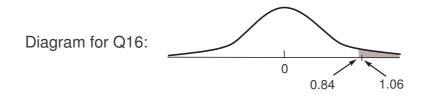
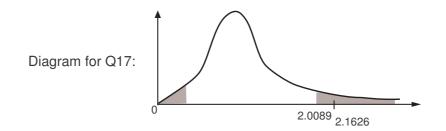

Keys to Version A of Final Exam in MA 180/418, Fall 2010


Q1: b	Q2: d	Q3: c	Q4: \mathbf{c}	Q5: \mathbf{d}
Q6: \mathbf{a}	Q7: a	Q8: b	Q9: a	Q10: d

- Q11: $z_{\text{SAT}} = 1.13$ and $z_{\text{ACT}} = 1.14$, so the ACT score is relatively better.
- Q12: (a) 0.1922 by Table A-2 and 0.1912 by calculator function normalcdf
 (b) 0.0002 by Table A-2 or by calculator function normalcdf
 (c) either the population is normal or n > 30; here the population is normal
 (d) the more relevant question is (b); the chance is 0.0002.
- Q13: (a) (0.847,0.873) by Table A-2 or by calculator function **1-PropZInt** (b) no, because the interval does not contain 0.9
- Q14: (a) $\bar{x} = 4331$ and s = 374.5.
 - (b) (4137,4525) by Table A-3 or by calculator function **TInterval**
 - (c) (3995,4667) by Table A-3 or by calculator function **TInterval**
 - (d) The second interval is wider because its confidence level is larger.



- Q15: (a) $H_0: \sigma = 550, \quad H_1: \sigma < 550$
 - (b) test statistic $\chi^2 = 5.099$
 - (c) critical value $\chi^2 = 5.578$ by Table A-4
 - (d) initial conclusion: accept H_1 ;
 - final conclusion: accept the original claim;
 - (e) The population must be normal. It is very strict.
 - [Bonus] interval for the P-value is (0.05, 0.10)

Exact P-value=0.06927 by calculator function χ^2 CDF

- Q16: (a) $H_0: \mu = 90, \quad H_1: \mu > 90$
 - (b) test statistic z = 1.06
 - (c) critical value z = 0.84 by Table A-2
 - (d) initial conclusion: accept H₁;
 final conclusion: accept the original claim;
 (a) The Device of 1446 here.
 - (e) The P-value is 0.1446 by Table A-2 or 0.1450 by calculator function **Z-Test**
 - (f) Accept H_1 because the P-value is less than $\alpha = 0.20$.
 - (g) Either n > 30 or the population is normal. Not very strict.

- Q17: (a) $H_0: \sigma_1 = \sigma_2, \qquad H_1: \sigma_1 \neq \sigma_2$
 - (b) test statistic F = 2.1626
 - (c) upper critical value: F = 2.0089 by Table A-5
 - (d) initial conclusion: accept H_1 ; final conclusion: reject the original claim;
 - (e) no, it does not seem to improve. The standard deviation must decrease.

Q18: (a) $r^2 = 0.375$

- (b) r = -0.612
- (c) $s_e = 0.1299$
- (d) the critical value is 0.632. There is no linear correlation. The P-value is 0.06

Q19: (a) $\hat{y} = 17.154 - 0.01015 x$

- (b) the predicted y-value is $\bar{y} = 13.88$. We use \bar{y} , because there is no linear correlation.
- (c) 0.375, or 37.5%
- (d) $\sum (y \hat{y})^2 = (n 2)s_e^2 = 0.135$

Bonus] We compute
$$\hat{y} = 17.154 - 0.01015 \cdot 340 = 13.703$$
 and

$$E = t_{\alpha/2} s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \bar{x})^2}{n(\Sigma x^2) - (\Sigma x)^2}}$$

= 2.306 \cdot 0.1299 \cdot \sqrt{1 + \frac{1}{10} + \frac{10 \cdot (340 - 322.6)^2}{10 \cdot 1041494 - (3226)^2}}
= 0.365.

Now the interval is 13.703 ± 0.365 . Another form for the prediction interval: (13.338, 14.068).

- Q20: (a) LP, because of the smallest P-value
 - (b) LP+LA; two pairs (LP+LA and LP+Lot) have the smallest P-value, but LP+LA has a larger R^2 than LP+Lot does
 - (c) Either LP+LA+Lot or LP+LA, there is no clear decision... (the former has a little larger R^2 , but it uses an extra variable)
 - (d) 341,920 (the same prediction by both LP+LA+Lot and LP+LA)