Keys to Sample Final Exam in MA 180/418, Spring 2010

Q1: \mathbf{d}	Q2: \mathbf{c}	Q3: c	Q4: \mathbf{d}	Q5: \mathbf{b}
Q6: b	Q7: a	Q8: b	Q9: a	Q10: b

Oll 100 and a 100 as the ACT areas is relatively he

Q11:
$$z_{\text{SAT}} = -1.08$$
 and $z_{\text{ACT}} = -1.06$, so the ACT score is relatively better.

Q12: (a)
$$n = \frac{(2.575)^2 \cdot 0.25}{0.04^2} = 1,036.04$$
, round up to 1,037.
(b) $n = \frac{(2.575)^2 \cdot 0.09 \cdot 0.91}{0.04^2} = 339.405$, round up to 340.

Q13: (a)
$$\mu = 580 \cdot 0.25 = 145$$
 and $\sigma = \sqrt{580 \cdot 0.25 \cdot 0.75} = 10.428$.
(b) $\mu + 2\sigma = 165.9$ and $\mu - 2\sigma = 124.1$.
(c) by Table A-2: $z = 0.34$ and $P = 1 - 0.6331 = 0.3669$
by calculator: normalcdf(148.5,9999,145,10.428)=0.3686.

Q14:
$$1.306 < \mu < 1.334.$$

Q15: (a)
$$H_0: p = 0.75$$
, $H_1: p \neq 0.75$
(b) critical values: $z = \pm 2.33$
(c) test statistic: $z = -1.33$ initial conclusion: accept H_0 ;
final conclusion: accept the original claim;

Q16:
$$n = \left[\frac{1.645 \cdot 2.4}{0.14}\right]^2 = 795.24$$
, round up to 796.

Q17: (a)
$$H_0: \sigma = 3.0$$
, $H_1: \sigma > 3.0$
(b) critical value: $\chi^2 = 35.172$
(c) test statistic: $\chi^2 = 33.12$; initial conclusion: accept H_0 ;
final conclusion: reject the original claim;
[Bonus] P-value is between 0.05 and 0.10.

Q18: (a)
$$H_0: \mu_d = 0, \qquad H_1: \mu_d \neq 0$$

(b) critical values:
$$t = \pm 2.132$$

(c) test statistic: t = -4.000; initial conclusion: reject H_0 ; final conclusion: there is a difference.

Q19: (a) r = 0.944; the critical value is 0.878. There is a linear correlation. (b) $\hat{y} = -34.02 + 1.396 x$

(c) the predicted y-value is $-34.0 + 1.396 \cdot 100 = 105.6$ (we use the regression equation, because there is a linear correlation). Q20: (a) $r^2 = 0.8912$ (b) $s_e = 3.6073$ (by calculator) (c) total variation: $(n-1)s_y^2 = (5-1) \cdot (9.471)^2 = 358.8$ (d) explained variation: $358.8 \cdot 0.8912 = 319.8$ (e) unexplained variation: $(n-2)s_e^2 = (5-2) \cdot (3.6073)^2 = 39.0$ [Bonus] We compute

$$E = t_{\alpha/2} s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \bar{x})^2}{n(\Sigma x^2) - (\Sigma x)^2}}$$

= 3.182 \cdot 3.6073 \cdot \sqrt{1 + \frac{1}{5} + \frac{5 \cdot (100 - 104)^2}{5 \cdot 54244 - (520)^2}}
= 13.07.

Now the interval is 105.6 ± 13.1 . Another form for the prediction interval: (92.5, 118.7).