Solutions of selected JPE problems in Linear Algebra
Dr Nikolai Chernov

Note to students preparing for JPE in Linear Algebra: it is highly recommended that
you honestly attempt to work on past JPE problems on your own and read these solutions
only as the last resort. Just reading the solutions, without trying to solve the problems,
will not help you prepare for the exam.

JPE, September 2013, #4.

Let us denote AWM = (a;;) for 1 <i,j <n and A® = (b;;) for 2 < 4,5 < n (note that
the indices of b;; start with 2, hence the rows and columns of A® will have the same
numbers as the rows and columns of A™")). The strict column dominance of A®") means
that

lajil > laiy|  Vi=1,....n (1)
i#]

The first step of Gauss elimination produces
bij:aij—mialj Vi,j:27“_’n’

where
mi:aﬂ/au VZ:2,7TL

are multipliers. It follows from (1) with 7 = 1 that

Now we have for each j =2,...,n
|bj;| = laj; —mjai;] = lag;| — [myl]ay]
> laj| = layl+ D mallay| @
i>2, i

> Z |aij| = ay;| + Z Imillay;| by
i] i>2, ]

= > lagl+ D Imllayl = D byl
i>2, itj i>2, itj i>2, itj

where in the first and last lines we used the triangle inequality. Thus [bj;| > >".o, ;; [bij
for each j = 2,...,n, hence A® is strictly column dominant.



JPE, May 2013, #3 (and May 2000, #?2).

This problem can be solved by means of Linear Algebra, but there is also an elegant
solution using SVD. First, by Linear Algebra, we know a general formula

dim (Ker T) + dim (Range T) =dimV.

Since dim(RangeT') = rank7’ < dim(V') we have dim(KerT) > 0. Let L C V be a
subspace such that L & KerT'= V. Then

dim(L) = dim(V) — dim (Ker T') = dim(Range T)

Let T}, denote the restriction of T to the subspace L. It is easy to see that T} is a
linear transformation taking L to RangeT'. We claim that 77, is a bijection. Indeed, if it
was not a bijection, there would be two vectors z,y € L such that T (z) = T(y), i.e.,
T(z) = T(y). But then T'(z —y) = 0, hence z — y € KerT, implying that = —y = 0.
Now we construct bases a and 5. Let ay be a basis in L and ag be a basis in KerT'.
Then oo = arp, U is a basis in V. Now 8, = T'(a) = Tr(ap) is a basis in RangeT. Let
[ be an arbitrary extension of S to a basis in W. Then one can verify easily that the
bases o and [ solve the problem.

Here is an elegant solution via SVD. Choose any basis in V' and any basis in W,
represent 7' by a matrix A in the chosen bases. By the SVD we have A = U, DV,
where U; defines a basis ' in W of left singular vectors and V; defines a basis o in V/
of right singular vectors. In the bases o and (', the transformation 7T is represented by
the diagonal matrix D with exactly » = rank T nonzero diagonal components o4, ..., 0.
Now by stretching the first r basis vectors of 5’ by the scalar factors oy,..., 0, we get a
basis (8 solving the problem.

JPE, May 2013, #7.
(a) If A= A*V, then
AA* = AV A" = A (AV*)* = A*(AV )" = A*(A*)* = A*A,
hence A is normal. If A is normal, then it is unitary equivalent to a diagonal ma-

trix, ie., A = Q*DQ, where D = diag{dy,...,d,}. Now A* = Q*D*Q, where D =
diag{dy,...,d,}. Now D = D*U, where U = diag{uy,...,u,} with

di/d; if d; #0
U; =
—1 if d;=0.

It is clear that U is a unitary matrix, hence
A=Q"DQ=Q"D'UQ =Q"D*'QR'UQ = AV
where V = Q*U() is a unitary matrix, as required.
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(b) The eigenvalues of A are the diagonal entries dy, ..., d,. If they are purely imag-
inary, then in the above construction u; = —1 for all 7, hence U = —I. Therefore
V=-Q*Q=—1Iand A= —A*

JPE, May 2012, #2.

(a) Let (A, u) be an eigenpair for B. Then

uw*Bu = (Bu,u) = (Au,u) = Mu,u) = \|ul)?.

It is given to us that u*Bu = 0, hence A||u||* = 0. Since |lul| # 0, we conclude that
A = 0. So all the eigenvalues of B are zero. Since B is Hermitian, the Spectral Theorem
applies, and it says that B is unitary equivalent to a diagonal matrix, D, whose diagonal
entries are the eigenvalues of B. Since all the eigenvalues of B are zero, we conclude that
D = 0. That implies B = Q*DQ = Q*0Q) = 0.

(b) We define B = (A+A*) and C = 5. (A—A*). Then we have B* = $(A*+A4) = B
and C* = —L(A* — A) = C, so both B and C are Hermitian. Lastly,

1 1
B—I—z’C’:§(A—I—A*)+§(A—A*):A,
as required.
(c) By part (b), A = B +iC where B and C' are Hermitian matrices. Now
x*Ax = 2" Bx + 2" (iC)x = (Bx,x) + (iCx,x) = (Bx,z) + i(Czx, x)

We know that for any Hermitian matrix P and any vector x € C" the inner product
(Px,z) € R (is a real number). Thus in the above formula (Bz, x) is a real part of z*Ax
and (Cx,z) is its imaginary part. It is given to us that z* Az is real, hence its imaginary
part is zero: (Cz,z) = 0. By part (a) we conclude that C' = 0 (the zero matrix). Hence
A = B is Hermitian.

JPE, September 2012, #6.

For any generalized eigenpair (A, z) we have
(Az,x) = (\Bz,z) = \(Bx,x)
On the other hand,
(Az,x) = (x, Az) = (x, \Bx) = Mz, Bx) = \(Bx, z)

(where we used the given condition that A and B are Hermitian). For any z # 0 we have
(Bx,z) > 0, because B is positive definite, hence A = A, which implies that X is real.



Now let B = GG* be the Cholesky factorization for B. Note that B is invertible,
hence so are G and G*, Now we have

Az =\Br = Ar=)\GG'rx = G 'Az=\G"z
Note that I = (G*)"'G* = (G~1)*G*, therefore
GrAG NGz = \G*x
Let us denote G*z =y and G 'A(G~!)* = C. Then we have
Cy=M\y

hence (), y) is an eigenpair for C. It is easy to see that C' is Hermitian. Thus there is a
basis (actually, an ONB) of eigenvectors y, ..., y, of C. Now the vectors

T = (G*)ilyh sy Iy = (G*)ilyn

make a basis, too, because G* is an invertible matrix. And the above vectors are gener-
alized eigenvectors for the pair of matrices A, B.

JPE, May 2012, #6.
(a) The characteristic polynomial of A can be written as
pa(x) = (= Ai) - (2 = An)
where Aq,..., A, are the eigenvalues of A. Therefore
pa(B) = (B =MI)--- (B = Anl)

Since Aqi,...,\, are not the eigenvalues of B, all the above matrices B — A1, ...,
B — M\, I are nonsingular. The product of nonsingular matrices is nonsingular, hence
pa(B) is nonsingular.

(b) For any k£ > 1 we have
APX = AFTAX = AM'XB = A" ?AXB = A"?XB*= ... = XB*
therefore for any polynomial P(z) = a,x2" + - -+ + a1 + ap we have

PA)X =a,A"X + -+ a1 AX + ol X
— 4, XB" 4+ -+ e XB +agXI = XP(B).

Now let pa(z) be the characteristic polynomial of A. By the Cayley-Hamilton theorem,
pa(A) = 0. On the other hand, pa(A)X = Xpa(B), therefore Xps(B) =0x X =0 (the
zero matrix). By part (a) the matrix p4(B) is nonsingular, hence

X =0x[pa(B)] ' =0.
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(c) Denote the components of X by (z;;). The equation AX — XB = C can be
written, componentwise, as m? equations with unknowns z;;:

m m
E :apﬂiq - E :xpjqu = Cpq
i=1 j=1

where p,q = 1,...,m. Note that these are linear equations in z;;. And the number of
equations (m?) is the same as the number of unknowns. A system of linear equations
has either a unique solution for every right hand side (for every matrix C') or the number
of solutions is zero or infinity depending on the right hand side. If we show that the
system cannot have more than one solution, it would follow that there is always exactly
one solution.

Suppose that there are two matrices, X and X', that satisfy AX — XB = C and
AX' — X'B = C'. Subtractive one equation from the other gives

AX-X)—(X-X)B=C-C=0 = AKX —X)=(X—-X)B
and by part (b) we have X — X’ =0, hence X = X'.

JPE, September 2011, #2.

(a) Since A is upper triangular, its eigenvalues are its diagonal entries, i.e., they are
all equal to 1. Hence det A = 1. This implies that A is nonsingular, i.e., its rank is n.

(b) A~! is an upper triangular matrix with 1 on the main diagonal, —2 on the first
superdiagonal, 4 on the second superdiagonal, ..., (—2)* on the kth superdiagonal.

(c) Recall that o? is the largest eigenvalue of A*A. By direct computation, A*A is
a symmetric matrix with 1,5,5,...,5 on the main diagonal and 2,2,...,2 on the first
subdiagonal and first superdiagonal (zeros elsewhere). By Gershgorin theorem, all its
eigenvalues lie in the union of two disks:

|z —1] <2 and |z — 5] < 4.

In fact, all the eigenvalues must be real and non-negative, hence they are confined to
the union of two intervals: [0, 3] and [1, 9], which is one interval [0,9]. Hence the largest
eigenvalue is < 9, as desired.

JPE, September 2011, #3.

Let A = QR be a QR decomposition of A. Then |det A| = |det Q|| det R|, and since
@ is a unitary matrix, |det Q| = 1, and we get |det A| = |det R| = [[}_; |rj;].

On the other hand, a; = Qr; for all j = 1,...,n, where a; and r; denote the jth
columns of A and R, respectively. Now ||a;||2 = ||7;]|2 because @ is a unitary matrix.
Therefore we really need to prove that [[7_, |rj;| < [[;_, I7jll2. In fact, we can easily



prove more than that: for each j we have |r;;| < ||r;||2 because rj; is just one components
of the column r; of the matrix R.

JPE, September 2011, #5.

(a) Similar matrices have the same determinant, and obviously det B = 0, therefore
our first task is to find = such that det A = 0. We easily compute det A = —22, hence we
get equation —x? = 0 with the only solution x = 0.

Next, the matrix A with x = 0 has three eigenvalues: 0, 1, and 2. Since they are
distinct, A is diagonalizable, and it is equivalent to a diagonal matrix diag{0, 1,2}, which
is exactly B. Thus A ~ B if and only if x = 0.

(b) Note that A is real symmetric, i.e., Hermitian. By the Spectral Theorem, A is
unitary equivalent to a diagonal matrix whose diagonal components are the eigenvalues
of A. In the case x = 0 those eigenvalues are 0, 1, and 2, hence A is unitary equivalent
to B.

JPE, September 2011, #6.

Let us decompose the matrix A as follows:

apl Qo - 0 0
Qo1 Aoy - 0 0
A= | C : : =B+C
0 0 -+ Gp-1pn-1 Anna
i 0 0 - app nn |
with
[a11 as - 0 0] [0 0 -~ 0 0 |
(91 Ay - 0 0 o0 - 0 0
B=1: : . : S, CO= s : :
0 0 - ap1pn1 O o0 - 0 Upm—1
00 - 0 Q| 00 -+ anp 0 |

Note that C' only has two non-zero components, both in its trailing 2 x 2 block.

The matrix B is block-diagonal, with one big block of size (n — 1) x (n — 1) and one
tiny block of size 1 x 1. By a general rule, its eigenvalues are those of its blocks. The
trailing 1 x 1 block [a,,] obviously has eigenvalue a,,,.

On the other hand, ||C||2 = |an.n-1] as one can verify directly (we omit that verifica-
tion). Also note that both B and C' are real symmetric, hence Hermitian. By a general
theorem in the course, the eigenvalues of A and those of B can be paired so that the
difference between the corresponding eigenvalues of A and B is < ||C||2. Thus there is
an eigenvalue \ of A such that

|>‘ - ann| < HCHQ = ’an,n—1|
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Note: it is tempting to use the Gershgorin theorem, but it will not work because we do
not have enough control over the locations and sizes of Gershgorin disks, other than the
last one. Therefore the Gershgorin disks can overlap and we will not be able to prove
that the last one contains at least one eigenvalue of A.

JPE, May 2011, #1.

We will use the following fact (proven in the course!): if (Sz,z) = 0 for every z € C",
then S = 0. So in order to show that 7% = —T, or T'4+ T* = 0, it is enough to check
that ((T'+ T%)z,z) = 0 for every z € C". Let z = x + iy, where z,y € R" and i = /—1.
Now we have

(TH+T")z,2)y =((T+T")(x + iy), x + iy)
= (Tx,x) + (T"x,z) + i(Ty,x) +i(T"y, )
—i(Tx,y) —i{T"z,y) + (Ty,y) + {(T"y,y)
We are given that (T'x,z) = 0 for every # € R"™, which also implies that (T"z,z) =

(x,Tzy = (Tx,z) = 0. So the first two and the last two terms in the above expression
vanish. The middle four terms cancel one another because

(T, y) = (2, Ty) = (Ty,x) and (T"y,z) = (y, Tx) = (Tx,y)
Thus indeed ((T' 4+ T%)z, z) = 0 for every z € C", hence T* = —T.

JPE, May 2011, #b5.

Let us begin with n = 2. A counterclockwise rotation by angle 6 is represented by
matrix

_ [cos@ —Sine}
g =

sin 6 cos 0

One can find, by examining the rotation of the xy plane by angle 6 in geometric terms,
that it is a composition of two reflectors: one across the horizontal line L; = span{e; }
and the other across the line bisecting the angle 6, i.e., the line

L, = span{[cos0/2, sinf/2]"}.
We will prove this algebraically. The first reflector takes e; — e; and ey — —eq, S0 it is

defined by matrix
1 0
P1 = |:€1 —62} = |:O _1:|

The matrix of the second reflector can be found by the Householder formula

Py=1—2z2"

IThis fact also follows from the solution of JPE, May 2012, #2.
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where 7 is a unit vector orthogonal to the line L,. Taking x = [—sinf/2, cos§/2]" gives

sinf —cosf

P, = [cos 0 sin 0]

Now one can verify directly that
cos@ —sinf| |cosO sinf| |1 0
[sinQ 0056’} N [sin@ —cos@} [0 —1} ’
hence Gy = P> P;. Of course, the reflectors P, and P, are not unique, one can choose
them in many ways.
Now for arbitrary n > 2 every Givens rotator G ; ¢ acts as a rotator in the 2D subspace
V spanned by two canonical basis vectors, e; and e;. In the orthogonal complement to V,
it is an identity, i.e., G; o(ex) = ey for all k ¢ {i,j}. We first construct two reflectors, P
and P, in the space V', as above, and then extend them to the whole space by requiring
that Pi(ex) = e and Py(ey,) = e for all k ¢ {4, j}. This makes the identity G, ;o = PP,
valid not only in V', but in the whole space.
Lastly, a reflector cannot be a product of two (or any other number) of rotators. One

can easily check that reflectors have determinant —1 and rotators have determinant +1.
Thus we cannot have the identity —1=1-1---1.

JPE, May 2010, #2.

(a) Since the space V is finite-dimensional, we can represent S and 7' by matrices,
which we will denote by the same letters, S and T

Now det(ST) = det S - detT = det T - det S = det(T'S). Thus either both det(ST)
and det(7'S) are zero or both are not. This implies that zero either is an eigenvalue
for both ST and T'S or is not an eigenvalue for either. It remains to consider non-zero
eigenvalues.

If X\ # 0 is an eigenvalue of ST, then STx = Az for some x # 0. Premultiplying by T’
gives T'STx = ATx. Denote y = Tx; then we can write T'Sy = Ay. If y # 0, we conclude
that \ is an eigenvalue of T'S, as required. If y = 0, then T'x = 0, hence STx = S0 = 0,
which implies Ax = 0, therefore A = 0, which contradicts our assumption that A\ # 0. So
the case y = 0 is impossible.

(b) If the matrix has distinct eigenvalues, it is similar to a diagonal matrix, i.e.,
T = X 'DX for a diagonal matrix D. Since S has the same eigenvectors, we have
S = P7'D'P, where D' is another diagonal matrix (whose diagonal entries are the
eigenvalues of S. Now

ST = P 'D'PP'DP =P 'D'DP =P 'DD'P=P 'DPP'D'P=TS

where we used the simple fact that diagonal matrices commute.



JPE, May 2010, #6.

(a) Since f(A) = 0 and f is a polynomial with two roots, + = 2 and x = —5, we
conclude that the matrix A has just two distinct eigenvalues: A = 2 and A = —5. Let
their algebraic multiplicities be p and ¢, respectively. Then tr A = 2p — 5q. It is given to
us that tr A = 0, therefore 2p = 5¢q. Hence p is a multiple of 5 and ¢ is a multiple of 2,
i.e., p=>5k and q = 2k for some k > 1. This implies n = p + ¢ = 7k.

(b) Since A is symmetric, it is diagonalizable, hence all Jordan blocks have minimal
size 1 x 1. Therefore the minimal polynomial is m(z) = (x — 2)(z + 5).

(c) The characteristic polynomial is (z — 2)P(z + 5)7 = (z — 2)%(z + 5)%*.

(d) The eigenvalues of A% are 22 = 4 with multiplicity p = 5k and (—5)* = 25 with
multiplicity ¢ = 2k. Hence tr A% = 4 - 5k + 25 - 2k = 70k.

JPE, May 2010, #7.

By a general formula we learned in the course,
dim (Ker T) + dim (Range T) = dim V.
Also we know that
dim (Range T") = rank(T') = rank(7™) = dim(Range T™)

Thus the subspaces Ker T" and Range T™ have “complimentary” dimensions: their dimen-
sions add up to dim V. Now it is enough to show that KerT'N RangeT™ = {0}; this
would imply

V =KerT & RangeT™

hence the union of bases of these two subspaces would be a basis in V.
Suppose, by way of contradiction, that there is x # 0 such that x € Ker TN Range T™.
Then there is a y € W such that 7"y = z. Now we have

(Tz,y) = (x, T"y) = (x,z) > 0.
On the other hand, Tz = 0, hence (T'z,y) = 0, a contradiction.

JPE, September 2009, #4 (and Sept. 2006, #1).

(a) The characteristic polynomial of A is (A — 1), so it has one eigenvalue A\ = 1 of
algebraic multiplicity four. If it has one Jordan block, then A — Al = A — I must have
rank three. A direct inspection shows that this happens whenever (a+b)(c—d) # 0, i.e.,
the conditions are a # —b and ¢ # d.

(b) Routine calculations.



JPE, September 2008, #6.

This problem can be solved by using the standard analysis of rank one matrices (see
JPE, May 2007, #2, and May 2005, #1, below). But we also give an independent
solution:

First, we show that A is a projector:

A* = (I—111")(1 - L117)
=7-2111" - 111" + L(11")(11")

We note that
1Ha1t)y =111 =n11”
N——

=n

because 171 = (1,1) = 1+ --- + 1 = n is the inner product of two vectors. Then
A=T-111" - InT 41" =7 - 111" =4

and because A? = A, we see that A is a projector.
Second, we verify that A is an orthogonal projector. A projector A is orthogonal iff
A is Hermitian, A* = A. Since A is real, we must verify that AT = A. Here goes:

AT =T L") =1 - L11T = 4

hence A is an orthogonal projector.
Next we identify its range. For a projector, the range consists of vectors x such that
Az = z. This means

r=Ar=(I- 11"z =0-111"2 =2 - 1(1"2)1

where 172 = (z,1) = 21 + -+ + ¥, is again a scalar product of two vectors. Thus we
have
z € RangeA <— 1(z,1)1=0 < (z,1)=0

Thus the range is the orthogonal complement to the vector 1. It is obviously an (n — 1)-
dimensional vector space.

The kernel is the orthogonal complement to the range, hence Ker A =span{1}.

Next we find the singular values of A. Since A is Hermitian, its singular values are
the absolute values of its eigenvalues. So we are looking for the eigenvalues of A.

For each nonzero vector x € Range A we have Ax = x, hence x is an eigenvector
with eigenvalue A = 1. Thus A = 1 is an eigenvalue of geometric multiplicity n — 1 (the
dimensionality of the range of A).

For each nonzero vector x € Ker A we have Ax = 0, hence x is an eigenvector
with eigenvalue A = 0. Thus A = 0 is an eigenvalue of geometric multiplicity 1 (the
dimensionality of the kernel of A).
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So the eigenvalues of A are 1,1,...,1,0. And so are its singular values.

JPE, May 2008, #3.

It was shown in class that for Hermitian matrices the maximum value of the Rayleigh
quotient r(x) iS Apax and its minimum value is Api,. Now since r(z) is a continuous
function on its domain C™ \ {0} and the domain is connected, it follows that the range
is connected, too, hence the range is the interval [Apin, Amax)-

JPE, September 2007, #6.

(a) The eigenvalues of M are distinct, because b # 0. Hence M is similar to the

a+b 0 . |. By direct calculation, the matrix N = a b
0 a—1b —b a

has the same eigenvalues, a 4 ib. Thus N is also similar to D. Hence M and N are
similar, i.e., Q 'M(Q = N for some nonsingular matrix Q).

diagonal matrix D =

The problem also specifies that Q must be a real matrix, i.e., Q € R?*2. The existence of a real
matrix @ that establishes the similarity between two real matrices, M and N, follows from a general,
though little known, fact. Here we prove it, for the sake of completeness:

Fact: If A, B € R"*" are two similar real matrices, then there exists a real nonsingular matrix
Q € R™*™ such that Q' AQ = B.

Proof: By similarity, there exists a complex matrix P € C"*" such that P"'AP = B. We can
rewrite this equation as AP = PB. Let P = U + iV, where U,V € R™*" are real matrices (the “real”
and “imaginary” parts of P). Then we have

AU +iV)=(U+iV)B = AU+iAV =UB+iVB = AU=UB & AV =VB

(because A and B are real matrices). Now if at least one of U and V is nonsingular, we are done. If
both are singular, we need to sweat a little more. The above equations imply

AU+ 2V)=(U+2V)B VzeC

It is enough for us to show that 3z € R such that U + 2V is invertible. Now det(U + zV') is a polynomial
in z of degree n, and its coefficients are real numbers (they are algebraic expressions involving only the
entries of the matrices U and V). We know that det(U + iV) # 0, because P = U + iV is invertible,
hence our polynomial is not identically zero (i.e., not all of its coefficients are zero). This implies that
3z € R such that det(U + z2V) # 0. Therefore U + zV is invertible, and we set Q = U + zV. O

(b) Real Schur decomposition that we learned in class gives this result.
Next three problems involve rank one matrices, so we put them together:

JPE, May 2007, #2.

(a) Suppose rank A = 1; then the range of A is a one-dimensional space. Pick a
non-zero vector x € Range A. Then Range A = span(x). By a general formula,

dim (Ker A) =n —dim (Range A) =n—1,
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so Ker A is a hyperplane. Pick a unit vector u orthogonal to Ker A, then Ker A = u™.
Since u ¢ Ker A, we conclude that Au # 0, and since Au € Range A we conclude that
Au = cx for some scalar ¢. Let y = ¢u. Now we will verify that A = zy*. Until then we
denote B = xy*.

Indeed, for any z € Ker A we have (z,u) = 0, hence

Bz =uay*z = (z,y)r =c(z,u)r =0-2 =0
hence Bz = Az. Also,
Bu = zy*u = (u,y)x = c{u,uyr = cx

hence Bu = Au. Therefore B = A, as claimed.
Note that x and y defining A = xy* are not unique. We can replace x with sx and y
with 57!y for any non-zero scalar s € C.

(b) We have
A? =yt zyt = (Y)Y = (z,y)zy" = (z,y)A

In order to find a Jordan canonical form for M = I + A we need to describe the action
of A. First we note that for any z € Ker A

Mz=(I+A)z=2+Az==2

hence z is an eigenvector of M with eigenvalue 1. Thus A = 1 is an eigenvalue of M with
geometric multiplicity at least n — 1. The further analysis involves two cases:

(i) (Main case) x ¢ Ker A. Then (z,y) # 0. Note that
Mz =(I+Azx=x+zy'zc=c+ (x,y)z =1+ (z,y))z

hence z is an eigenvector of M with eigenvalue 1+ (z,y) (which is different from 1).
We see that M has two distinct eigenvalues: A\; = 1 with algebraic and geometric
multiplicity n — 1 and Ay = 1 + (x,y) with algebraic and geometric multiplicity 1.
Therefore, M is diagonalizable, and its Jordan canonical form is a diagonal matrix
with one entry 1+ (x,y) and n — 1 entries equal to 1. Its minimal polynomial is

mA) = A =1DA=1—(z,))
(ii) (Special case) x € Ker A. Then (x,y) = 0. Note that M — I = zy*, hence

(M =Dy =xy"y = (y,y)x #0

and
(M — 1)y = (y,y)ay*z = (y,y)(z,y)z = 0.
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Therefore y is a generalized eigenvector for M corresponding to A = 1, but not an
eigenvector. Thus M has a unique eigenvalue A = 1 of algebraic multiplicity n and
geometric multiplicity n — 1. Its Jordan canonical form has all 1’s on the main
diagonal and a single 1 above the main diagonal. There is one Jordan block of size
2 x 2 and n — 1 Jordan blocks of size 1 x 1. The minimal polynomial of M is

m(A) = (A —1)*

JPE, May 2007, #8.

(b) After k steps of the Gaussian elimination we obtain a partial LU decomposition:

A = LD g+

where L*+D is of the form

k+1
7 (kD) _ L%% 1; 0
Jr
where Lgliﬂ) € CM** is a unit lower triangular matrix, as is expected. Note that the
L factor in the LU decomposition, below its main diagonal, is filled with multipliers.
Since those have only been constructed for the first £ columns, the last n — k columns of
L*+1) below the main diagonal, are filled with zeros. In other words, the bottom right
(n — k) x (n — k) block of L*+Y is the identity matrix, I.
Now multiplying blocks of the matrix L**+Y and those of A**1) gives us
A = LA
Arp = Ly A
A21 _ Lgi-i-l)Agli-&-l)
s = LA 1 A

From these equations one easily gets

Agy™ = Agy — Ly A
ATV = Agy — A [ALTI LA,
Aé’;*” = Agy — A21A1_111‘112

Note: the Gaussian elimination operations cannot alter the determinant of every principal
minor, therefore det A;; = det Aﬁﬂ). It is given to us that A;; is invertible, hence

det Ay; # 0, so the matrix Aﬁﬂ) is invertible, too.
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Note: it is easy to guess the right formula for Ag;rl) as follows: assume that £ =1

and n = 2; then by elementary calculation

(2) _ B /
Qoy = Q22 — A210712/0A11

Replacing the individual components a;; with the blocks A;; and arranging the last term
so that the multiplication is possible for any n > k we get the right formula.

(b) From part (a), using k£ = 1, we have
A5 = Ay — - A A
Since A is Hermitian, we have A5 = A5, A5, = Agy, and a;; € R. Therefore

2 * * * *
[Aé;] = A3 — a_h Ay Ay = Az — (%11 Ag1 Ara,

which proves that A%) is Hermitian, too.
Now for every y € C"! we have

(A%)y, 3/> = y*AgQZ)y =y Aypy — ﬁ y*AmAZly
= y* Apy — 2 [(Ao,y)

ail

We need to prove that <A§22)y, y) > 0 for every y # 0.
Let x = Lj, where ¢ € C and y is as above. Then multiplying the blocks of x and
those of A gives

(Az,x) = aq|c]* + cy* Aoy + ALy + y* Ay
= an e’ + (A2, y) + c(Aar, y) + ¥ Agay

We now choose ¢ = —a—h (As1,y) and obtain
(Az,2) = =7 (Ao, ) [P+ o7 Aoy = (A, y).

Since A is positive definite, and y # 0 implies x # 0, we have

(AR)y,y) = (Az,z) > 0.

JPE, May 2005, #1.

(a) The matrix A admits an eigenvalue decomposition only in the Main case above,
i.e., under the condition (x,y) # 0.
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(b) The matrix A admits a unitary diagonalization if and only if there exists an
ONB of eigenvectors. This happens when the eigenspaces corresponding to Ay = 1 and
Ay = 1+ (x,y) are orthogonal, i.e., under the condition L Ker (zy*). This condition is
equivalent to x and y being collinear, i.e., x = cy for some scalar c.

JPE, September 2004, #7.

The result follows from the analysis above.

JPE, September 2006, #4 (and Sept. 1999, #6)

Let us denote the given (n + 1) x (n + 1) matrix by B. If det B > 0, then by the
Sylvester theorem B is positive definite. If det B = 0, then B has an eigenvalue zero.
We will show that neither is possible.

Let us take an arbitrary vector v € R®™! and represent it as v = B}, where y € R"

and z € R. Then
1A x| |y [Ay+ 2z
so= ) [ =[]

Ay + zx
xTy

and

(Bo,v) = [y 2] {

} =y Ay + zy"x + 22"y = (Ay,y) + 22(z,y)

Choosing y = z and z = —(Az, z) /(z, x) gives
(Bv,v) = —(Az,z) <0

which shows that B is not positive definite.
Now if B had an eigenvalue zero, there would be a nonzero vector v such that Bv = 0.
This implies Ay = —zz and (z,y) = 0, therefore

<Ayay> = <— ZCL’,y> = —Z<$,y> =0

Since A is positive definite, the above relation can only happen if y = 0. In that case
zr = —Ay=—A0=0, so z =0 as well, thus v = 0.

JPE, May 2006, #7.

Let 2I — A =UDV* be an SVD for the matrix zI — A. Then (21 — A)~' = VD~ U*
is an SVD for (2 — A)™'. Thus the singular values of (2 — A)~! are the reciprocals
of those of 2I — A. In particular, o, ! is the largest singular value of (21 — A)~!. This
implies ||(zI — A)7!|| = 0,,*. Now the equivalence of (c) and (d) is obvious.

Now for any unit vector u we have

(A = zDullz = [[(z1 = A)ully = [[UDV ully = [|Dv]|
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where v = V*u is a unit vector, too. Clearly,

min ||Dv|y = o,.
llvll2=1
Thus the condition (b) simply says that o, < e, hence it is equivalent to (c).

Lastly, if z is an eigenvalue of A+ B, then S = A+ B—zI is a singular matrix. We can
rewrite it as B = S — (2] — A), and the condition || B||z < € becomes ||S— (2] — A)l]2 < e.
Now the condition (a) simply says that the “distance” (in the 2-norm) from z/ — A to
the nearest singular matrix is < e. We know from the course that this distance is equal
to the smallest singular value, o,. Thus (a) is equivalent to (c).

JPE, September 2005, #8 (and Sept. 2009, #8b, and May 2000, #7).

Taking the limit £ — oo gives AQ s = Qo Roo. Since Ry is upper triangular for every
k, so is its limit R. Since )y is unitary for every k, we have Q;Q; = I. Taking the
limit & — oo gives Q% Qo = I, hence () is unitary, too. Now A = QR Q% , hence A
is unitary equivalent to the upper triangular matrix R.,. Thus the eigenvalues of A are
the diagonal components of R..

JPE, September 2004, #1.

(a) If X # 0 is an eigenvalue of T'S, then T'Sz = Az for some x # 0. Premultiplying
by S gives ST Sz = ASz. Denote y = Sx; then we can write STy = A\y. If y # 0,
we conclude that X is an eigenvalue of ST, as required. If y = 0, then Sz = 0, hence
TSz = TO0 = 0, which implies Az = 0, therefore A = 0, which contradicts our assumption
that A # 0.

(b) Indeed, we can take for example T = 1} and S = [1 0]. Then T'S = [1 0}

0 0 0
has two eigenvalues: 1 and 0. On the other hand, ST = [1] has one eigenvalue: 1.
JPE, September 2002, #5 (and Jan. 1989, #7, Jan. 1988, #5).
We have

L)

MY b+ Nz®) = M~ (Az 4+ N2™)
MY (M = N)z+ M 'Nz® = g + M7'N(z® — z)

therefore
€(k+1) — M—lNe(k)

hence G = M~!N. Similarly,
r® D = p — Ax®H) = b — (M — N)M ' (b+ Nz¥))
=NM~'b— Na® + NM Nz
=NM'b— NM~ " (Mz® — Na™)
= NM(b— Az®™) = NM~1r®)
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hence H = NM~'. Note that
H=NM"'=MMNM :MGMfl,

hence H and G are similar. As a result, they have the same spectrum (and the same
spectral radius).

JPE, May 2001, #3.

Since A has rank n, we have m > n. We have proved in class that for a full rank
matrix A the smaller of A*A and AA* is nonsingular. Since m > n, the smaller is A*A.

Next, we easily see that
Lovxm A r|  |r+Ax
A* Opsnl || | A'r

The given system of equations has a unique solution if and only if the matrix 0
nxn

Im><m A :|
is non-singular, i.e., its kernel consists of a single vector (zero). Indeed, if a vector [2}

r+ Ax

is in the kernel, then { .
A*r

] = 0, hence

r+Axr =0 and A'r=20
Premultiplying the first equation by A* gives
A'r+ A"Ax = A"Ax =0

Since A*A is nonsingular, we have x = 0, and then r = —Ax = 0, too. Hence the kernel
of the given matrix is trivial, thus it is nonsingular.
Now the solution of the given system satisfies

5=l

r+Axr=0» and A*'r =0

hence

Premultiplying the first equation by A* gives
A'r+ A"Ax = A" Ax = A™D

hence z is a solution of the system of normal equations. Thus it minimizes || Az — b||2,
as we learned in class. Finally, r = b — Az is the residual, as required.
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JPE, September 1999, #4.

If z is an eigenvector corresponding to A = —10, then
A 10
Azl _ 100fall _ o
]l ]l

hence M(A) > 10. On the other hand, if A is Hermitian, then

M(A) = m | Az
a£0 ||z

= ||A]| = max{|A|: A is an e-value of A} = 10.
Hence 10 is the best lower bound for M(A).
If x is an eigenvector corresponding to A = 0.01, then

A 01
sl _ 001 _ o)

Izl ]

hence m(A) < 0.01. On the other hand, if A is Hermitian, then

Ayl 1 1
m(A) = min = — =
A T AT e B AT

1 1
~ max{|A\~![: \is an e-value of A} 0.017!

= 0.01.

Hence 0.01 is the best upper bound for m(A).

JPE, September 1998, #5 (and Sept. 1996, #3).

(a) If we choose an ONB in W and an ONB in W+, then their union will be an ONB
in V. In that basis, U is given by a diagonal matrix whose entries are +1 (coming from
W) and —1 (coming from W+). Thus U is unitary equivalent to a diagonal matrix, with
eigenvalues being +1. Since the eigenvalues are real, the matrix U is self-adjoint. Since
the eigenvalues have absolute value one, the matrix U is unitary.

(b) Note that
—Ua=-U(y+p)=7-8

for every v € W+ and 8 € W. Hence —U is a reflector across the hyperplane W+. By
the Householder formula,

*

Tx

-U=1-2
]2

where x = [1,0,1]7.

JPE, September 1997, #3.
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(a) Routine calculation gives
01 11
b -l
(note that P is not uniquely defined, you can choose it differently).

(b) For any 2 x 2 matrix B we have two options. If it is diagonalizable, then it is
similar to a diagonal matrix, that is symmetric. If it is not diagonalizable, then it is
similar to a Jordan matrix

Al

B~ {o A} =AM+J=AP'P+P'AP =P '\ + AP

hence B is similar to the matrix Al + A, which is symmetric. Here A and J are the same
as in part (a).
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