
MA 660-3A, Dr Chernov Proof of Theorem 4.16

Theorem 4.16. For any A ∈ Cm×n we have

‖A‖2
2 = ‖A∗‖2

2 = ‖A∗A‖2 = ‖AA∗‖2 = λmax

where λmax is the largest eigenvalue of both A∗A and AA∗.

In the proof, ‖ · ‖ will always denote the 2-norm.

Lemma. For every vector z ∈ Cn we have ‖z‖ = sup‖y‖=1 |〈y, z〉|.
Proof. Indeed, by the Cauchy-Schwarz inequality

|〈y, z〉| ≤ 〈y, y〉1/2〈z, z〉1/2 = ‖z‖

and the equality is attained whenever y is parallel to z, we can set y = ± z
‖z‖ . �

Step 1. To prove that ‖A‖ = ‖A∗‖ we write

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

sup
‖y‖=1

|〈y, Ax〉| = sup
‖x‖=1

sup
‖y‖=1

|〈A∗y, x〉|

= sup
‖y‖=1

sup
‖x‖=1

|〈x, A∗y〉| = sup
‖y‖=1

‖A∗x‖ = ‖A∗‖

Step 2. To prove that ‖A‖2 = ‖A∗A‖ we write

‖A∗A‖ = sup
‖x‖=1

‖A∗Ax‖ = sup
‖x‖=1

sup
‖y‖=1

|〈y, A∗Ax〉| = sup
‖x‖=1

sup
‖y‖=1

|〈Ay, Ax〉|

Then again by the Cauchy-Schwarz inequality

|〈Ay, Ax〉| ≤ ‖Ax‖ ‖Ay‖ ≤ ‖A‖ ‖A‖ = ‖A‖2

hence ‖A∗A‖ ≤ ‖A‖2. On the other hand, setting x = y gives

sup
‖x‖=1

sup
‖y‖=1

|〈Ay, Ax〉| ≤ sup
‖x‖=1

|〈Ax, Ax〉| = ‖A‖2,

hence ‖A∗A‖ ≥ ‖A‖2. Therefore, ‖A∗A‖ = ‖A‖2.

Step 3. Using an obvious symmetry we conclude that ‖A∗‖2 = ‖AA∗‖
Lemma. Let B be a Hermitian matrix. Then

‖B‖ = max
1≤i≤n

|λi|,

where λ1, . . . , λn denote the eigenvalues of B.



Proof. By the Spectral Theorem, B = Q∗ΛQ, where Q is a unitary matrix and Λ
a diagonal matrix whose diagonal entries are λi’s. We know (from earlier homework
assignments) that

‖B‖ = ‖Q∗ΛQ‖ = ‖Λ‖.
Now for any vector x = (x1, . . . , xn) we have Λx = (λ1x1, . . . , λnxn), hence

‖Λx‖2 = |λ1|2|x1|2 + · · ·+ |λn|2|xn|2

Now if ‖x‖ = 1, then
‖Λx‖2 ≤ max

1≤i≤n
|λi|2

On the other hand, if |λj| = max1≤i≤n |λi| then we choose x = ej and obtain ‖Λx‖2 =
|λj|2. Lemma is proven. �

This completes the proof of 4.16. Note that A∗A and AA∗ are positive-semidefinite
matrices, so their eigenvalues are ≥ 0, so max1≤i≤n |λi| is simply the largest eigenvalue,
we denote it by λmax.

A little modification of the previous Lemma:

Lemma. Let B be a Hermitian positive-semidefinite matrix with eigenvalues λ1, . . . , λn.
Then

sup
‖x‖=1

〈Bx, x〉 = λmax = max
1≤i≤n

λi,

and if x is a vector such that

‖x‖ = 1 and 〈Bx, x〉 = λmax,

then x is a corresponding eigenvector: Bx = λmaxx.

Proof. Again, we use the Spectral Theorem to reduce the problem to a diagonal matrix
Λ, then the proof is just a direct inspection. �

Corollary. If λmax again denotes the largest eigenvalue of A∗A, then

‖Ax‖2 = ‖A‖2‖x‖2 ⇐⇒ A∗Ax = λmaxx.

Proof. On the one hand

‖Ax‖2
2 = 〈Ax, Ax〉 = 〈A∗Ax, x〉

and on the other hand
‖A‖2 = λmax,

so for any vector x with ‖x‖ = 1 we have

‖Ax‖2
2 = ‖A‖2

2 ⇐⇒ 〈A∗Ax, x〉 = λmax.

Then we use the previous lemma. �


