Keys to Version A of Midterm Test 2 in MA 180/418, Spring 2010

Q1: **b**

Q2: **c**

Q3: **d**

Q4: **b**

Q5: **a**

Q6: (a) H_0 : $\mu = 0.85$, H_1 : $\mu \neq 0.85$; (b) critical values: ± 1.96

Diagram:

- (c) test statistic: z = 1.06; we accept H_0 . Final conclusion: the mean weight of all green M&Ms is equal to 0.85 g.
- (d) P-value is 0.2892 (by Table A-2) or 0.2888 (by calculator); we accept H_0 because P-value> $\alpha = 0.05$.
- Q7: (a) 0.2350 .
 - (b) it supports Mendel's theory, because the interval contains 0.25.

Q8: (a) $\bar{x} = 830.6$, s = 31.3 (by calculator).

(b) $21.14 < \sigma < 59.96$ by using the formula $\sqrt{\frac{8 \times (31.3)^2}{17.535}} < \sigma < \sqrt{\frac{8 \times (31.3)^2}{2.180}}$ Chi-square (χ^2) distribution, n-1=8 degrees of freedom.

Q9: (a) H_0 : $\mu_1 = \mu_2$, H_1 : $\mu_1 < \mu_2$; (b) critical value: -2.39

Diagram:

- (c) test statistic: t = -2.03; we accept H_0 (reject the original claim).
- (d) P-value is between 0.01 and 0.025 (by Table A-3) or 0.022 (by calculator).

Q10: (a) $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 \neq \sigma_2^2$; (b) critical value: 2.7559

- (c) test statistic: F = 2.367; we accept H_0 (and the original claim).
- (d) P-value is between 0.05 and 0.1 (by Table A-5) or 0.094 (by calculator).