (“temperature”).
First, the temperature is set to a high enough value, such as T = L. The reweight
procedure is applied with with σ replaced by σT . Since the initial value of T is very
large, no weights wi will be too small and no observation will be suppressed. Then one
gradually decreases the temperature T , so that the reweight procedure will be restricted
to a smaller and smaller window that captures a part of the sample and suppresses the
rest. The window will be selected automatically, based on the previous approximations
and the current value of T . Thus the procedure can adjust itself, and in typical cases it
will focus on parts of the sample with higher density of observations.

Here is a possible implementation of this procedure. Let β < 1 be a constant slightly
less than one, such as β = 0.95. Let K ≥ 1 be a fixed integer, such as K = 10.

Step 1 Set T = L and select an arbitrary initial value for µ.

Step 2 Apply K iterations of the reweight procedure with σ replaced by σT .

Step 3 Replace T by βT . If T > 1, repeat Step 2, otherwise exit.

50

8 Fitting Curves

A typical statistical problem is fitting curves to experimental data. The curve is usually
defined by a simple equation fθ(x, y) = 0, where θ ∈ IRk is a parameter (vector) describing
the family of available curves. Given n data points (x1, y1), . . . , (xn, yn) one wants to find
the best fitting curve, i.e. estimate the parameter θ.

There are two probabilistic models available for this class of applied problems. If the
values of one variable, say x, are known precisely (for example, they are chosen by the
experimenter), then one uses a classical regression model. However, if both coordinates x
and y are random (measured experimentally or “corrupted with errors”), then one uses
an orthogonal regression model.

8.1 Classical regression
Suppose an unknown function y = fθ(x) must be determined experimentally. One

can measure the value of y at some selected points x1, . . . , xn. The corresponding exper-
imental values y1, . . . , yn are assumed to satisfy

yi = fθ(xi) + ei, i = 1, n

where ei are random (statistical) errors. It is standard to assume that e1, . . . , en are
independent normal random variables with zero mean and common variance σ2. Then yi

is normal with mean E(yi) = f(xi) and variance Var(yi) = σ2. The likelihood function
is

L(θ) =
(

1

2πσ2

)n/2

exp

[

−
∑

[yi − fθ(xi)]
2

2σ2

]

and its logarithm

ln L(θ) = −n

2
ln(2πσ2) −

∑

[yi − fθ(xi)]
2

2σ2

The quantity σ2 can also be regarded as a parameter of the model, but it is not of a
primary interest.

The maximum likelihood estimate of θ is

θ̂ = argmax ln L(θ)

It is easy to see that the maximization of L is equivalent to the minimization of

F (θ) =
∑

[yi − fθ(xi)]
2

The value θ̂ = argminF (θ) is called the least squares estimate of θ.
In other words, the best fitting curve y = fθ(x) minimizes the sum of squares of the

distances to the experimental points (measured along the y axis). This principle is often
called the least squares fit (LSF).

51

We emphasize that the variables x and y are substantially different. The values of
x are known precisely or selected by the experimenter, they are fixed (nonrandom) con-
stants, but the values of y are measured experimentally and are random. We call x the
control variable and y the response variable.

8.2 Orthogonal regression
Now assume that both variables x and y are random and we need to find an unknown

function fθ(x, y) = 0 experimentally, where θ ∈ IRk is the vector of parameters describing
the family of available functions. One can think that several points on the graph of the
function are measured experimentally and their coordinates (xi, yi), 1 ≤ i ≤ n, are
recorded.

The sampled points (xi, yi) are perceived as random perturbations of some true (ideal)
points (x̄i, ȳi) lying on the unknown curve fθ(x, y) = 0. Assume that the statistical errors
e′i = xi − x̄i and e′′i = yi − ȳi are independent and normally distributed with zero mean
and variance σ2. Then the likelihood function is

L =
(

1

2πσ2

)n

exp

[

−
∑

[xi − x̄i]
2 + [yi − ȳi]

2

2σ2

]

Taking logarithm gives

ln L = −n ln(2πσ2) −
∑

[xi − x̄i]
2 + [yi − ȳi]

2

2σ2

Denote by d2
i = [xi − x̄i]

2 + [yi − ȳi]
2 the square of the distances from the experimental

point to the corresponding “true” point, 1 ≤ i ≤ n. The maximization of L is equivalent
to the minimization of

F (θ) =
∑

d2
i (13)

The “true” points (x̄i, ȳi) must belong to the “true” curve, i.e.

fθ(x̄i, ȳi) = 0, i = 1, n (14)

The points (x̄i, ȳi) are unknown and, technically, need to be estimated, too, along with
the main parameters θ ∈ IRk. But the “true” points (x̄i, ȳi) are constrained by the equa-
tions (14). This constraint gives a simple way of eliminating the “true” points from the
analysis. For each θ, the best choice of the point (x̄i, ȳi) is the closest point of the curve
fθ(x, y) = 0 to the observed point (xi, yi). Then di in (13) is the geometric (orthogonal)
distance from the point (xi, yi) to the curve fθ(x, y) = 0. The minimization of (13) is
called orthogonal least squares problem. The value θ̂ = argminF (θ) is called the orthogo-
nal least squares estimate of θ. The curve minimizing the sum of squares of the distances
to the experimental points is called the orthogonal least squares fit.

Next we show how regression problems can be solved, emphasizing computational
aspects of our analysis.

52

8.3 Classical linear regression
In many applications, the function y = fθ(x) depends on the parameter θ linearly.

For example, if you fit a polynomial y = a0 + a1x + · · · + amxm, then the coefficients
a0, . . . , am are your unknown parameters.

More generally, let

y = a1g1(x) + a2g2(x) + · · ·+ akgk(x)

where g1(x), . . . , gk(x) are arbitrary known functions. If this happens in your applied
problem, consider yourself lucky, since the problem has a direct, precise, and relatively
simple solution.

8.4 Normal equations
In the previous problem, we denote xij = gj(xi) for all 1 ≤ j ≤ k and 1 ≤ i ≤ n. We

are to minimize the function

F (a1, . . . , ak) =
n
∑

i=1

(yi − a1xi1 − a2xi2 − · · · − akxik)
2

Taking partial derivatives with respect to aj , 1 ≤ j ≤ k one arrives at a linear system

X11a1 + X12a2 + · · · + X1kak = Y1

X21a1 + X22a2 + · · · + X2kak = Y2 (15)

· · · · · ·
Xk1a1 + Xk2a2 + · · ·+ Xkkak = Yk

where

Xjm =
n
∑

i=1

xijxim, and Yj =
n
∑

i=1

yixij

We call (16) the system of normal equations.
The equations (16) can be written in matrix form, this will illuminate many important

properties of this system. Denote by

X =













x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...
xn1 xn2 · · · xnk













the n × k data matrix (also called the design matrix) and by Y = (y1, . . . , yn)T the
response vector. Let A = (a1, . . . , ak) be the parameter vector. Then the system of
normal equations takes form

XTXA = XTY

53

and its solution is
A = (XTX)−1XTY

Next we present three numerical algorithms for computing A.

8.5 First algorithm (by Cholesky factorization)
The matrix N = XTX is symmetric and positive semidefinite (the latter means that

uTNu ≥ 0 for any vector u ∈ IRk). If the design matrix X has full rank (which it does in
generic cases), then N is positive definite, which means that uTNu > 0 for any nonzero
vector u 6= 0.

For such matrices N, there are many fast algorithms for solving systems of equations
Nx = y. A standard algorithm on this occasion is Cholesky factorization covered in
Numerical Linear Algebra, MA 660. It is simple, fast and theoretically exact.

This algorithm requires about

(k2 + 3k)n + k3/3 + 2k2

arithmetic operations (also called floating point operations, or flops for brevity). Here
is a precise flop count: the multiplication XTX takes (k2 + k)n flops, the product XTY
takes 2kn flops, the Cholesky factorization of the matrix XTX takes k3/3 flops, then one
finishes computing A by a backward substitution (k2 flops) and a forward substitution
(another k2 flops). We note that k is usually a small fixed number (such as 3 or 4), while
n is usually large and variable.

This method has been standard until about 1970. It is still widely used today, due
to its simplicity and efficiency in most practical cases. However, one must be aware
of its drawbacks. This method is numerically unstable. Whenever the matrix X is ill-
conditioned, the above method may easily break down. More precisely, if the condition
number κ(X) is large, then the condition number κ(N) becomes huge, because

κ(N) = [κ(X)]2

For example, if κ(X) = 10q, then any solution of the least squares problem in double
precision will yield at most 15− q accurate digits. However, the above solution based on
the normal equations will only yield 15−2q accurate digits. There is an unwanted loss of
additional q digits, caused exclusively by the method. (Note that it is not the Cholesky
algorithm that is at fault here, it is the formation of the normal equations where the loss
of accuracy occurs.)

8.6 Second algorithm (by QR decomposition)
There is an alternative solution that is numerically stable. It avoids an explicit

use of the normal equations (16), and instead employs the QR decomposition of the
design matrix X, as studied in Numerical Linear Algebra, MA 660. Precisely, there is a
n× k matrix Q whose columns are orthonormal vectors (i.e. its columns are unit vectors
orthogonal to each other) such that

X = QR

54

where R is an upper triangular k × k matrix. Then the least squares problem can be
solved by

A = R−1QTY

This is proved in Numerical Linear Algebra, MA 660.
The QR method is more complicated and costly. Its cost is

(2k2 + 2k)n + k2

flops. Precisely, the QR decomposition of X requires 2k2n flops, the multiplication QT Y
takes 2kn flops, then one finishes computing A by a backward substitution in k2 flops.
We see that the QR method is about twice as expensive as the previous method based
on the normal equations.

However, the QR method is numerically stable and accurate. It is also theoretically
exact, it does the job in finitely many computations (it does not involve iterations or
approximations of any kind). We note that in the modern world of fast computers, the
complexity of an algorithm is not so a critical issue as before, while its accuracy and
stability are essential.

The only instance when the QR method fails is the so called rank-deficient case, when
rankX < k. In that case the least squares problem has multiple solutions. Its solutions
form a linear subspace in L ⊂ IRk (we note that L does not pass through the origin). In
practical problems, one either picks an arbitrary solution A ⊂ L or selects the solution
with the minimal norm:

Amin = argmin
A⊂L

‖A‖
The QR method can be modified (by using the so called pivoting, i.e. a suitable reorder-
ing of the columns of X) to handle this special case, but this modification is not very
satisfactory. First, it involves a significant amount of extra computations. Second, there
are documented examples where the fails anyway, for some strange and purely numerical
reasons.

8.7 Third algorithm (by SVD decomposition)
In the last decade, another method emerged as an attractive alternative to the QR.

It is based on the SVD decomposition studied in Numerical Linear Algebra, MA 660.
For any real n × k matrix X, there are n × n and k × k orthogonal matrices U and V,
respectively, and a diagonal n × k matrix D such that

X = UDV

Then the least squares problem can be solved by

A = VT [D−]TUTY (16)

where D− is a diagonal n × k matrix whose entries on the main diagonal are the recip-
rocals of those of D (with one exception: when a diagonal entry of D is zero, then the
corresponding diagonal entry of D− must be zero as well).

55

The SVD method is even more complicated than the QR. The computation of an
SVD is usually done in two steps. At first, one transforms the given matrix X into a
bidiagonal form by X = U′BV′, where U′ and V′ are orthogonal matrices and B is a
bidiagonal matrix. This takes 2k2n + 2k3 flops. At the second stage one reduces B to
a diagonal matrix D by an iterative procedure. This takes Ck2 flops, where the factor
C depends on the machine precision. After the SVD is done, one computes A by (16),
which takes 2kn + k2 + k flops. The total cost of this algorithm is thus

(2k2 + 2k)n + 2k3 + (C + 1)k2 + k

flops. We see that it is slightly more expensive than the QR method.
We note that the SVD method involves an iterative procedure, hence it cannot com-

pute the result in a finite number of steps. In other words, the computation of an SVD
is not theoretically exact – it involves a truncation error, in addition to the inevitable
round-off errors, recall 3.10. This all sounds quite discouraging, right?

However, the SVD method is numerically stable. It is extremely stable. In most
practical computations, it outperforms the QR method and yields more accurate results.
A very detailed example is provided in [1] on pp. 137–143. Also, the SVD automatically
handles the rank-deficient case in the proper manner and returns the minimum norm
solution Amin mentioned above. Overall, it is currently the most reliable algorithm for
solving the least squares problems. Its superior numerical performance is recognized by
almost everyone.

The codes (in C and FORTRAN) for an SVD decomposition are freely available on the
Internet. A good source for this and other useful computer programs is www.netlib.org,
a free software repository. The SVD routine is also available in the Numerical Recipes
(NR) software package on our departmental server catbert.math.uab.edu. The NR pack-
age also includes codes for Cholesky factorization and QR decomposition.

8.8 Linear orthogonal regression
This is a continuation of 8.2. We restrict ourselves to the simplest case – fitting a

straight line. A line is usually defined by an equation y = a+ bx, but this is not good for
our purposes. First, it does not include vertical lines. Second, the roles of x and y in the
equation y = a+ bx are clearly different, but we would like to have a complete symmetry
between x and y, due to the nature of the problem. So we prefer another equation:

Ax + By + C = 0 (17)

Obviously, the line defined by (17) remains unchanged if we multiply the parameters
A, B, C by a nonzero scalar. In this case one says that A, B, C are indeterminate, i.e.
they cannot be determined by a line they represent. To rectify this problem, we impose
the constraint

A2 + B2 = 1

Alternatively, A and B can be replaced by a single parameter θ so that A = cos θ and
B = sin θ, with 0 ≤ θ < 2π. Note that θ is a cyclic parameter, i.e. θ ∈ S1. A line can

56

now be defined by
x cos θ + y sin θ + d = 0

with two parameters, θ and d. These parameters have a clear geometric interpretation:
θ is the slope of the normal vector to the line, and |d| is the distance from the line to the
origin (0, 0).

The sum of squares of the distances from the experimental data (xi, yi) to the line is
given by

F (A, B, C) =
1

A2 + B2

n
∑

i=1

(Axi + Byi + C)2 (18)

in the parametrization A, B, C without imposing the constraint A2 + B2 = 1, and by

F (θ, d) =
n
∑

i=1

(xi cos θ + yi sin θ + d)2 (19)

in the parametrization θ, d. Our goal is to find the minimum of F .

8.9 Existence of the orthogonal least squares fit
We pose for a second to discuss the existence of a solution of our minimization problem

8.8. Obviously, the function F depends continuously (in fact, smoothly) on parameters
in both parametrization schemes (18) and (19). It is known that a nonnegative contin-
uous function on a compact topological space always attains a minimum (possibly, not
unique). However, our parameter spaces are not compact, so additional care must be
taken to show the existence of the minimum. Note that the set of experimental points
(xi, yi) is finite, hence bounded, so all the data points (xi, yi) lie in some square (or
rectangle) K, which we assume to be closed. Now, consider all lines that intersect the
region K. We can disregard other lines, since the function F clearly takes larger values
on those than on the lines intersecting K. Since |d| is the distance from the line to the
origin, we may impose restriction |d| < dmax where dmax is the distance from the origin
(0, 0) to the most remote point of K. Now, the θd parameter space becomes a cylinder
S1 × [−dmax, dmax], which is compact. This proves that the function F takes a minimum,
hence the orthogonal least squares fit always exists.

8.10 Implementation of the orthogonal least squares fit
Now we develop a numerical algorithm for computing the minimum of F . We use

methods of linear algebra. The minimization of (18) is equivalent to the problem

F0(A, B, C) =
n
∑

i=1

(Axi + Byi + C)2 → min

subject to the constraint A2 + B2 = 1. The function F0 is a quadratic polynomial in
A, B, C and can we written as

F0 = MxxA
2 + MyyB

2 + 2MxyAB + 2MxAC + 2MyBC + nC2

57

where M··· denote various moments of the data sample: Mxx =
∑

x2
i , Mxy =

∑

xiyi, etc.
In matrix form, F0 = ATMA, where A = (A, B, C)T is the vector of parameters and M
is the matrix of moments:

M =







Mxx Mxy Mx

Mxy Myy My

Mx My n







Note that M is symmetric and positive semidefinite. This can be easily seen from the
fact that M = XTX, where

X =









x1 y1 1
...

...
...

xn yn 1









is the n × 3 data matrix. The constraint A2 + B2 = 1 can be written as AT I0A = 1,
where

I0 =







1 0 0
0 1 0
0 0 0







is the “reduced” identity matrix. Now introducing a Lagrange multiplier η we minimize
the function

F̃0 = ATMA − η(AT I0A − 1)

Differentiating with respect to A gives

MA − ηI0A = 0

In this case one says that η is a generalized eigenvalue for the matrix pair (M, I0). Its
value can be found from the equation

det(M − ηI0) = 0 (20)

This is a quadratic equation for η. It can be proven that it always has two real nonnegative
solutions. Which one corresponds to the minimum of F0? Well, note that

F0 = ATMA = ηAT I0A = η

hence the minimum of F0 corresponds to the smaller root of the equation (20).
Lastly, A can be chosen as a null vector of M − ηI0. When the corresponding null

space is one-dimensional, the solution will be unique. When it is two-dimensional, then
the problem has multiple solutions, see the exercises below.

8.11 Remark
A simple trick can be used to make the above calculations easier and numerically

more stable. Let us translate the origin of the coordinate system to the center of mass
(also called the centroid) of the data set. This can be done by computing

x̄ =
1

n

n
∑

i=1

xi, ȳ =
1

n

n
∑

i=1

yi

58

and then transforming xi 7→ xi − x̄ and yi 7→ yi − ȳ for all 1 ≤ i ≤ n. If we do that, we
make Mx = My = 0. Also, we reduce the values of the other moments thus minimizing
round-off errors.

8.12 Exercise

(a) Prove that if Mx = My = 0, then C = 0 and d = 0.

(b) Prove that the quadratic equation (20) always has two real nonnegative roots.

(c) Prove that the least squares line is unique if and only if the roots of (20) are distinct.

(d) Show that the roots of (20) coincide whenever two conditions hold simultaneously:

Mxx − M2
x/n = Myy − M2

y /n and Mxy − MxMy/n = 0

(e) Give a nontrivial example where these conditions hold (Hint: place the data points
at vertices of a regular n-gon).

(f) Describe all the solutions of the least squares problem 8.8 when the above conditions
hold, i.e. describe the family of the corresponding lines.

8.13 Remarks
(a) When solving the quadratic equation (20), one needs to chose the minus sign

before the square root of its discriminant (since we are interested in the smaller root).
The other, larger, root of (20) corresponds to a saddle point of the function F0.

(b) One can implement a different algorithm for minimizing F . First one can eliminate
d from (19) by differentiating with respect to d and then solving the equation ∂F/∂d = 0.
Next, one minimizes the resulting function F1(θ) with respect to the parameter θ alone.
Work out the details.

(c) In terms of the algorithm described in 8.13 (b), the larger root of equation (20)
will correspond to the maximum of F1(θ).

59

