
Thermodynamic Formalism, MA 793

Preface

Thermodynamic formalism is the theory of Gibbs Measures. Technically, those are de-
fined on abstract spaces of symbolic sequences called subshifts of finite type (the elements
of those spaces are infinite sequences of some symbols). In that context, it is hard to
see the real meaning of Gibbs measures and their relevance for dynamical systems and
classical physics. It is also difficult to learn Gibbs measures starting with that abstract
context.

We adopt a different approach. First we describe two classes of dynamical systems:
Anosov diffeomorphisms and Axiom A diffeomorphisms. Then we construct Markov
partitions, which will naturally lead to a symbolic representation (coding) by subshifts of
finite type. Gibbs measures will then correspond to invariant measures for Anosov and
Axiom A diffeomorphisms.

Notation

• M denotes a smooth (of class C∞) compact connected manifold with a Riemannian
metric.

• d denotes the dimension of M , i.e. dim M = d.

• TxM denotes the tangent space to M at x ∈ M , and TM = ∪xTxM the tangent
bundle of M .

• ‖v‖ denotes the norm of v ∈ TM .

• 6 (u, v) denotes the angle between u, v ∈ TxM .

• T : M → M denotes a diffeomorphisms of class Cp, p ≥ 1.

• DxT : TxM → TT (x)M denotes the derivative of T at x ∈ M .
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1 Anosov Diffeomorphisms

1.1 Definition (Anosov Diffeomorphism)

Suppose that each tangent space TxM with x ∈ M is a direct sum

TxM = Eu
x ⊕ Es

x

of subspaces so that

(a) DxT (Eu
x) = Eu

Tx and DxT (Es
x) = Es

Tx

(b) there exist constants C > 0 and λ ∈ (0, 1) such that

‖DxT
n(v)‖ ≤ Cλn‖v‖ when v ∈ Es

x, n ≥ 0

‖DxT
−n(v)‖ ≤ Cλn‖v‖ when v ∈ Eu

x , n ≥ 0

(c) The spaces Eu
x and Es

x vary continuously with x, and the angle between Eu
x and Es

x

is uniformly bounded away from zero.

Note: the dimensions du = dim Eu
x and ds = dim Es

x are constant on M .
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Figure 1: The action of DxT on the subspaces Eu
x and Es

x.

1.2 Exercise

(a) Show that (a) and (b) of 1.1 imply ‖DxT
−n(v)‖ ≥ Cλ−n‖v‖ for all v ∈ Es

x and
n ≥ 0 and ‖DxT

n(v)‖ ≥ Cλ−n‖v‖ for all v ∈ Eu
x and n ≥ 0.

(b) Prove that T−1 : M → M is an Anosov diffeomorphism.

(c) Show that if v ∈ TxM is such that v /∈ Eu
x and v /∈ Es

x, then there is a Cv > 0 such
that ‖DxT

n(v)‖ ≥ Cvλ
−|n| for all n ∈ ZZ, i.e. the images of v grow exponentially

both in the future and in the past.
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(d) Prove that T : M → M has at least one invariant measure µ.

(e) Let µ be a T -invariant measure on M . Prove that at µ-almost every point x ∈ M
Lyapunov exponents exist (recall the Oseledec Theorem). Then show that there
are exactly du positive Lyapunov exponents (all ≥ log λ−1) and exactly ds negative
Lyapunov exponents (all ≤ log λ).

1.3 Remarks

The subspace Eu
x and its vectors are said to be unstable, the subspace Es

x and its
vectors are said to be stable. The assumption (b) in Definition 1.1 implies a uniform
contraction of stable vectors and uniform expansion of unstable vectors (under the future
iterations). The set of assumptions (a)–(c) specifies what is frequently called uniform
hyperbolicity.

As Exercise 1.2 (e) shows, the assumptions (a)–(c) imply that there are no zero
Lyapunov exponents for the map T (this property is often referred to as hyperbolicity).
Hence, uniform hyperbolicity implies hyperbolicity.

The converse is not true, i.e. the hyperbolicity does not imply uniform hyperbolicity.
Indeed, the hyperbolicity is only an asymptotic property meaning that the images of
stable (unstable) vectors contract (respectively, expand) eventually, in the limit, as time
goes to infinity. This does not prevent temporary opposite trends – when stable vectors
expand and unstable vectors contract during arbitrarily long time periods.

1.4 Adapted Metric

Technically, the definition 1.1 does not prevent temporary expansion of stable vectors
and contraction of unstable vectors (but the time periods of such reverses are strictly
bounded by n such that Cλn < 1). Interestingly, for every Anosov diffeomorphism there
exist a Riemannian metric in which Definition 1.1 (b) holds with C = 1. This metric is
called adapted metric or Lyapunov metric.

The adapted metric makes many calculations simpler. For our convenience, we will
always use an adapted metric.

1.5 Proposition

The assumption (c) in Definition 1.1 follows from (a) and (b).

Proof. Suppose xn → x. By taking a subsequence, if necessary, we can assume that
k = dim Es

xn
is independent of n. Let e

(n)
1 , . . . , e

(n)
k be an orthonormal basis in Es

xn
. By

taking a subsequence, if necessary, we can enforce the convergence e
(n)
i → ei as n →∞,

for each i = 1, . . . , k. Let E1
x = span{e1, . . . , ek}. By continuity, ‖DxT

n(v)‖ ≤ λn‖v‖ and
‖DxT

−n(v)‖ ≥ λ−n‖v‖ for all v ∈ Es
x and n ≥ 0. Hence, E1

x ⊂ Es
x. A similar argument
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shows that Eu
xi

converge to a subspace E2
x ⊂ Eu

x . Since dim E1
x+ dim E2

x = d, then we
have E1

x = Es
x and E2

x = Eu
x . 2

1.6 Proposition

Let T̃ : M → M be a small C1 perturbation of an Anosov diffeomorphism T : M →
M . That is, there is a small ε > 0 such that dist(T (x), T̃ (x)) < ε and ‖DxT −DxT̃‖ < ε
for all x ∈ M . Then T̃ is also an Anosov diffeomorphism.

Proof. The main part is to construct the subspaces Ẽu
x and Ẽs

x for the perturbed dif-
feomorphism T̃ . We fix a small α > 0 and take a cone Cu

x around Eu
x with opening

α, i.e. Cu
x = {v ∈ TxM : 6 (v, Eu

x) < α}. It is easy to check, by a perturbation argu-
ment, that DxT̃ (Cu

x ) ⊂ Cu
T̃x

and ‖DxT̃ (v)‖ ≥ λ−1
1 ‖v‖ for all v ∈ Cu

x and some constant

λ1 ∈ (λ, 1) that depends on α. Then we define Ẽu
x = ∩n≥0DT̃−nxT̃

n(Cu
T̃−nx

). Similarly,

Ẽs
x = ∩n≥0DT̃ nxT̃

−n(Cs
T̃ nx

).
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Figure 2: Stable and unstable cones.

1.7 Definition (local stable and unstable manifolds)

Let x ∈ M and ε > 0. A local unstable manifold of x is

W u
ε (x) = {y ∈ M : dist(T−nx, T−ny) < ε ∀n ≥ 0}

Similarly, a local stable manifold of x is

W s
ε (x) = {y ∈ M : dist(T nx, T ny) < ε ∀n ≥ 0}
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1.8 Remark

There is a natural duality between stable and unstable objects in this theory. These
objects get interchanged if one replaces T : M → M with T−1 : M → M . For brevity,
we will sometimes mention just one of them and suppress the other.

1.9 Theorem

Let T : M → M be a Cp Anosov diffeomorphism. There is a small ε > 0 such that
for any point x ∈ M

(a) W u
ε (x) and W s

ε (x) are embedded Cp disks in M with TxW
u,s
ε (x) = Eu,s

x .

(b) We have
dist(T−nx, T−ny) ≤ λn dist(x, y) ∀y ∈ W u

ε (x), n ≥ 0

and
dist(T nx, T ny) ≤ λn dist(x, y) ∀y ∈ W s

ε (x), n ≥ 0

(c) We have
TyW

u,s
ε (x) = Eu,s

y ∀y ∈ W u,s
ε (x)

(d) The disks W u,s(x) vary continuously with x.

Proof. A complete proof of this theorem is quite involved, and its details are not much
relevant to our further studies. We only sketch a proof here. The idea of the proof
resembles that of Proposition 1.6. Define a cone Cu

x with a small opening α > 0. Then
fix a small ε > 0. At any point x ∈ M the ε-ball in the tangent space TxM can be
identified with a small neighborhood U(x) of x via the exponential map. Now consider
all local manifolds of dimension du in U(x) passing through x whose tangent vectors lie
within the cone Cu

x .
Under the map T , each of these manifolds stretches out in all directions by a factor

λ−1. It is easy to see that the image of each such manifold covers one of the manifolds
constructed similarly at the point T (x). Removing the excesses (the parts of the images
stretching beyond U(Tx)), we obtain a transformation of manifolds in U(x) onto those
in U(Tx). Now it is easy to check that the images get closer together: their variation
in the direction parallel to Es

Tx shrinks by a factor ∼ λ2. Also, the variation of their
tangent planes shrinks by a factor of ∼ λ2. Now we take all those manifolds constructed
at the point T−n(x) and map them under T n. Their images make a very thin “pancake”.
It is easy to see that in the limit n → ∞ they converge to a single C1 manifold, call it
W u

ε (x). It is also easy to check that TxW
u
ε (x) = Eu

x (the “pancake” always contains some
manifolds whose tangent plane at x is Eu

x).
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An extra technical work (we skip it) is required to show that W u
ε (x) is Cp smooth, i.e.

the stable and unstable manifolds are as smooth as the Anosov diffeomorphism T itself.
Thus we obtain (a). The claim (b) can be verified directly. The claim (c) holds since the
same construction can be applied to the point y. The claim (d) follows from (c) and the
continuity of the spaces Eu,s

x .
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Figure 3: Stable and unstable manifolds.

1.10 Remark

We will denote local stable and unstable manifolds by W u(x) and W s(x) suppressing
their size ε. Note that local stable and unstable manifolds are thus not unique. However
they are essentially unique. In particular, if z ∈ W u(x) ∩W u(y), then the intersection
W u(x) ∩W u(y) contains an open neighborhood of z in both manifolds (a similar state-
ment holds for stable manifolds).

1.11 Definition (global stable and unstable manifolds)

Global stable and unstable manifolds are defined by

Ws(x) = ∪n≥0T
−nW s(T nx) and Wu(x) = ∪n≥0T

nW u(T−nx)

1.12 Remarks

We have

Wu(x) = {y ∈ M : dist(T−nx, T−ny) → 0 as n →∞}
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(a similar property holds for Ws(x)).
Also, T n(Wu(x)) = Wu(T nx) and T n(Ws(x)) = Ws(T nx) for all n ∈ ZZ. Global

stable (and unstable) manifolds are unique. In particular, if Wu(x) ∩Wu(y) 6= ∅, then
Wu(x) = Wu(y) (a similar statement holds for stable manifolds).

The global stable and unstable manifolds are “infinitely large”, so that they never
terminate. However, since the entire manifold M is compact, the global stable and un-
stable manifold have to wrap around M and, typically, become dense in M .

1.13 Examples

In the course of Dynamical Systems, MA 760, we have studied hyperbolic toral au-
tomorphisms. Those are Anosov diffeomorphisms. Their stable and unstable manifolds
are straight lines parallel to the eigenvectors of the corresponding matrix. (Recall that
we proved that each such line is dense on the torus.)

By Proposition 1.6, small C1 perturbations of hyperbolic toral automorphisms are
Anosov diffeomorphisms, too. It is rather strange that there are no more simple exam-
ples...
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Figure 4: Canonical coordinates.

1.14 Proposition (Canonical coordinates)

There exists a small ε0 > 0 such that if dist(x, y) < ε0, then the intersection

[x, y] := W s(x) ∩W u(y)

consists exactly of one point. Furthermore, the point [x, y] depends continuously on x
and y.
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As a result, one can represent every point y in the ε0-neighborhood of x by two points

y′ = [x, y] ∈ W s(x) and y′′ = [y, x] ∈ W u(x)

The points y′, y′′ play the role of coordinates of the point y, and the manifolds W s(x)
and W u(x) are coordinate axes.

Proof. The intersection W s(x) ∩ W u(x) is transversal, and such intersections are pre-
served under small perturbations.

1.15 Corollary

The map T : M → M is expansive, i.e. for any x 6= y there is an n ∈ ZZ such that
dist(T nx, T ny) > ε0.

Proof. Otherwise y ∈ W u(x) ∩W s(x) by 1.10. However, this is impossible by 1.14.
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2 Axiom A Diffeomorphisms

2.1 Definition (Hyperbolic Set)

A closed subset Λ ⊂ M is hyperbolic if T (Λ) = Λ and each tangent space TxM with
x ∈ Λ is a direct sum

TxM = Eu
x ⊕ Es

x

of subspaces so that

(a) DxT (Eu
x) = Eu

Tx and DxT (Es
x) = Es

Tx

(b) there exist constants C > 0 and λ ∈ (0, 1) such that

‖DxT
n(v)‖ ≤ Cλn‖v‖ when v ∈ Es

x, n ≥ 0

‖DxT
−n(v)‖ ≤ Cλn‖v‖ when v ∈ Eu

x , n ≥ 0

(c) The spaces Eu
x and Es

x vary continuously with x, and the angle between Eu
x and Es

x

is uniformly bounded away from zero.

Note that the conditions (a)–(c) are identical to those in Definition 1.1, except now we
require them only for x ∈ Λ.

Observe that if T : M → M is an Anosov diffeomorphism, then the entire manifold
M is a hyperbolic set.

2.2 Definition (Nonwandering Points)

A point x ∈ M is nonwandering if

U ∩ ∪n>0T
n(U) 6= ∅

for every open neighborhood U of x. The set of all nonwandering points x ∈ M is denoted
by Ω(T ).

2.3 Exercise

Show that Ω(T ) is nonempty, closed and T -invariant. Show that Ω(T ) contains all
periodic points of T .

2.4 Definition (Axiom A Diffeomorphism)

T : M → M is an Axiom A diffeomorphism if Ω(T ) is hyperbolic and periodic points
are dense in Ω(T ).
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2.5 Example: Smale’s horseshoe

Let R be a rectangle and T : R → IR2 be a map that stretches R in the horizontal
direction, bends it into the shape of a “horseshoe” (see Figure 5) so that R∩T (R) consists
of two narrow horizontal rectangles. We assume that T restricted to R∩T−1(R) is linear
and its derivative is

DT =

(
λ1 0
0 λ2

)

for some λ1 > 2 and λ2 < 1/2.
The maximal invariant set

Ω(T ) = ∩∞n=−∞T n(R)

is a Cantor set with a natural product structure (it is the product of a Cantor set on the
x axis and a Cantor set on the y axis).

RT(R)

a b

cd

T(a)

T(b)

T(c)

T(d)

Figure 5: Smale’s horseshoe.

Note: the map T on R is not exactly a diffeomorphism of a compact manifold. It can
be extended to such, but this is rather difficult, and the details of such an extension would
be completely irrelevant. We will simply pretend that we deal with a diffeomorphism of
a compact manifold, and in fact all our considerations will be restricted to R.

2.6 Exercise

(a) Show that the conditions (a)–(c) of Definition 2.1 are satisfied for Λ = Ω(T ) in the
horseshoe example. Describe the spaces Eu

x and Es
x, find the constants C and λ. Deduce

that Ω(T ) is a hyperbolic set.
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(b) [This is optional, it might be difficult!] Show that periodic points are dense in
Ω(T ). Conclude that T is an Axiom A diffeomorphism. [Note: this fact will actually
follow from some statements that we prove below.]

2.7 Remark

Smale’s horseshoe is a canonical example of an Axiom A diffeomorphism, which is
essentially different from an Anosov diffeomorphism. One can easily extend the horseshoe
construction to any dimension.

In a sense, all Axiom A diffeomorphisms are either Anosov or horseshoes or combi-
nations thereof.

2.8 Extension of Anosov theory

Nearly all the results we obtained in Section 1 for Anosov diffeomorphisms extend to
Axiom A diffeomorphisms with obvious modifications:

• The claims in Exercise 1.2, the existence of an adapted metric 1.4, and Proposition
1.5 apply word for word.

• Definition 1, Remark 1.8, Theorem 1.9, and Remark 1.10 apply to all the points
x ∈ Ω(T ). Note, however: stable and unstable manifolds may not completely
belong to Ω(T ) (recall the horseshoe, for example!).

• Theorem 1.9 applies to all points x ∈ Ω(T ) and y ∈ W u,s(x) ∩ Ω(T ).

• Remark 1.10, Definition 1.11, and Remark 1.12 remain unchanged.

• Proposition 1.14 needs an important addition: if x, y ∈ Ω(T ) and dist(x, y) < ε0,
then [x, y] ∈ Ω(T ) (this follows from Lemma 2.9 below).

• Corollary 1.15 applies to the map T : Ω(T ) → Ω(T ).

2.9 Lemma

Let T be an Axiom A diffeomorphism and x, y ∈ Ω(T ). Assume that ∃z ∈ Wu(x) ∩
Ws(y) and ∃w ∈ Ws(x) ∩Wu(y) and both intersections are transversal at the points z
and w. Then z, w ∈ Ω(T ).

Proof. Let z ∈ Wu(x) ∩ Ws(y) and w ∈ Ws(x) ∩ Wu(y). We need to show that z is
nonwandering. Let U be an open neighborhood of z. Since periodic points are dense in
Ω(T ), then x and y can be approximated by periodic points, say p and q, with periods
m and n, respectively, so that L := Wu(p) ∩ U 6= ∅ and L ∩Ws(q) 6= ∅. We will show
that T k(L) ∩ U 6= ∅ for some large k.
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Note that p and q are fixed points for the map S = Tmn. Observe that the images
Sk(L) accumulate on W u(q) as k grows, i.e. W u(q) ⊂ limk→∞ Sk(L). Next, for large k
those images stretch out along Wu(q) and cross Ws(p) near the point w. Hence, for even
larger k they will come back to p along Ws(p), and therefore will accumulate on Wu(p).
For still larger k, they will stretch out along Wu(p) and cross U .

zp

q

S W
W

W

W

s

s

u

u

(q)

(q)

(p)

(p)

U

w

Figure 6: Proof of Lemma 2.9.

2.10 Definition (topological transitivity and mixing)

A map T : X → X of a topological space X is topologically transitive if for any open
subsets U, V ⊂ X there is an n ≥ 0 such that U ∩ T n(V ) 6= ∅.

T is topologically mixing if for any open subsets U, V ⊂ X there is an n0 ≥ 0 such
that U ∩ T n(V ) 6= ∅ for all n > n0.

From now on T : M → M will always be an Axiom A diffeomorphism.

2.11 Theorem (Spectral Decomposition)

(a) We have Ω(T ) = Ω1 ∪ Ω2 ∪ · · · ∪ Ωs, a disjoint union of closed sets, such that
T (Ωi) = Ωi and T |Ωi

is topologically transitive for each i.
(b) Next, Ωi = Ωi,1∪· · ·∪Ωi,si

, a disjoint union of closed sets, such that T (Ωi,j) = Ωi,j+1

(with identification Ωi,si+1 = Ωi,1), and T si|Ωi,j
is topologically mixing for each j.
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The sets Ωi are called basic sets.

Proof. We will define an equivalence relation on Ω(T ) and obtain Ωij as equivalence
classes. Let x ∼ y iff Wu(x)∩Ws(y) 6= ∅ and Ws(x)∩Wu(y) 6= ∅. (Note: the reflexivity
and symmetry are trivial, and transitivity follows from Lemma 2.9). The analogue of 1.14
implies that each equivalence class is open in Ω(T ). By compactness, there are finitely
many equivalence classes. If X is one of them, then for each n ∈ ZZ the set T n(X) is an
equivalence class, too. Thus T permutes equivalence classes.

The topological transitivity in (a) follows from the topological mixing in (b). To prove
the latter, let U, V ⊂ Ωij be open sets and pick two periodic points p ∈ U and q ∈ V . Let
T0 = T si be the minimal iteration of T that leaves Ωij invariant. Denote by n and m the
periods of p and q with respect to the map T0 and set S = Tmn

0 . An argument similar
to the proof of Lemma 2.9 shows that U ∩ Sk(V ) 6= ∅ for all large enough k. Lastly, the
topological mixing follows from the same argument applied to each pair of points T i

0(p),
1 ≤ i ≤ n, and T j

0 (q), 1 ≤ j ≤ m.

2.12 Definition (Shadowing)

A sequence of points {xn}b
n=a (a = −∞ or b = +∞ is permitted) in M is an δ-pseudo-

orbit if
dist(Txi, xi+1) < δ for all i ∈ [a, b)

A point x ∈ Ω(T ) ε-shadows {xn}b
n=a if

dist(T i(x), xi) < ε for all i ∈ [a, b]

2.13 Lemma (Shadowing Lemma)

For any ε > 0 there is a δ > 0 such that every δ-pseudo-orbit in Ω(T ) (i.e., every
xi ∈ Ω(T )) is ε-shadowed by a points x ∈ M .

Proof. For each n ∈ [a, b] consider a neighborhood Un ⊂ Ω(T ) of the point xn (in the set
Ω(T )) obtained by taking a direct product, in the sense of 1.14, of the closed ε-balls on
W u(xn) ∩ Ω(T ) and W s(xn) ∩ Ω(T ). By reducing ε if necessary we can make all those
neighborhoods very close to regular cylindrical sets, i.e. make their distortions arbitrarily
small (since our manifold is compact, this can be done uniformly over all n’s).

Next we assume that δ ¿ ε. It is easy to verify that for all y ∈ Un ∩ T−1Un+1

T−1(W s(Ty) ∩ Un+1) ⊃ W s(y) ∩ Un

and
T−1(W u(Ty) ∩ Un+1) ⊂ W u(y) ∩ Un

Hence, Un ∩ T−1Un+1 is a direct product of two closed sets: one is W s(xn) ∩ Un and the
other is W u(xn) ∩ T−1Un+1, which is a subset of W u(xn) ∩ Un. By induction on k, it
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follows that for each n+k ≤ b the set ∩i∈[n,n+k]T
n−iUi is a direct product of W s(xn)∩Un

and a closed subset of W u(xn) ∩ Un, which decreases as k grows.

Un T(U )n-1

T (U )2
n-2

T (U )1
n+1

_

T (U )2
n+2

_

Figure 7: Proof of Lemma 2.13.

Similarly, for each n−k ≥ a the set ∩i∈[n−k,n]T
n−iUi is a direct product of W u(xn)∩Un

and a closed subset of W s(xn) ∩ Un, which decreases as k grows.
Now we fix n ∈ [a, b] and define

K = ∩i∈[a,b]T
n−iUi

This is a direct product of two closed subsets of W s(xn) ∩ Un and W u(xn) ∩ Un. Any
point x ∈ T−n(K) will now shadow our pseudo-orbit.

Note: if a = −∞ and b = +∞, then K is a singleton, and the point x is unique.

2.14 Corollary (Anosov’s Closing Lemma)

For any ε > 0 there is a δ > 0 such that if x ∈ Ω(T ) and dist(T nx, x) < δ, then there
is an x′ ∈ Ω(T ) with T n(x′) = x′ and

dist(T ix, T ix′) < ε

for all i ∈ [0, n].
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Proof. Let xi = T k(x) for i ≡ k (mod n) and 0 ≤ k < n. Then {xi}∞i=−∞ is a δ-pseudo-
orbit. By 2.13, it is ε-shadowed by some point x′ ∈ Ω(T ). Next,

dist(T ix′, T i+nx′) < dist(T ix′, xi) + dist(xi, T
i+nx′) < 2ε

for all i ∈ ZZ. We can assume that ε is small enough and obtain x′ = T nx′ by expansivity,
cf. 1.15.

2.15 Corollary

Every Anosov diffeomorphism is an Axiom A diffeomorphism.

Proof. Indeed, periodic points are dense in Ω(T ) by 2.14.

2.16 Remark

If T : M → M is an Anosov diffeomorphism and Ω(T ) = M , then 2.11 implies that
T is topologically transitive and mixing. Conversely, if T : M → M is a topologically
transitive Anosov diffeomorphism, then it is easily seen that Ω(T ) = M .

Open Problem: It is unknown if Ω(T ) = M for every Anosov diffeomorphism.
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