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Abstract. In this paper we try to present in a coherent fashion proofs
of basic results developed so far by H. Bell for the plane fixed point
problem. Some of these results have been announced much earlier but
without accessible proofs. We define the concept of the variation of a
map on a simple closed curve and relate it to the index of the map on that
curve: Index = Variation + 1. We develop a prime end theory through
geometric chords in maximal balls contained in the complement of a non-
separating plane continuum. We define the concept of an outchannel for
a fixed point free map which carries a non-separating plane continuum
into itself and prove that such a map has a unique outchannel, and that
outchannel must have variation = −1.

Cartwright and Littlewood showed that each non-separating invari-
ant continuum, under an orientation preserving homeomorphism of the
plane, contains a fixed point. Bell announced in 1984 an extension of
this result to holomorphic mappings of the plane. In this paper we in-
troduce the class of oriented maps of the plane. We show that among
perfect maps of the plane the oriented maps are exactly the compositions
of open maps and monotone maps. It follows that all such compositions
satisfy the Maximum Modulus Theorem. We also extend the above
fixed point theorems to the class of positively-oriented perfect maps of
the plane.

1. Introduction

By C we denote the plane and by C∞ the Riemann sphere. Let X be a
plane continuum. By T (X) we denote the topological hull of X consisting
of X union all of its bounded complementary domains. Thus, C∞ \T (X) is
a simply-connected domain containing ∞. The following is a long-standing
question in topology.

Fixed Point Question: “Does a continuous function taking a non-
separating plane continuum into itself always have a fixed point?”
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We study the slightly more more general question, “Is there a plane con-
tinuum Z and a continuous function f : C → C taking Z into T (Z) with
no fixed points in T (Z)?” A Zorn’s Lemma argument shows that if one as-
sumes the answer is “yes,” then there is a subcontinuum X ⊂ Z minimal
with respect to these properties. Therefore, we will assume the following
throughout this paper:

1.1. Standing Hypotheses. We assume that f : C→ C is a map and X
is a plane continuum such that f(X) ⊂ T (X) = Y , f has no fixed points in
Y , and X is minimal with respect to these properties.

It will follow from Theorem 4.5 that for such a minimal continuum,
f(X) = X = ∂Y (though it may not be the case that f(Y ) ⊂ Y ).

By results of Bell [3] (see also Sieklucki [20], and Iliadis [11]), the only
unsolved general case (with no special assumptions on the map) is where the
boundary of X is indecomposable (with a dense channel, explained later).

In this paper we use tools first developed by Bell to elucidate the action
of a fixed point free map (should one exist). This paper was written in
close cooperation with Bell and most of the results were first obtained by
him. Unfortunately many of these results have been inaccessible. We believe
that they deserve to be developed in order to be useful to the mathematical
community. We have also made an effort to restate many of these results
using existing language such as prime ends. We are very much indebted to
Bell for his help while writing this paper. Theorem 5.1 (Unique Outchannel)
is a new result due to Bell. Complete proofs of Theorems 2.13 and 2.14
appear in print for the first time.

The classical fixed point question asks whether each map of a non-separating
plane continuum into itself must have a fixed point. Cartwright and Little-
wood [7] showed that the answer is yes if the map can be extended to an
orientation-preserving homeomorphism of the plane. It took over 20 years
until Bell [5] extended this to the class of all homeomorphisms of the plane.
Our ultimate goal is to extend these results to a natural, but larger, class of
plane maps. Bell announced in 1984 (see also Akis [2]) that the Cartwright-
Littlewood Theorem can be extended to the class of all holomorphic maps of
the plane. These maps behave like orientation-preserving homeomorphisms
in the sense that they preserve local orientation. We will show that composi-
tions of open and of monotone maps of the plane are oriented and naturally
decompose into two classes, one of which preserves and the other of which
reverses local orientation. Moreover, any map in either of these classes is
itself a composition of a monotone and a light open map. We will also show
that such maps induce a map from the circle of prime ends of a saturated
invariant subcontinuum to the circle of prime ends of its image. Finally
we will show that each invariant non-separating plane continuum, under a
positively-oriented map of the plane, must contain a fixed point.
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2. Tools

Let S1 denote the unit circle in the complex plane and let p : R → S1

denote the covering map p(x) = e2πix. Let g : S1 → S1 be a map. By the
degree of the map g, denoted by degree(g), we mean the number ĝ(1)− ĝ(0),
where ĝ : R → R is a lift of the map g to the universal covering space R of
S1 (i.e., p ◦ ĝ = g ◦ p). It is well-known that degree(g) is independent of the
choice of the lift.

2.1. Index. Let g : S1 → C be a map and let S = g(S1). Suppose f : S →
C has no fixed points on S. Then for all z ∈ S, the vector f(z) − z 6= 0.
Hence the unit vector v(z) = f(z)−z

|f(z)−z| always exists. Define the map v =
v ◦ g : S1 → S1 by

v(t) = v(g(t)) =
f(g(t))− g(t)
|f(g(t))− g(t)| .

Then the map v : S1 → S1 lifts to a map v̂ : R→ R such that p◦ v̂ = v◦p.
Define the index of f with respect to g, denoted ind(f, g) by

ind(f, g) = v̂(1)− v̂(0) = degree(v).

More generally, for any parameters 0 ≤ a < b ≤ 1 in S1 = R/Z, define
the fractional index of f on the path g|[a,b] in S by

ind(f, g|[a,b]) = v̂(b)− v̂(a).

While necessarily, the index of f with respect to g is an integer, the fractional
index of f on g|[a,b] need not be. We shall have occasion to use fractional
index in the proof of Theorem 2.13. Note that (fractional) index is the net
change in argument of the vector f(g(t))− g(t) as t runs along S1 from a to
b. Observe that if c : S1 → C is a constant map, then ind(f, c) = 0 and if,
c(S1) = {w} ∈ T (S1) \ S1, then ind(c, id|s1) = 1.

Proposition 2.1. Let g : S1 → C be a map with g(S1) = S, and suppose
f : S → C has no fixed points on S. Let a 6= b ∈ S1 with [a, b] denoting
the counterclockwise subarc on S1 from a to b (so S1 = [a, b] ∪ [b, a]). Then
ind(f, g) = ind(f, g|[a,b]) + ind(f, g|[b,a]).

2.2. Stability of Index. The following standard theorems and observa-
tions about the stability of index under fixed-point-free homotopy are con-
sequences of the fact that index is continuous and integer-valued.

Theorem 2.2. Suppose f : C→ C is a map and g1 : S1 → C and g2 : S1 →
C are homotopic maps in C such that the homotopy misses the fixed point
set of f . Then ind(f, g1) = ind(f, g2).

An embedding g : S1 → S ⊂ C is orientation preserving if g is isotopic
to the indentity map id|S1 . In particular, the index of f on a simple closed
curve S missing the fixed point set of f is independent of choice of param-
eterizations of S with the same orientation. If g1 and g2 are orientation-
preserving embeddings of S1 with the same image set g1(S1) = S = g2(S1),



4 FOKKINK, J. C. MAYER, L. G. OVERSTEEGEN, AND E. D. TYMCHATYN

then we have a well-defined index of f on S, namely ind(f, S) = ind(f, g1) =
ind(f, g2).

Theorem 2.3. Suppose g : S1 → C is a map with g(S1) = S, and f1, f2 :
S → C are homotopic maps such that each level of the homotopy is fixed-
point-free on S. Then ind(f1, g) = ind(f2, g).

In particular, if S is a simple closed curve and f1, f2 : S → C are maps
such that there is a homotopy ht : S → C from f1 to f2 with ht fixed-point
free on S for each t ∈ [0, 1], then ind(f1, S) = ind(f2, S).

Corollary 2.4. Suppose g : S1 → C is an an orientation preserving embed-
ding with g(S1) = S, and f : T (S) → C is a map such that f has no fixed
points on S and f(S) ⊂ T (S). Then ind(f, g) = 1.

Proof. Since f(S) ⊂ T (S) which is a disk with boundary S and f has no
fixed point on S, there is a fixed point free homotopy of f |S to a constant
map c : S → C taking S to a point in T (S)\S. By Theorem 2.3, ind(f, g) =
ind(c, g) = 1. ¤

Theorem 2.5. Suppose g : S1 → C is a map with g(S1) = S, and f :
T (S) → C is a map such that ind(f, g) 6= 0, then f has a fixed point in
T (S).

Proof. Notice that T (S) is a locally connected non-separating plane contin-
uum and, hence, contractible. Suppose f has no fixed point in T (S). Choose
point q ∈ T (S). Let c : S1 → C be the constant map to q. Let H be a
homotopy from g to c with image in T (S). Since H misses the fixed point
set of f , Theorem 2.2 implies ind(f, g) = ind(f, c) = 0. ¤

2.3. Variation. In this section we introduce the notion of variation of a
map on an arc and relate it to winding number.

Definition 2.6 (Junctions). The standard junction J0 is the union of the
three rays Ri = {z ∈ C | z = reiπ/2, r ∈ [0,∞)}, R+ = {z ∈ C | z =
re0, r ∈ [0,∞)}, R− = {z ∈ C | z = reiπ, r ∈ [0,∞)}, having the origin
0 in common. By U we denote the lower half-plane {z ∈ C | z = x +
iy, x ∈ R, y < 0}. A junction Jv is the image of J0 under any orientation-
preserving homeomorphism h : C→ C where v = h(0).

We will often suppress h and refer to h(Ri) as Ri, and similarly for the
remaining rays and the region h(U). When needed we will write Rv+ etc.
when we want to refer to a particular h(R+) of a junction Jv based at
v = h(0).

Suppose S is a simple closed curve and A ⊂ S is a subarc of S with
endpoints a and b, with a < b in the counter-clockwise orientation on S. We
will usually denote such a subarc by A = [a, b] and by (a, b) its interior in
S1.
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Definition 2.7 (Variation on an arc). Let S be a simple closed curve and
A = [a, b] a subarc of S such that f(a), f(b) ∈ T (S) and f(A) ∩ A = ∅. We
define the variation of f on A with respect to S, denoted var(f, A, S), by the
following algorithm:

(1) Choose an orientation-preserving homeomorphism h of C such that
h(0) = v ∈ A and T (S) ⊂ h(U) ∪ {v}.

(2) As always we assume that a < b in the counterclockwise order.
(3) Counting crossings: Consider the set M = f−1(Jv) ∩ [a, b]. Each

time a point of f−1(h(R+))∩ [a, b] is immediately followed in M , in
the natural order on [a, b], by a point of f−1(h(Ri)) count +1 and
each time a point of f−1(h(Ri)) ∩ [a, b] is immediately followed in
M , in the natural order on [a, b], by a point of f−1(h(R+)) count
−1. Count no other crossings.

(4) The sum of the crossings found above is the variation, denoted
var(f, A, S).

Note that f−1(h(R+)) ∩ [a, b] and f−1(h(Ri)) ∩ [a, b] are disjoint closed
sets in [a, b]. Hence, in (3) in the above definition, we count only a finite
number of crossings and var(f,A, S) is a finite integer.

Let g : S1 → C be a map and w ∈ C \ g(S1) be a point. By the
winding number of g about the point w, denoted by win(g, S1, w), we mean
the number ind(c, g), where c : C → C is the constant map c(z) = w. It is
well-known that the winding number is invariant under homotopies of g in
C\w and independent of the choice of the point w in a particular component
of C \ g(S1). Note that if S is a simple closed curve, A ⊂ S is an arc and B
is the closure of S \ A and α : S → C is any map such that α|A = f |A and
α(B) ⊂ T (S) \ {v} ⊂ U , then var(f, A, S) = win(α, S, v).

In case A is an open arc (a, b) ⊂ S such that var(f, A, S) is defined, it
will be convenient to denote var(f, A, S) by var(f,A, S)

The following Lemma follows immediately from the definition.

Lemma 2.8. Let S be a simple closed curve. Suppose that a < c < b are
three points in S such that {f(a), f(b), f(c)} ⊂ T (S) and f([a, b])∩[a, b] = ∅.
Then var(f, [a, b], S) = var(f, [a, c], S) + var(f, [c, b], S).

2.4. Stability of Variation. By the above remark that variation is a wind-
ing number, the invariance of winding number under suitable homotopies
implies that the variation var(f,A, S) also remains invariant under such ho-
motopies. That is, even though the specific crossings in (3) in the algorithm
may change, the sum remains invariant. We will state the required results
about variation below without proof. Proofs can also be obtained directly
by using the fact that var(f, A, S) is integer valued and continuous under
suitable homotopies.

Proposition 2.9 (Junction Straightening). Any two junctions h1, h2 with
v1 = h1(0) ∈ A, v2 = h2(0) ∈ A, T (S) ⊂ h1(U) ∪ {v1}, and T (S) ⊂
h2(U) ∪ {v2} give the same variation.
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Proposition 2.10. Variation var(f, A, S) is an integer, well-defined, and
independent of h.

Since U is open for a given junction Jv for A = [a, b] with T (S) ⊂ U ∪
{v}, the computation of var(f,A, S) depends only upon the crossings of
the junction coming from a proper compact subarc of the open arc (a, b).
Consequently, var(f,A, S) remains invariant under homotopies ht of f |[a,b]

such that ht(a) and ht(b) remain in U and v 6∈ ht([a, b]) for all t. Moreover,
the computation is stable under an isoptopy of the plane that moves the
entire junction Jv (even off A), provided in the the isotopy v never crosses
the image f(A) and, f(a) and f(b) remain in the corresponding domain Ut.

Definition 2.11 (Variation on a finite union of arcs). Let S be a simple
closed curve and A = [a, b] a subcontinuum of S with partition a finite set
F = {a = a0 < a1, . . . , an = b}. For each i let Ai = [ai, ai+1]. Suppose
that f satisfies f(ai) ∈ T (S) and f(Ai) ∩ Ai = ∅ for each i. We define the
variation of f on A with respect to S, denoted var(f, A, S), by

var(f, A, S) =
n−1∑

i=0

var(f, [ai, ai+1], S).

In particular, we include the possibility that an = a0 in which case A = S.

By considering a common refinement of two partitions F1 and F2 of an
arc A ⊂ S such that f(F1) ∪ f(F2) ⊂ T (S) and satisfying the conditions in
Definition 2.11, it follows from Lemma 2.8 that we get the same value for
var(f, A, S) whether we use the partition F1 or the partition F2. Hence,
var(f, A, S) is well-defined. If A = S we denote var(f, S, S) simply by
var(f, S).

2.5. Index and variation for finite partitions. What links Theorem 2.5
with variation is Theorem 2.13 below, first obtained by Bell and announced
in the mid 1980’s, and later by Akis [2]. Our proof is a modification of Bell’s
unpublished proof. We first need a variant of Proposition 2.9. Let r : C→ D
be radial retraction: r(z) = z

|z| when |z| ≥ 1 and r|D = id|D.

Lemma 2.12 (Curve Straightening). Suppose f : S1 → C is a map with no
fixed points on S1. If [a, b] ⊂ S1 is a proper subarc with f([a, b])∩ [a, b] = ∅,
f((a, b)) ⊂ C\T (S1) and f({a, b}) ⊂ S1, then there exists a map h : S1 → C
homotopic to f in C\T (S) relative to {a, b}, with each level of the homotopy
fixed-point-free, such that r ◦ h : [a, b] → S1 is locally one-to-one. Moreover,
var(f, [a, b], S1) = var(h, [a, b], S1).

Note that if var(f, [a, b], S1) = 0, then r ◦ h carries [a, b] one-to-one onto
the arc in S1 \ [a, b] from f(a) to f(b). If the var(f, [a, b], S1) = m > 0, then
r ◦ h wraps the arc [a, b] counterclockwise about S1 so that h([a, b]) meets
each ray in Jv m times. A similar statement holds for negative variation.
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Theorem 2.13 (Index = Variation + 1, Bell). Suppose g : S1 → C is an
orientation preserving embedding onto a simple closed curve S and f has
no fixed points on S. If F = {a0 < a1 < · · · < an} is a partition of S and
Ai = [ai, ai+1] for i = 1, . . . , n with an+1 = a0 such that f(F ) ⊂ T (S) and
f(Ai) ∩Ai = ∅ for each i, then

ind(f, g) =
n∑

i=0

var(f, Ai, S) + 1 = var(f, S) + 1.

Note that it is possible for index to be defined yet variation not to be
defined on a simple closed curve S. For example, consider the map z → 2z
with S the unit circle.

Proof. By an appropriate conjugation of f and g, we may assume without
loss of generality that S = S1 and g = id. Let F and Ai = [ai, ai+1] be as
in the hypothesis. Consider the collection of arcs

K = {K ⊂ S | K is the closure of a component of S ∩ f−1(f(S) \ T (S))}.
For each K ∈ K, there is an i such that K ⊂ Ai. Since f(Ai) ∩ Ai =
∅, it follows from the remark after Proposition 2.10 that var(f, Ai, S) =∑

K⊂Ai,K∈K var(f, K, S). In particular, we can compute var(f, K, S) using
one fixed junction for Ai and it is now clear that there are at most finitely
many such K with var(f, K, S) 6= 0. Moreover, the images of the endpoints
of K lie on S.

Let m be the cardinality of the set Kf = {K ∈ K | var(f, K, S) 6= 0}.
By the above remarks, m < ∞ and Kf is independent of F . We prove the
theorem by induction on m.

Suppose for a given f we have m = 0. Observe that from the definition
of variation and the fact that the computation of variation is independent
of the choice of an appropriate partition, it follows that,

var(f, S) =
∑

K∈K
var(f, K, S) = 0.

We claim that there is a map f1 : S → C with f1(S) ⊂ T (S) and a
homotopy H from f |S to f1 such that each level Ht of the homotopy is
fixed-point-free and ind(f1, id|S) = 1.

To see the claim, first apply the Curve Straightening Lemma 2.12 to each
K ∈ K (if there are infinitely many, they form a null sequence) to obtain
a fixed-point-free homotopy of f |S to a map h : S → C such that r ◦ h is
locally one-to-one on each K ∈ K, where r is radial retraction of C to D,
and var(h,K, S) = 0 for each K ∈ K. Let K be in K with endpoints x, y.
Since h(K) ∩K = ∅, r ◦ h is one-to-one, and var(h,K, S) = 0. Since K is
a null family, we can do this for each K ∈ K so that we obtain the desired
f1 : S → C as the end map of a fixed-point-free homotopy from f to f1.
Since f1 carries S into T (S), Corollary 2.4 implies ind(f1, id|S) = 1.
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Figure 1. Replacing f : S → C by g : S → C with one less
subarc of nonzero variation.

Since the homotopy f ' f1 is fixed-point-free, it follows from Theorem 2.3
that ind(f, id|S) = 1. Hence, the theorem holds if m = 0 for any f and any
appropriate partition F .

By way of contradiction, consider the collection of all maps f on S1 which
satisfy the hypotheses of the theorem, but not the conclusion. By the above
0 < |Kf | < ∞ for each. Let f and partition F be a counterexample for
which m = |Kf | is minimal. By modifying f , we will show there exists
another counterexample f ′ with |Kf ′ | < m, a contradiction.

Choose K ∈ K such that var(f, K, S) 6= 0. Then K = [x, y] ⊂ Ai =
[ai, ai+1] for some i. By the Curve Straightening Lemma 2.12 and Theo-
rem 2.3, we may suppose r ◦f is locally one-to-one on K. Define a new map
f1 : S → C by setting f1|S\K = f |

S\K and setting f1|K equal to the linear
map taking [x, y] to the subarc f(x) to f(y) on S missing [x, y]. Figure 1
(left) shows an example of a (straightened) f and the corresponding f1 for
a case where var(f,K, S) = 1, while Figure 1 (right) shows a case where
var(f, K, S) = −2.

Since on S \K, f and f1 are the same map, we have

var(f, S \K, S) = var(f1, S \K, S).

Likewise for the fractional index,

ind(f, S \K) = ind(f1, S \K).

By definition (refer to the observation we made in the case m = 0),

var(f, S) = var(f, S \K,S) + var(f, K, S)

var(f1, S) = var(f1, S \K,S) + var(f1,K, S)
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and by Proposition 2.1,

ind(f, S) = ind(f, S \K) + ind(f, K)

ind(f1, S) = ind(f1, S \K) + ind(f1, K).
Consequently,

var(f, S)− var(f1, S) = var(f, K, S)− var(f1,K, S)

and
ind(f, S)− ind(f1, S) = ind(f, K)− ind(f1,K).

We will now show that the changes in index and variation, going from
f to f1 are the same (i.e., we will show that var(f, K, S) − var(f1,K, S) =
ind(f, K) − ind(f1,K)). We suppose first that ind(f, K) = n + α for some
nonnegative n ∈ Z and 0 < α < 1. That is, the vector f(z) − z turns
through n full revolutions counterclockwise and α part of a revolution coun-
terclockwise as z varies from x to y in K. (See Figure 1 (left) for a case
n = 0 and α about 2

3 .) Then as z varies from x to y, f1(z) goes along S
from f(x) to f(y) in the clockwise direction, so f1(z)− z turns through the
angle −(1−α) = α−1. Hence, ind(f1,K) = −(1−α). It is easy to see that
var(f, K, S) = n + 1 and var(f1,K, S) = 0. Consequently,

var(f,K, S)− var(f1,K, S) = n + 1− 0 = n + 1

and
ind(f, K)− ind(f1, K) = n + α− (α− 1) = n + 1.

In Figure 1 on the left we assumed that f(x) < x < y < f(y). The cases
where f(y) < x < y < f(x) and f(x) = f(y) are treated similarly.

Thus when n ≥ 0, in going from f to f1, the change in variation and the
change in index are the same. However, in obtaining f1 we have removed one
K ∈ K, reducing the minimal m for f1 by one, producing a counterexample
for smaller m, a contradiction.

The cases where ind(f,K) = n + α for negative n and 0 < α < 1 are
handled similarly, and illustrated for n = −2 and α about 1

2 in Figure 1
(right).

¤

2.6. Locating arcs of negative variation. The principal tool in proving
the main theorem in the next section is the following theorem first obtained
by Bell. It provides a method for locating arcs of negative variation on a
curve of index zero.

Theorem 2.14 (Lollipop Lemma, Bell). Let S ⊂ C be a simple closed
curve such that f has no fixed points on S. Suppose F = {a0 < · · · <
an < an+1 < · · · < am} is a partition of S, am+1 = a0 and Ai = [ai, ai+1]
such that f(F ) ⊂ T (S) and f(Ai) ∩ Ai = ∅ for i = 0, . . . ,m. Suppose I is
an arc in T (S) meeting S only at its endpoints a0 and an+1. Let Ja0 be a
junction in (C \ T (S)) ∪ {a0} and suppose that f(I) ∩ (I ∪ Ja0) = ∅. Let
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R = T ([a0, an+1]∪I) and L = T ([an+1, am+1]∪I). Then one of the following
holds

(1) If f(an+1) ∈ R, then
∑

i≤n

var(f, Ai, S) + 1 = ind(f, I ∪ [a0, an+1]).

(2) If f(an+1) ∈ L, then
∑

i>n

var(f,Ai, S) + 1 = ind(f, I ∪ [an+1, am+1].

(Note that in (1) in effect we compute var(f, ∂R) but technically, we have
not defined var(f,Ai, ∂R) since the endpoints of Ai do not have to map
inside R but they do map into T (S). Similarly in Case (2).)

Proof. Without loss of generality, suppose f(an+1) ∈ L. Let C = [an+1, am+1]∪
I (so T (C) = L). We want to construct a map f ′ : C → C, fixed-point-free
homotopic to f |C , that does not change variation on any arc Ai in C and
has the properties listed below.

(1) f ′(ai) ∈ L for all n + 1 ≤ i ≤ m + 1. Hence var(f ′, Ai, C) is defined
for each i > n.

(2) var(f ′, Ai, C) = var(f, Ai, S) for all n + 1 ≤ i ≤ m.
(3) var(f ′, I, C) = var(f, I, S) = 0.
(4) ind(f ′, C) = ind(f, C).

Having such a map, it then follows from Theorem 2.13, that

ind(f ′, C) =
m∑

i=n+1

var(f ′, Ai, C) + var(f ′, I, C) + 1.

By Theorem 2.5 ind(f ′, C) = ind(f, C). By (2) and (3),
∑

i>n var(f ′, Ai, C)+
var(f ′, I, C) =

∑
i>n var(f,Ai, S) and the Theorem would follow.

It remains to define the map f ′ : C → C with the above properties. For
each i such that n + 1 ≤ i ≤ m + 1, chose an arc Ii joining f(ai) to L as
follows:

(a) If f(ai) ∈ L, let Ii be the degenerate arc {ai}.
(b) If f(ai) ∈ R and n+1 < i < m+1, let Ii be an arc in R \ {a0, an+1}

joining f(ai) to I.
(c) If f(a0) ∈ R, let I0 be an arc joining f(a0) to L such that I0 ∩ (L ∪

Ja0) ⊂ An+1 \ {an+1}.
Let xn+1 = yn+1 = an+1, y0 = ym+1 ∈ I \ {a0, an+1} and x0 = xm+1 ∈

Am \ {am, am+1}. For n + 1 < i < m + 1, let xi ∈ Ai−1 and yi ∈ Ai such
that yi−1 < xi < ai < yi < xi+1. For n + 1 < i < m + 1 let f ′(ai) be
the endpoint of Ii in L, f ′(xi) = f ′(yi) = f(ai) and extend f ′ continuously
from [xi, ai]∪ [ai, yi] onto Ii and define f ′ from [yi, xi+1] ⊂ Ai onto f(Ai) by
f ′|[yi,xi+1] = f ◦ hi, where hi : [yi, xi+1] → Ai is a homeomorphism such that
hi(yi) = ai and hi(xi+1) = ai+1. Similarly, define f ′ on [y0, an+1] ⊂ I to
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Figure 2. Bell’s Lollipop.

f(I) by f |[y0,an+1] = f ◦ h0, where h0 : [y0, an+1] → I is a homeomorphism
such that h(an+1) = an+1 and extend extend f ′ from [xm+1, a0] ⊂ Am and
[ao, y0] ⊂ I onto I0 such that f ′(xm+1) = f ′(y0) = f(a0) and f ′(a0) is the
endpoint of I0 in L.

Note that f ′(Ai)∩Ai = ∅ for i = n+1, . . . ,m and f ′(I)∩ [I∪Ja0 ] = ∅. To
compute the variation of f ′ on each Am and I we can use the junction Ja0

Hence var(f ′, I, C) = 0 and, by the definition of f ′ on Am, var(f ′, Am, C) =
var(f(Am, S). For i = n + 1, . . . ,m − 1 we can use the same junction
Jvi to compute var(f ′, Ai, C) as we did to compute var(f,Ai, S). Since
Ii ∪ Ii+1 ⊂ T (S) we have that f ′([ai, yi])∪ f ′([xi+1, ai+1]) ⊂ Ii ∪ Ii+1 misses
that junction and, hence, make no contribution to variation var(f ′, Ai, C).
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Since f ′−1(Jvi) ∩ [yi, xi+1] is isomorphic to f−1(Jvi) ∩ Ai, var(f ′, Ai, C) =
var(f(Ai, S) for i = n + 1, . . . , m.

To see that f ′ is fixed-point-free homotopic to f |C , note that we can pull
the image of Ai back along the arcs Ii and Ii+1 in R without fixing a point
of Ai at any level of the homotopy. Since f ′ and f |C are fixed-point-free
homotopic and f has no fixed points in T (S), it follows from Theorems 2.3
and 2.5, that ind(f ′, C) = ind(f, C). ¤

Note that if f is fixed point free on T (S), then ind(f, S) = 0 and the
following Corollary follows.

Corollary 2.15. Assume the hypotheses of Theorem 2.14. Suppose, in
addition, f is fixed point free on T (S). Then if f(an+1) ∈ R there exists
i ≤ n such that var(f,Ai, S) < 0. If f(an+1) ∈ L there exists i > n such
that var(f,Ai, S) < 0.

2.7. Extensions to variation for infinite partitions. Recall our Stand-
ing Hypotheses in 1.1: f : C → C takes continuum X into T (X) with no
fixed points in T (X), and X is minimal with respect to these properties.

Definition 2.16 (Bumping Simple Closed Curve). A simple closed curve S
in C which has the property that S ∩X is nondegenerate and T (X) ⊂ T (S)
is said to be a bumping simple closed curve for X. A subarc A of a bumping
simple closed curve, whose endpoints lie in X, is said to be a bumping
(sub)arc for X. Moreover, if S′ is any bumping simple closed curve for X
which contains A, then S′ is said to complete A.

A crosscut of O∞ = C∞ \T (X) is an open arc Q lying in O∞ such that Q
meets ∂O∞ in two endpoints a 6= b ∈ T (X). (As seems to be traditional, we
use “crosscut of T (X)” interchangeably with “crosscut of O∞.”) If S ∩X is
nondegenerate and proper in S, then each component of S \X is a crosscut
of T (X). A similar statement holds for a bumping arc A.

Since f has no fixed points in T (X) and X is compact, we can choose a
bumping simple closed curve S so close pointwise to T (X), with such small
crosscuts, and with the domains cut off so close pointwise to T (X), that
f has no fixed points in T (S). Thus, we obtain the following corollary to
Theorem 2.5.

Corollary 2.17. There is a bumping simple closed curve S for X such
that f |T (S) is fixed point free; hence, by 2.5, ind(f, S) = 0. Moreover, any
bumping simple closed curve S′ such that S′ ⊂ T (S) has ind(f, S′) = 0. Fur-
thermore, any crosscut Q of X for which f has no fixed points in T (X ∪Q)
can be completed to a bumping simple closed curve S for which ind(f, S) = 0.

Theorem 2.18. Suppose S is a bumping simple closed curve for X. Then
there is a δ > 0 such that if A ⊂ S is a bumping subarc for X with diam(A) ≤
δ, then var(f, A, S) = 0.
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Proof. Suppose not. Then, without loss of generality, there is a sequence
{Ai}∞i=1 of bumping subarcs converging to a point a ∈ X ∩ S such that
var(f, Ai, S) 6= 0 for each i. Let Ja be a junction based at a. Since f(a) ∈ X,
there are connected neighborhoods U of a and V of f(a) such that V ∩Ja = ∅
and f(U) ⊂ V . We may assume U ∩ S is connected. Since Ai → a, there
is a k such that for all i ≥ k, Ai ⊂ U . We may adjust the junction Ja to
a junction Jai , keeping sufficiently close to S, so that for i ≥ k, ai ∈ Ai

and f(Ai) ∩ Jai = ∅. It follows that var(f, Ai, S) = 0. This contradiction
completes the proof. ¤
Corollary 2.19. Suppose S is a bumping simple closed curve for X. Let
C ⊂ X be closed such that S \ C =

⋃∞
i=1 Ai, where the Ai are disjoint

bumping subarcs (or crosscuts) such that f(Ai) ∩ Ai = ∅ for each i. Then
for all but finitely many Ai, var(f, Ai, S) = 0.

The following Theorem follows from 2.19 and the remark following Defi-
nition 2.11.

Theorem 2.20. Suppose S is a bumping simple closed curve with A a
bumping subarc in S such that f(A) ∩ A = ∅. Suppose A =

⋃
i∈I Ai

is a partition of A into possibly infinitely many bumping subarcs. Then
var(f, A, S) =

∑
i∈I var(f, Ai, S).

Remark 2.21. It follows from Corollary 2.19 and Theorem 2.20 that The-
orems 2.13 and 2.14 hold for infinite partitions of bumping simple closed
curves where the partition elements map off themselves.

2.7.1. Variation on a crosscut. We show that variation is local by defining
it for a single bumping subarc (or single crosscut).

Proposition 2.22. Suppose A is a bumping subarc on X. If var(f,A, S) is
defined for some bumping simple closed curve S completing A, then for any
bumping simple closed curve S′ completing A, var(f, A, S) = var(f,A, S′).

Proof. Let A be a bumping subarc on X for which f(A)∩A = ∅. Let S and
S′ be two bumping simple closed curves completing A for which variation is
defined. Let Ja and Ja′ be junctions whereby var(f,A.S) and var(f,A, S′)
are respectively computed. Suppose first that both junctions lie (except for
{a, a′}) in C\(T (S)∪T (S′)). By the Junction Straightening Proposition 2.9,
either junction can be used to compute either variation on A, so the result
follows. Otherwise, at least one junction is not in C \ (T (S) ∪ T (S′)). But
both junctions are in C\T (X∪A). Hence, we can find another simple closed
curve S′′ such that S′′ completes Q and both junctions lie in (C \ T (S′′)) ∪
{a, a′}. Then by the Propositions 2.9, 2.10 and the definition of variation,
var(f, A, S) = var(f,A, S′′) = var(f, A, S′). ¤

It follows from Proposition 2.22 that variation on a crosscut of X is in-
dependent of the simple closed curve surrounding T (X) of which Q is a
subarc.
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Definition 2.23 (Variation on a crosscut). Suppose Q is a crosscut of X
such that f(Q)∩Q = ∅. Let S be any bumping simple closed curve completing
Q for which variation is defined. Define the variation of f on Q with respect
to X, denoted var(f, Q, X), by var(f, Q, X) = var(f,Q, S).

We will need the following proposition in Section 4.

Proposition 2.24. Suppose Q = [a, b] is a crosscut of T (X) such that f is
fixed point free on T (X ∪Q) and f(Q)∩Q = ∅. Suppose Q is replaced by a
bumping subarc A with the same endpoints such that Q separates A \ {a, b}
from ∞ and each component Qi of A\X is a crosscut such that f(Qi)∩Qi =
∅. Then

var(f, Q, X) =
∑

i

var(f,Qi, X).

Proof. Note that each of Q and A can be completed to a simple closed curve
with the same bumping arc B such that on both T (Q ∪ B) and T (A ∪ B),
f is fixed point free. By Corollary 2.17 and Remark 2.21 we have

var(f,Q ∪B) + 1 = ind(f, Q ∪B) = ind(f,A ∪B) = var(f,A ∪B) + 1.

Thus,

var(f, Q, Q ∪B) + var(f, B, Q ∪B) = var(f, Q ∪B) = var(f, A ∪B)

= var(f,A, A ∪B) + var(f, B, A ∪B).
Consequently, by Theorem 2.20 and Proposition 2.22,

var(f, Q, X) = var(f,Q, Q ∪B) = var(f,A, A ∪B)

=
∑

i

var(f, Qi, A ∪B) =
∑

i

var(f, Qi, X).

¤
2.8. Prime Ends. Prime ends provide a way of studying the approaches
to the boundary of a simply-connected plane domain with non-degenerate
boundary. See [8] or [16] for an analytic summary of the topic and [21] for
a more topological approach. We will be interested in the prime ends of
O∞ = C∞ \ T (X). Recall Y = T (X). Let ∆∞ = {z ∈ C∞ | |z| > 1} be
the “unit disk about ∞.” The Riemann Mapping Theorem guarantees the
existence of a conformal map φ : ∆∞ → O∞ taking ∞ → ∞, unique up
to the argument of the derivative at ∞. Fix such a map φ. We identify
S1 = ∂∆∞ with R/Z and identify points e2πit in ∂∆∞ by their argument
(mod 2π). Crosscuts are defined in Section 2.7.

Definition 2.25 (Prime End). A chain of crosscuts is a sequence {Qi}∞i=1
of crosscuts of O∞ such that for i 6= j, Qi ∩ Qj = ∅, diam(Qi) → 0, and
for all j > i, Qi separates Qj from ∞ in O∞. Two chains of crosscuts
are said to be equivalent iff it is possible to form a sequence of crosscuts by
selecting alternately a crosscut from each chain so that the resulting sequence
of crosscuts is again a chain. A prime end E is an equivalence class of chains
of crosscuts.
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If {Qi} is a chain of crosscuts of O∞, it can be shown that {φ−1(Qi)}
is a chain of crosscuts of ∆∞ converging to a single point t ∈ S1 = ∂∆∞,
independent of the representative chain. Thus, we may name the prime end
E defined by {Qi}, where φ−1(Qi) → t ∈ S1, by Et.

Let Et be a prime end with defining chain of crosscuts {Qi}. Let Oi denote
the bounded complementary domain of O∞ \Qi. We use {Qi} and {Oi} to
define two subcontinua of ∂O∞ associated with Et.

Definition 2.26 (Impression and Principal Continuum). The set

Im(Et) =
∞⋂

i=1

Oi

is a subcontinuum of ∂O∞ called the impression of Et. The set

Pr(Et) = {z ∈ ∂O∞ | for some chain {Qi} defining Et, Qi → z}
is a continuum called the principal continuum of Et.

For a prime end Et, Pr(Et) ⊂ Im(Et), possibly properly. We will be inter-
ested in the existence of prime ends Et for which Pr(Et) = Im(Et) = ∂O∞.

Definition 2.27 (External Rays). Let t ∈ [0, 1) and define

Rt = {z ∈ C | z = φ(re2πit), 1 < r < ∞}.
We call Rt the external ray at t. If x ∈ Rt then the (Y, x)-end of Rt is the
component Kx of Rt \ {x} whose closure meets Y .

The external rays Rt foliate O∞ and it is easy to see that Pr(Et) = Rt\Rt.

Definition 2.28 (Essential crossing). An external ray Rt is said to cross a
crosscut Q essentially if and only if an (Y, x)-end of Rt is contained in the
bounded complementary domain of Y ∪Q.

The properties below may readily be established.

Proposition 2.29 ([8]). Let Et be a prime end of O∞. Then Pr(Et) =
Rt \ Rt. Moreover, for each 1 < r < ∞ there is a crosscut Qr at φ(re2πit)
on Rt with diam(Qr) → 0 as r → 1 and such that Rt crosses Qr essentially.

Definition 2.30 (Landing Points and Accessible Points). If Pr(Et) = {x},
then we say Rt lands at x ∈ T (X) and x is the landing point of Rt. A point
x ∈ ∂T (X) is said to be accessible (from O∞) iff there is a arc in O∞ ∪{x}
one endpoint of which is x.

Proposition 2.31. A point x ∈ ∂T (X) is accessible iff x is the landing
point of some external ray Rt.

Definition 2.32 (Channels). A prime end Et of O∞ for which Pr(Et) is
nondegenerate is said to be a channel in ∂O∞ (or in T (X)). If moreover
Pr(Et) = ∂O∞ = ∂T (X), we say Et is a dense channel. A crosscut Q with
endpoints {a, b} is said to cross the channel Et iff Rt crosses Q essentially.



16 FOKKINK, J. C. MAYER, L. G. OVERSTEEGEN, AND E. D. TYMCHATYN

When X is locally connected, there are no channels, as the following clas-
sical theorem proves. In this case, every prime end has degenerate principal
set and degenerate impression.

Theorem 2.33 (Carathéodory). X is locally connected iff the Riemann
map φ : ∆∞ → O∞ = C∞ \ T (X) taking ∞ → ∞ extends continuously to
S1 = ∂∆∞.

2.9. Index and Variation for Carathéodory Loops. We extend the
definitions of index and variation and the theorem relating index to variation
to Carathéodory loops.

Definition 2.34 (Carathéodory Loop). Let φ : S1 → C such that φ is
continuous and has an extension ψ : C \ T (S1) → C \ T (φ(S1)) such that
ψ|C\T (S1 is an orientation preserving homeomorphism from C \ T (S1) onto
C \ T (φ(S1)). We call φ (and loosely, S = φ(S1)), a Carathéodory loop.

In particular, if a Riemann map extends continuously to S1, we have a
Carathéodory loop. In order to define variation of f on a Carathéodory loop
S = φ(S1), we do the partitioning in S1 and transport it to the Carathéodory
loop S = φ(S1). An allowable partition of S1 is a set {a0 < a1 < · · · < an}
in S1 ordered counterclockwise, where a0 = an and Ai denotes the counter-
clockwise interval [ai−1, ai], such that for each i, f(φ(ai)) ∈ T (φ(S1)) and
f(φ(Ai)) ∩ φ(Ai) = ∅. Variation on each path φ(Ai) is then defined exactly
as in Definition 2.7, except that the junction (see Definition 2.6) is chosen
so that the vertex v ∈ φ(Ai) and T (φ(S1)) ⊂ h(U) ∪ {v}, and the crossings
of the junction by f(φ(Ai)) are counted (see Definition 2.7). Variation on
the whole loop, or an allowable subarc thereof, is defined just as in Defini-
tion 2.11, by adding the variations on the partition elements. At this point
in the development, variation is defined only relative to the given allowable
partition F of S1 and the parameterization φ of S: var(f, F, φ(S1)).

Index on a Carathéodory loop S is defined exactly as in Section 2.1 with
S = φ(S1) providing the parameterization of S. Likewise, the definition of
fractional index and Proposition 2.1 apply to Carathéodory loops.

Theorems 2.2, 2.3, Corollary 2.4, and Theorem 2.5 apply to Carathéodory
loops. It follows that index on a Carathéodory loop S is independent of
the choice of parameterization φ. It remains to extend Theorem 2.13 to
Carathéodory loops. It then follows that variation on a Carathéodory loop
S is independent of choice of parameterization φ(S1) = S and allowable
partition of S1. Thus, var(f, S) is well-defined for any Carathéodory loop S
that has some parameterization and some allowable partition.

Theorem 2.35. Suppose S = φ(S1) is a parameterized Carathéodory loop
in C and f has no fixed points on S. Suppose variation of f on S1 =
A0 ∪ · · · ∪An with respect to φ is defined for some partition A0 ∪ · · · ∪An of
S1. Then

ind(f, φ) =
n∑

i=0

var(f,Ai, φ(S1)) + 1.
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Proof. Let ψ be the homeomorphic extension of φ carrying C \ T (S1) onto
C \ T (S). Let Si = {1 + 1

i )e
2πiθ | θ ∈ [0, 1)} be the concentric circles of

radius 1 + 1
i converging to S1. For the given partition A0 ∪ · · · ∪ An of S1,

let Aj = [aj−1, aj ] with an = a0, Then aj = e2πiθj for some θj ∈ [0, 1) with
θ0 < θ1 < · · · < θn = θ0. For each j, let Ri,j = {re2πiθj | 1 ≤ r ≤ 1 + 1

i }
be the radial arc from Si to S1 at aj . Note diam(Ri,j) → 0 as i → ∞.
Let Ci,j = {(1 + 1

i )e
2πiθ | θj−1 ≤ θ ≤ θj} be the subarc of Si between

ci,j−1 = Si∩Ri,j−1 and ci,j = Si∩Ri,j . Then Ci,j = [ci,j−1, ci,j ] approximates
Aj as i → ∞. Moreover, ci,j → ai,j as i → ∞. Since ψ is a map, the same
holds for the images.

For each j, choose a junction Jvj with vertex vj ∈ ψ(Aj) so that T (ψ(S1)) ⊂
Uj ∪ {vj}, where Uj is the usual complementary half-plane of the junction
(see Definition 2.6).

Since ψ(Ci,j) approximates ψ(Aj) with ψ(Ri,j) shrinking as i → ∞, we
may choose i sufficiently large so that the following conditions are satisfied:

(1) ψ(Ci,j) ∩ f(ψ(Ci,j)) = ∅.
(2) var(f, Aj , ψ(S1)) = var(f, ψ(Ci,j), ψ(Si)).
(3) There are no fixed points of f in T (ψ(Si)) \ T (ψ(S1)).
(4) ind(f, ψ(Si)) = ind(f, ψ(S1)).

Condition (1) holds because of continuity of ψ and the similar condition
for Aj . To see condition (2), apply the observations about the stability
of variation in Section 2.4. Condition (3) holds because there are no fixed
points of f on S, and ψ(Si) approximates S. Condition (4) then follows from
the stability of index under fixed-point-free homotopy, noted in Section 2.2.
(Use ψ on Sk, k ≥ i, to define the homotopy.)

By Theorem 2.13,

ind(f, ψ(Si)) =
n∑

j=0

var(f, ψ(Ci,j), ψ(Si)) + 1.

Hence, noting φ = ψ|S1 , it follows from conditions (2) and (4) that

ind(f, φ) =
n∑

j=0

var(f, Aj , φ(S1)) + 1.

¤

3. Geometric Prime Ends

We develop in this section special collections of geometric crosscuts of
T (X). We show that for any compact set K in the plane, the complement
of K is partitioned into disjoint (and closed in Kc) nice geometric objects,
contained in maximal round ball in Kc, whose boundaries consist of points
in K and pieces of round circles in C∞ \ K with endpoints in K, called
chords. If K is a non-separating continuum, we can replace the chords by
hyperbolic geodesics in the hyperbolic metric on C∞ \ K. We show that
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the family of all chords suffice for a satisfactory theory of prime ends of a
non-separating plane continuum. These results, and their connection to the
standard conformal theory of prime-ends, are more fully developed in [6]. In
Bell’s work these objects were (Euclidean) convex subsets of round balls and,
hence the crosscuts were (Euclidean) straight line segments. Although all
these choices of the crosscuts are essentially equivalent, it is sometimes easier
to use circles or hyperbolic geodesics rather than straight line segments (see,
for example [12, 17]).

3.1. Kulkarni-Pinkall partition. We are going to define a special class of
geometric crosscuts (chords) of O∞ = C∞ \ Y and auxiliary nonseparating
plane continua which contain Y as subsets, and in some sense have some of
the same channels as Y , but have a nicer boundary than Y . To do this, we
study closed round balls B such that the interior of B is in the complement of
Y . More specifically, we study maximal balls B, that is balls whose boundary
intersect Y in two points or more. Note that such balls are maximal since
there exists no ball B′, whose interior is contained in the complement of
Y , which properly contains B. The geometric crosscuts are the hyperbolic
chords in a maximal ball between points of B ∩ K. Maximal balls were
studied by Kulkarni and Pinkall and we closely follow their approach in [12].

If two balls B1 and B2 intersect and if B1∩B2 does not contain a diameter
of either B1 or B2, then we say that B1 ∩B2 is the lense of B1 and B2.

Proposition 3.1. The lense of two balls B1 and B2 is contained in a ball
of radius strictly less than the radii of B1 and B2.

Proof. Suppose that the circles ∂B1 and ∂B2 intersect in {s1, s2}. Then the
ball around (s1 + s2)/2 of diameter |s1 − s2| contains the lense. ¤

Let K be any compact set. If B is a ball of minimal diameter that contains
K, then we say that B is a minimal ball. Such a minimal ball is unique by the
proposition on the lense. It exists, since any sequence of balls of decreasing
diameter that contain K has a convergent subsequence.

We denote the Euclidean convex hull of a planar set K by convE(K). It is
the intersection of all closed half planes (a closed half plane is the closure of
a component of the complement of a straight line) which contain K. Hence
p ∈ convE(K) if p cannot be separated from K by a straight line.

Every ball B is conformally equivalent with the unit disk and, hence, can
be equipped with the hyperbolic metric. Geodesics Q in this metric are
intersections of B with round circles C (or straight lines through the center
of B) which perpendicularly cross the boundary ∂B. For every hyperbolic
geodesic Q, B \ Q has exactly two components UQ and KQ. Like in the
Euclidean case, we call the closure of such components half planes of B.
Given a compact set K ⊂ ∂B, the hyperbolic convex hull of K in B is the
intersection of of all (closed) half planes which contain K and we denote
it by convH(B ∩ K). Since we consider balls in the Riemann sphere, the
maximal ball may be a half plane in C (corresponding to a circle in the
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Figure 3. Maximal balls have disjoint hulls.

sphere containing ∞) and can be the exterior or interior of a round circle
in the plane. Note if B ⊂ C and K ⊂ ∂B has cardinality |K| > 2, then
convH(B ∩K) ⊂ convE(K).

Lemma 3.2. Let K ⊂ C be compact. Suppose that B is the minimal ball
containing K and let c ∈ B be its center. Then c ∈ convH(K ∩ ∂B).

Proof. By contradiction. Suppose that there exists a circle that separates
the center c from K∩∂B and crosses ∂B perpendicularly. Then there exists
a line ` through c such that a half plane bounded by ` contains K∩∂B in its
interior. Let B′ = B+v be a translation of B by a vector v that is orthogonal
to ` and directed into the halfplane. If v is sufficiently small, then B′ properly
contains K hence it can be shrunk to a smaller ball, contradicting that B
has minimal diameter. ¤

We call a connected and open subset of the plane a region. We say that
B is a maximal ball in a region U if its interior is contained in U and
|B ∩ ∂U | ≥ 2. The exterior of the minimal ball around K is a “maximal”
ball around ∞. Suppose from now on that that ∂U = K is compact and
contains at least two points.

Lemma 3.3. Suppose that B1 and B2 are two distinct maximal balls in U .
Then

convH(B1 ∩ ∂U) ∩ convH(B2 ∩ ∂U) ⊂ ∂U.

In particular, the intersection contains at most two points
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Proof. A picture easily explains this, see figure 3. Note that ∂U intersects
the boundary of B1 ∪ B2 only. Therefore B1 ∩ ∂U and B2 ∩ ∂U share at
most two points. The chords between these points in the respective balls
are disjoint. ¤

It follows that any point in U can be contained in at most one hyperbolic
convex hull. In the next lemma we see that each point is indeed contained
in a convex hull, so the hulls of maximal balls partition the region U .

Since hyperbolic convex hulls are preserved by Möbius transformations,
they are more easy to manipulate than Euclidean convex hulls, which are
preserved only by Möbius transformations that fix ∞. This is illustrated by
the proof of the following lemma.

Lemma 3.4 (Kulkarni-Pinkall inversion lemma). Suppose that K ⊂ C is
compact and U = C \ K is connected. For any p ∈ C∞ \ K there exists
a maximal ball B in U such that p cannot be separated from K ∩ ∂B by
transversal circles which cross the boundary of B perpendicularly.

Proof. Möbius transformations preserve balls and they preserve inclusion so
we may translate p to ∞ by the Möbius transformation M(z) = 1

z−p . Let
B′ be the unique minimal round ball which contains M(K) and let B∗ be
the complementary domain of B′ in the sphere. By Lemma 3.2, there does
not exist a circle C which separates the center c′ of B′ from M(K)∩B′ and
crosses ∂B′ perpendicularly. Hence∞ cannot be separated from M(K)∩B′,
so ∞ ∈ convH(M(K)∩∂B∗) (any circle which separates K from infinity and
croosses ∂B′ perpendicularly can also be used to separate the center of B′
from K). Now let B be equal to M−1(B′). It is a maximal ball and by
the invariance of the hyperbolic convex hull under Möbius transformations,
p ∈ convH(K ∩ ∂B). ¤

As a result we obtain following Theorem. It is due to Kulkarni and Pinkall
[12] who established this result in much greater generality for compact n-
manifolds.

Theorem 3.5. Suppose that K ⊂ C is a compact set such that its com-
plement U in the Riemann sphere is non-empty and connected. Then U is
partitioned by the family

{U ∩ convH(B ∩K) : B is a maximal ball in U} .

Proof. By the Kulkarni-Pinkall lemma there exists a maximal ball such that
p cannot be separated from K ∩ ∂B by circles which cross ∂B perpendic-
ulalrly. This means that p is contained in the convex hull of K ∩ B in the
hyperbolic metric in the ball B. By lemma 3.3, the ball B is unique. ¤

This Theorem is the linchpin of the theory of geometric crosscuts. It was
known to Harold Bell and used by him implicitely since the early 1970’s.
Bell considered non-separating continua K and he used the equivalent no-
tion of Euclidean convex hull of the sets B ∩ ∂U for all maximal balls (see
Theorem 3.11 and the comment following it for a precise statement).
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Example The following example may serve to illustrate Theorem 3.5.
Let K be the unit square {x + yi : − 1 ≤ x, y ≤ 1}. There are five obvious
maximal balls

Imz ≥ 1, Imz ≤ −1, Rez ≥ 1, Rez ≤ −1, |z| ≥
√

2,

four of which are half planes. These are not all maximal balls as can be found
from their hyperbolic hulls, but they are the only maximal balls which have
a hull with nonempty interior. The hyperbolic hulls of the halfplanes are
the semi-discs around ±1 and ±i. The hyperbolic hull of the circle |z| ≥ √

2
is bounded by four circle segments with radius

√
2 and centers ±2 and ±2i.

These hulls do not cover U as there are gaps between the hulls of the half
planes and the hull of |z| ≥ √

2.
If C is a circle that circumscribes K and contains two of its vertices,

such as 1 ± i, then the exterior ball B bounded by C is maximal. Now
convH(B ∩ K) is a single chord and the union of all such chords fills the
remaining gaps.

3.2. Hyperbolic stratification. Theorem 3.5 applies to general compact
subsets. It is particularly useful if it is applied to non-separating continua,
for then the complement U in the Riemann sphere is simply connected and
we can apply the Riemann mapping theorem and the theory of prime ends.
Since we endow the hyperbolic metric, we define the Riemann map on the
unit disc D rather than the exterior disk at infinity ∆∞.

From now on K ⊂ C is a non-separating continuum. Its complement U in
the sphere is the image of the unit disc D under a Riemann map φ : D→ U .
We endow D by the hyperbolic metric, which U inherits by the Riemann
map. In this section we show how the Kulkarni-Pinkall hulls induce a closed
subset of D that is similar to a geodesic lamination in U . As a result we
obtain Bell’s original foliation of U by Euclidean convex hulls.

If B ∩ ∂U contains two points, then its hyperbolic hull is a single circle
segment S with endpoints s1, s2 ∈ K. We will call the crosscut S \ {s1, s2}
a geometric crosscut or simply a chord. If B ∩ ∂U contains three or more
points, then we say that the hull convH(B ∩ ∂U) is a gap. A gap has
nonempty interior. It’s boundary in B is a union of open circle segments
(with endpoints in K), which we also call geometric crosscuts or chords,
and points in K. The end point of a chord is accessible in K, therefore
the preimage of a chord is an arc in D with end points in the unit circle.
Note that different chords may have common end points, so their preimages
connect the same two points on the unit circle. We will replace such arcs by
a single geodesic line in D.

Lemma 3.6 (Jørgensen [18, p.31]). Let B be a closed round ball such that
its interior is in U . Let γ ⊂ D be a hyperbolic geodesic line. Then φ(γ)∩B
is connected. If φ(γ) intersects the interior of B then it divides B into two
components.
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More briefly stated, this result says that the preimage of a ball φ−1(B) is
hyperbolically convex.

Let C be a chord and let γ be the geodesic line between the end points
of φ−1(C). Then we say that γ and φ(γ) are hyperbolic chords. If B is the
maximal ball that belongs to C then by Jørgensen’s lemma φ(γ) ⊂ B.

Lemma 3.7. Suppose that Ci is a sequence of chords and suppose that
xi ∈ Ci is a sequence converging to x ∈ U . Then Ci converges to the chord
that contains x.

Proof. Let Bi be the sequence of associated maximal balls. The hyperspace
of compact subsets with the Hausdorff metric is compact. It suffices to show
that every convergent subsequence has the same limit. So we assume that Ci

and Bi converge. It is not hard to see that the limit of Ci is circle segment
C and the limit of Bi is a maximal ball B. The segment C is orthogonal to
B. Since x ∈ C the circle segment is not degenerate. The end points of Ci

are in ∂U hence so are the end points of C. It follows that C is a chord and
it must be the unique chord that contains x. ¤

Hence the Kulkarni-Pinkall partition of U has nice continuity properties,
similar to a foliation.

Lemma 3.8. For e, f ∈ K define C(e, f) as the union of all chords between
e and f . Then C(e, f)∪{e, f}, if not empty, is either the closure of a single
chord, or a closed disk whose boundary consists of two chords contained in
C(e, f) and the set {e, f}.
Proof. Suppose γ and δ are two chords between e and f . Then γ ∪ δ is a
simple closed curve and any element in its interior is in some C(B). Since
the hyperbolic hulls partition Kc, C(B) can only intersect γ ∪ δ in {e, f}.
So C(B) ∩K = {e, f} and it follows that the interior of γ ∪ δ is contained
in C(e, f).

The rest of the Lemma follows from 3.7. ¤

From the viewpoint of prime ends, all chords in C(e, f) are the same. That
is why we pull back under the Riemann map φ and replace all these chords
in D by a single hyperbolic chord. Note that chords do not intersect, except
possibly in their end points, so the same is true for hyperbolic chords. Since
we collapse chords in C(e, f) to a single hyperbolic chord, we need to prove
that hyperbolic chords preserve the continuity property. We will denote by
Γ the union of all geodesics γ in D such that if γ joins the points z and w
in the boundary of D, then there exists a chord C such that φ−1(C) is a
crosscut in D also joining z and w.

Lemma 3.9. Suppose that γi is a sequence of hyperbolic chords in Γ and
suppose that xi ∈ γi is a sequence converging to x ∈ D. Then γi converges
to the hyperbolic chord in Γ that contains x.
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Proof. Consider a convergent subsequence of γin . Its limit necessarily is a
geodesic line that contains x. Now choose a convergent subsequence of the
associated chords Cin . Its limit C is a chord and its end points correspond
to the end points of γ. Hence γ is a hyperbolic chord. It must be the
hyperbolic chord that contains x, since chords do not cross. ¤

So we have stratified the Kulkarni-Pinkall partition to a family of geodesic
lines in D. By Jørgensen’s lemma, a chord C and its hyperbolic chord φ(γ)
are contained in the same maximal ball. Hence there is a deformation of
U that maps one onto the other, which suggests that the complement of
the hyperbolic chords φ(γ) corresponds to the interiors of the gaps of the
Kulkarni-Pinkall partition. This is indeed the case.

Lemma 3.10. There is a 1− 1 correspondence between complementary do-
mains D ⊂ D \ Γ and Kulkarni-Pinkall gaps convH(∂B ∩K).

Proof. Consider a gap convH(∂B ∩ K) bounded by chords Ci. The corre-
sponding hyperbolic chords γi bound a domain D′ ⊂ D in the complement
of Γ. The boundary D̄′ ∩ ∂D corresponds to ∂B ∩K since these points are
accessible. Suppose that there exist a hyperbolic chord γ ∈ Γ that connects
points in D̄′ ∩ ∂D. Let C be the corresponding chord and let B′ be its max-
imal ball. Since γ connects points in D̄′ ∩∂D, C connects points in ∂B ∩K.
These points are in ∂B ∩ ∂B′ so C connects the same end points as one of
the chords in B. Hence γ is a hyperbolic chord on the boundary of D′. It
follows that D′ is in the complement of Γ.

Consider a complementary domain D ⊂ D\Γ, let γ be one of its bounding
hyperbolic chords, and let D \ γ = L ∪ R be the union of two disjoint and
connected sets. Since D is located on one side of γ we can choose a point
b ∈ ∂D such that D separates b from γ in D. Let e, f be the end points
of φ(γ). Then C(e, f) is a lense (or a single chord) and φ−1(C(e, f)) is a
compact subset that has the same end points as γ. The lense C(e, f) is
bounded by two chords P and C and one of φ−1({P, C}) separates the other
from b. Denote by C the chord such that φ−1(C) separates φ−1(P ) from b.
Let B be the maximal ball that contains C. We prove that convH(∂B ∩K)
is a gap and that its chords correspond to the hyperbolic chords that bound
D.

Suppose that C is not on the boundary of a gap convH(∂B ∩K). Then
convH(∂B ∩ K) is a chord and there exists a sequence xi ∈ B such that
xi 6∈ C(e, f) that converges to an internal point of x ∈ C. We may choose
each xi on a chord Ci, so we know that Ci converges to C and the end points
ei, fi ∈ Ci converge to e, f . The hyperbolic chords γi with end points φ−1(ei)
and φ−1(fi) converge to γ. Since the Ci are not contained in C(e, f), the
end points of γi are not equal to the endpoints of γ. In ∂D the end points
of φ−1(Ci) must converge to the end points of φ−1(C) and by the choice
of C, they must do so from the side of γ that contains D. But since D is
complementary to Γ there exist no hyperbolic chord that is arbitrarily close
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to γ and has end points in this side of γ. Hence C is on the boundary of
the gap convH(∂B ∩K). A similar argument shows that every hyperbolic
chord in the boundary of D corresponds to a chord in the boundary of
convH(∂B∩K). So D must be the complementary domain that corresponds
to convH(∂B ∩K). ¤

So if the complement of K is endowed with the hyperbolic metric, then
there exists a family of geodesic lines that share the same end points as
the Kulkarni-Pinkall partition. The complementary domains of the geodesic
lines corresponds to the Kulkarni-Pinkall gaps. By Jørgensen’s lemma, these
complementary domains are contained in the same maximal ball as the gaps.
We summarize the results:

Theorem 3.11. Suppose that K ⊂ C is a non separating continuum and
let O∞ be its complementary domain in the Riemann sphere. There exists
a family of geodesic lines G in the hyperbolic metric on O∞ such that for
each γ ∈ G there exist a maximal ball B such that γ ⊂ B connects points in
B ∩ ∂O∞. Let Γ = ∪{γ ∈ G}. Each domain in O∞ \ Γ is contained in a
unique maximal ball B and its bounding geodesic lines in O∞ correspond to
the chords of convH(B ∩ ∂O∞).

Instead of replacing the chords in C(e, f) by a geodesic in the hyperbolic
metric on O∞, we may just as well replace them by a straight line segment;
i.e, the geodesic in the euclidean metric. Then we obtain a family of straight
lines. In doing so, we replace the gaps convH(B∩∂O∞) by convE(B∩∂O∞),
which is the way in which Bell originally foliated convE(K)\K. Note that in
the latter two cases the elements of the foliation are not necessarily disjoint
(hence we use the word “foliate” rather then “partition”). However, the
intersection of any two elements is at most a common boundary leaf (i.e.,
either a hyperbolic chord or a straight line segment) and this is in most cases
sufficient. So there are three closely related ways to foliate U : by Kulkarni-
Pinkall chords, by hyperbolic chords or by Bell’s straight line segments (the
latter applies only to convE(K) \K but this is sufficient for the purpose of
this paper).

3.3. Geometric crosscuts and prime ends. Recall our Standing Hy-
potheses in 1.1: f : C → C takes continuum X into Y = T (X) with no
fixed points in Y , and X is minimal with respect to these properties. We
apply the Kulkarni-Pinkall partition to O∞, the complementary domain of
X that contains ∞. We show that the geometric crosscuts of Kulkarni and
Pinkall are sufficient for a satisfactory prime-end theory and are convenient
to compute variation.

The Kulkarni-Pinkall partition of the complementary domain O∞ is de-
noted by F . The maximal ball B∞ that contains ∞ is the complement of
the minimal ball that contains T (X). We denote the points in its hull that
are exterior to the minimal ball by V (B∞) ∈ F and more generally given the
maximal ball B, then we denote the elements of convH(B∩∂O∞) that are in
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the interior of B by V (B). So V (B) is a closed subset of O∞. As before we
use balls on the sphere. In particular, straight lines in the plane correspond
to circles on the sphere containing the point at infinity. The subset of hulls
of diameter ≤ δ in the spherical metric is denoted by Fδ. The chords of
the partition (i.e. all the chords in the boundary of convH(∂B ∩K) for all
maximal balls B) are denoted by G. The subset of chords of diameter ≤ δ
is denoted by Gδ.

By Lemma 3.7 we know that chords and hulls have nice continuity proper-
ties. However, G and F are not closed in the hyperspace of compact subsets
of C∞: a sequence of chords or hulls may converge to a point (and, hence,
must be a null sequence).

Proposition 3.12 (Compactness). If {Qi} is a convergent sequence of dis-
tinct element in Gδ or in Fδ, then either Qi converges to a chord in Gδ or
Qi converges to a point of X. Moreover, if Qi ∈ Gδ and {Qi} converges to
a chord C, then for sufficiently large i, var(f, Q, Y ) = var(f, Qi, Y ).

Proof. By Lemma 3.7, we know that this is true if the limit Q contains a
point in O∞. Hence we only need to consider the case when limQi = Q ⊂
∂O∞ = X. If the diameter of Qi converged to zero, then Q is a point as
desired. Assume that this is not the case and let Bi be the maximal ball that
contains Qi. Under our assumption, the diameter of Bi does not decay to
zero. Then limBi = B∞ is a maximal ball in O∞ and it follows easily that
limQi ∩B∞ 6= ∅, contradicting the fact that Q ⊂ ∂O∞. The last statement
in the Lemma follows from stability of variation (see Section 2.4). ¤
Corollary 3.13. For each ε > 0, there exist δ > 0 such that for all Q ∈ G
with Q ⊂ B(Y, δ), diam(Q) < ε.

Proof. Suppose not, then there exist ε > 0 and a sequence Qi in G such that
limQi ⊂ X and diam(Qi) ≥ ε a contradiction to Proposition 3.12. ¤

The proof of the following well known proposition is included for com-
pleteness.

Proposition 3.14. For each ε > 0 there exists δ > 0 such that for each open
arc A such that A ∩ Y = {a, b}, with a 6= b, and diam(A) < δ, T (Y ∪ A) ⊂
B(Y, ε).

Proof. Suppose that Ai is a sequence of crosscuts such that diam(Ai) → 0
and T (Ai ∪ Y ) \ B(Y, ε) 6= ∅. Then there exist zi ∈ T (Ai ∪ Y ) such that
d(zi, Y ) ≥ ε. Without loss of generality we may assume ε ≤ d(zi, Y ) ≤ 2ε
and the the sequence zi converges to z∞ ∈ C\Y . Since Y is non-separating,
there exists a ray R ⊂ C \ Y joining z∞ to infinity. Since d(R, Y ) > 0 there
exist i such that if B is the straight line segment joining zi to z∞, then
Ai ∩ [R ∪B] = ∅ contradicting the fact that zi ∈ T (Y ∪Ai). ¤

A maximal ball B centered around z ∈ C consists of all w ∈ C such that
d(w, z) ≤ d(z, Y ). Therefore, the diameter of V (B) is bounded by 2d(z, Y ).
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Proposition 3.15. Let ε, δ be as in Proposition 3.14 above with δ < ε/2
and let A be a crosscut of Y such that diam(A) < δ. If x ∈ T (A∪Y )∩V (B)
and d(x,A) ≥ ε, then diam(V (B)) < 2ε.

Proof. Let z be the center of B. If d(z, Y ) < ε then diam(V (B)) < 2ε and
we are done. Hence we may assume that d(z, Y ) ≥ ε, which implies that
z 6∈ T (A ∪ Y ) by Proposition 3.14 and our choice of δ. We will show that
this leads to a contradiction. The straight line segment ` from x to z must
cross Y ∪ A at some point w. Since the segment is in the interior of the
maximal ball B, it is disjoint from Y , so w ∈ A. Hence d(x,w) ≥ ε and,
since x ∈ B, B(w, ε) ⊂ B. This is a contradiction since A ⊂ B(w, δ) and
δ < ε/2 so A would be contained in the interior of B which is impossible
since A is a crosscut. ¤
Proposition 3.16. Let C be a crosscut of Y and let A and B be disjoint
closed sets in Y such that C ∩ A 6= ∅ 6= C ∩ B. Let Fx ∈ F be the hull that
contains x ∈ C. If each Fx intersects A ∪ B, then there exists an F∞ ∈ F
that intersects A, B and C.

Proof. Let a ∈ A, b ∈ B be the end points of C. Let Ca, Cb ⊂ C be
the set of points such that Fx intersects A or B, respectively. Then Ca

and Cb are closed subsets by Proposition 3.12. Note that d(A,B) > 0. If
Ca = ∅, choose xi ∈ C converging to a ∈ A ∩ C. Then Fxi ∩ B 6= ∅ and
limFxi = F∞ ⊂ V (B∞) ∈ F , where B∞ = limBi is the limit of the maximal
balls Bi whose hulls contain Fxi . Then F∞ = V (B∞) meets both A and B
and contains a and we are done. So we may assume that Ca 6= ∅ 6= Cb and
Ca ∩Cb is nonempty by the connectedness of C. Hence if x ∈ Ca ∩Cb, then
Fx ∩A 6= ∅ 6= Fx ∩B and Fx ∩ C 6= ∅ as desired. ¤

Proposition 3.16 allows us to replace small crosscuts which cross a prime
end Et with non-trivial principal continuum essentially by small nearby
chords which also cross Et essentially. For if C is a small crosscut in
Convexhull(Y ) with endpoints a and b which crosses the external ray Rt

essentially, let A and B be the closures of the sets in Y accessible from a
and b, respectively by small arcs missing Rt.

Fix a Riemann map φ : ∆∞ → O∞ = C∞ \ Y taking ∞→∞.

Proposition 3.17. Suppose the external ray Rt lands on x ∈ Y , and
{Qi}∞i=1 is a sequence of crosscuts converging to x with φ−1(Qi) → t ∈ ∂∆∞.
Then for sufficiently large i, var(f, Qi, Y ) = 0.

Proof. Since f is fixed point free on Y and f(x) ∈ Y , we may choose a
connected neighborhood W of x such that f(W ) ∩ (W ∪ Rt) = ∅. For
sufficiently large i, Qi ⊂ W . For each such i, let Ji be a junction starting
from a point in Qi, staying in W until it reaches Rt, then following Rt to
∞. By our choice of W , var(f, Qi, Y ) = 0. ¤
Proposition 3.18. Suppose that for an external ray Rt∩Int(convE(Y )) 6= ∅.
Then there exists x ∈ Rt such that the (Y, x)-end of Rt is contained in
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convE(Y ). In particular there exists a chord Q ∈ G such that Rt crosses Q
essentially.

Proof. External rays correspond to geodesic half lines starting from the ori-
gin of ∆∞. Half planes are conformally equivalent to disks. Therefore,
Jørgensen’s lemma applies: the intersection of Rt with a halfplane is con-
nected, so it is a half line. Since the convexhull of Y is the intersection of
all half planes containing Y , Rt ∩ convE(Y ) is connected. ¤
Proposition 3.19. If Rt is an external ray of Y . Then one of the following
must hold:

(1) Rt lands on a point of B ∩ ∂Y for some maximal ball B,
(2) There is a defining sequence Qi of chords for Rt.

Note that if in case (1) the maximal ball B is the exterior of the minimal
ball that contains K, then Rt lands on a point of Y ∩ ∂convE(Y ). The
proposition says that either a ray gets trapped in a maximal ball, or it keeps
forever crossing chords.

Proof. If the external ray is trapped in a maximal ball B it must land on one
of the accessible points in B∩∂Y . So suppose it never gets trapped. Without
loss of generality we may assume that the external ray is R0 = φ(1,∞) and
by our assumption there exists a decreasing sequence of reals r1 > r2 > . . .
converging to 1 such that φ(rn) is not contained in any of the maximal balls
that contain φ(ri) for i < n. Let Fn ∈ F be the hull that contains φ(rn).
By choosing a subsequence if necessary we may assume that Fn converges.
It cannot converge to a hull, since the sequence φ(rn) never gets trapped.
So by Proposition 3.12 it converges to a singleton in ∂Y . For each Fn there
exists a minimal sn > 1 such that φ(sn) ∈ Fn. Then φ(sn) is contained in
an open chord Cn ⊂ Fn. The sequence of chords Cn defines Rt. ¤
Lemma 3.20. Let Et be a channel in Y such that Pr(Et) is non-degenerate.
Then for each x ∈ Pr(Et), for every δ > 0, there is a chain {Qi}∞i=1 of chords
defining Et selected from Gδ with Qi → x ∈ ∂Y .

Proof. Let x ∈ Pr(Et) and let {Ci} be a defining chain of crosscuts for Pr(Et)
with {x} = lim Ci. By Proposition 3.16, in particular by the remark follow-
ing the proof of that proposition, there is a sequence {Qi} of chords such
that Qi∩Ci 6= ∅ and Pr(Et) crosses each Qi essentially. By Proposition 3.15,
the sequence Qi converges to {x}. ¤
Lemma 3.21. Suppose an external ray Rt lands on a ∈ Y with {a} =
Pr(Et) 6= Im(Et). Suppose {xi}∞i=1 is a collection of points in O∞ with xi →
x ∈ Im(Et) \ {a} and φ−1(xi) → t. Then for sufficiently large i, there is a
sequence of chords {Qi}∞i=1 such that Qi separates xi from ∞, Qi → a and
φ−1(Qi) → t.

Proof. The existence of the chords Qi again follows from the remark follow-
ing proposition 3.16. It is easy to see that limϕ−1(Qi) → t. ¤
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3.4. Auxiliary Continua. We use chords to form Carathéodory loops around
the continuum.

Definition 3.22. Fix δ > 0. Define the following collections of chords:

G+
δ = {Q ∈ Gδ | var(f,Q, Y ) ≥ 0}
G−δ = {Q ∈ Gδ | var(f,Q, Y ) ≤ 0}

To each collection of chords above, there corresponds an auxiliary continuum
defined as follows:

Yδ = T (Y ∪ (∪Gδ))
Y +

δ = T (Y ∪ (∪G+
δ ))

Y −
δ = T (Y ∪ (∪G−δ ))

Proposition 3.23. Let Z ∈ {Yδ, Y
+
δ , Y −

δ }, and correspondinglyW ∈ {Gδ,G+
δ ,G−δ }.

Then the following hold:
(1) Z is a nonseparating plane continuum.
(2) ∂Z ⊂ Y ∪ (∪W).
(3) Every accessible point p in ∂Z is either a point of Y or a point

interior to a chord A ∈ W.
(4) If p is an accessible point of ∂Z and in the interior of the chord

A ∈ W, then every point of A is accessible in ∂Z.

Proof. By Proposition 3.12, Y ∪(∪W) is compact. Moreover, Y is connected
and each crosscut A ∈ W has endpoints in Y . Hence, the topological hull
T (Y ∪ (∪W)) is a nonseparating plane continuum, establishing (1).

Since Z is the topological hull of Y ∪ (∪W), no boundary points can be in
complementary domains of Y ∪ (∪W). Hence, ∂Z ⊂ Y ∪ (∪W), establishing
(2). Conclusion (3) follows immediately. Conclusion (4) follows from the
disjointness of the chords. ¤

To simplify notation we write eit ∈ ∂∆∞ simply as t. Given a non-
separating continuum Y and a crosscut A of Y (i.e. an open arc in C \ Y
whose closure is a closed arc with distinct endpoints in Y ) we denote by
Sh(A), the shadow of A, the bounded component of C \ [Y ∪A].

Proposition 3.24. Yδ is locally connected; hence, ∂Yδ is a Carathéodory
loop.

Proof. Let G be all the chords in the Kulkarni-Pinkall partition of U = C\Y .
Suppose that Yδ is not locally connected. Then there exists a non-trivial
impression and there exist 0 < ε < δ/2 and a chain Ai of crosscuts of Yδ

such that diam(Sh(Ai)) > 5ε for all i. We may assume that limAi = y ∈ Yδ.
By Proposition 3.12 Yδ is locally connected in the interior of each chord G
of G which is contained in the boundary of Yδ. Hence y ∈ Y . Choose
zi ∈ Sh(Ai) such that d(zi, y) > 2ε. We can enlarge the crosscut Ai of
Yδ to a crosscut Bi of Y as follows. Suppose that Ai joins the points a+

i

and a−i in Yδ. If a+
i ∈ Y , put y+

i = a+
i . Otherwise a+

i is contained in a
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chord G+
i ∈ G, with endpoints in Y , which is contained in the boundary

of Yδ. Since limAi = y we can select one of these endpoints and call it
y+

i such that d(y+
i , a+

i ) → 0. Define y−i , which is an endpoint of the chord
G−

i , similarly. Then G+
i ∪ Ai ∪ G−

i contains a chord Bi of Y joining the
points y+

i and y−i such that limBi = y. We claim that zi ∈ Sh(Bi). To see
this note that, since zi ∈ Sh(Ai), there exists a halfray Ri ⊂ C \ Yδ joining
zi to infinity such that |Ri ∩ Ai| is an odd number and each intersection
is transverse. Since Ri ∩ Bi = Ri ∩ Ai it follows that zi ∈ Sh(Bi). Let
V (Bi) be the unique hull of the Kulkarni-Pinkall partition F which contains
zi. Since diam(Bi) → 0 and d(zi, y) > 2ε, it follows from Proposition 3.15
that diam(V (Bi)) < 2ε < δ. This contradicts the fact that zi ∈ C \ Yδ and
completes the proof.

¤

4. Outchannels

In this section we will show that X has at least one negative outchannel,
which is defined as follows.

Definition 4.1 (Outchannel). An outchannel of the nonseparating plane
continuum Y is a prime end Et of O∞ = C∞ \ Y such that for some chain
{Qi} of crosscuts defining Et, var(f,Qi, Y ) 6= 0 for every i. We call an
outchannel Et of Y a geometric outchannel iff for sufficiently small δ, every
chord in Gδ, which crosses Et essentially, has nonzero variation. We call a
geometric outchannel negative (respectively, positive) iff every chord in Gδ,
which crosses Et essentially, has negative (respectively, positive) variation.

Lemma 4.2. Let Z ∈ {Y +
δ , Y −

δ }. Fix a Riemann map φ : ∆∞ → C∞ \ Z
such that φ(∞) = ∞. Suppose Rt lands at x ∈ ∂Z. Then there is an open
interval M ⊂ ∂∆∞ containing t such that φ can be extended continuously
over M .

Proof. As in the proof of Proposition 3.24 put φ(t) = x. Again let ti converge
to t in ∂∆∞ such that Rti lands on xi in Z and xi converges to x. By
Lemma 3.21 there exist crosscuts Qi such that Rti crosses Qi essentially. By
Proposition 3.17, var(f, Qi, X) = 0 so eventually Qi ∈ G+

δ ∩ G−δ . So Qi ⊂ Z
and φ extends continuously over some interval M ⊂ ∂∆∞. ¤

Lemma 4.3. If there is a chord Q of Y of negative (respectively, positive)
variation, such that there is no fixed point in T (Y ∪ Q), then there is a
negative (respectively, positive) geometric outchannel Et of Y for which a
defining chain begins with Q.

Proof. Without loss of generality, assume var(f, Q, Y ) < 0. Choose δ > 0
so small that Q /∈ Gδ, no chord in Gδ separates Q from ∞, so, since there
are no fixed points in T (Y ∪Q), every chord in Gδ separated from ∞ by Q
moves off itself under f and variation on it is defined.
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Let φ : ∆∞ → C \ Y +
δ be the Riemann map. Let a, b be the end points of

C. Since a, b ∈ Y are accessible and since chords are disjoint, there exists
a ray Rt that lands on a and a ray Rt′ that lands on b. By Lemma 4.2,
φ extends continuously over intervals in ∂∆∞ that contain t, t′. Consider
the interval I ⊂ ∂∆∞ from t to t′ that is separated from ∞ by φ−1(C).
Suppose that all chords in Gδ that is separated from ∞ by Q has positive
or zero variation. Then the boundary of Y +

δ that is separated from ∞ by Q
coincides with the boundary of Yδ, which is locally connected. Hence is it
is possible to extend φ over this entire interval I from t to t′. Then φ(I) is
an arc in Y +

δ joining a to b which is separated by Q from ∞. Any junction
from φ(I) defines a junction for Q so

var(f,Q, X) = var(f, φ(I), X) =
∑

C∈Gδ, C⊂φ̃(I)

var(f, C, X).

This is a contradiction since var(f, Q, X) < 0 and all var(f, C, X) ≥ 0.
Hence φ does not extend over I and it follows that a chord in Gδ that is
separated by Q has negative variation. ¤
4.1. Invariant Channel in X. We are now in a position to prove Bell’s
principal result on any possible counter-example to the fixed point property,
under our standing hypothesis.

Lemma 4.4. Suppose Et is a geometric outchannel of Y = T (X) under
f . Then the principal continuum Pr(Et) of Et is invariant under f . So
Pr(Et) = X.

Proof. Let x ∈ Pr(Et). Then for some chain {Qi}∞i=1 of crosscuts defining Et

selected from Gδ, we may suppose Qi → x ∈ ∂T (X) and var(f,Qi, X) 6= 0
for each i. The external ray Rt meets all Qi and is equivalent to a junction;
any junction from Qi “parallels” Rt. Since var(f,Qi, X) 6= 0, each f(Qi)
intersects Rt. Since diam(f(Qi)) → 0, we have f(Qi) → f(x) and f(x) ∈
Pr(Et). We conclude that Pr(Et) is invariant. ¤
Theorem 4.5 (Dense channel, Bell). Under our standing Hypothesis, Y =
T (X) contains a negative geometric outchannel; hence, ∂O∞ = ∂T (X) =
X = f(X) is an indecomposable continuum.

Proof. Recall that the map f : C→ C taking X into Y = T (X) has no fixed
points in Y , and X is minimal with respect to these properties. Choose
δ > 0 so that each crosscut Q ∈ Gδ is sufficiently close to Y so that f has
no fixed points in T (Y ∪Q), and so that for any geometric crosscut Q ∈ Gδ,
f(Q) ∩ Q = ∅. By Lemma 3.24 ∂Yδ is a Carathéodory loop. Since f is
fixed point free on ∂Yδ, ind(f, ∂Yδ) = 0. Consequently, by Theorem 2.13
for Carathéodory loops, var(f, ∂Yδ) = −1. By the summability of variation
on ∂Yδ, it follows that on some chord Q ⊂ ∂Yδ, var(f, Q, Y ) < 0. By
Lemma 4.3, there is a negative geometric outchannel Et under the crosscut Q.

Since Pr(Et) is invariant under f by Lemma 4.4, it follows that Pr(Et) is an
invariant subcontinuum of ∂O∞ ⊂ ∂Y ⊂ X. So by the minimality condition
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in our Standing Hypothesis, Pr(Et) is dense in ∂O∞. Hence, ∂O∞ = ∂Y = X
and Pr(Et) is dense in X. It then follows from a theorem of Rutt [19] that
X is an indecomposable continuum. ¤

Theorem 4.6. The boundary of Yδ is a simple closed curve. The set of
accessible points in the boundary of each of Y +

δ and Y −
δ is a countable union

of continuous one-to-one images of R.

Proof. By Theorem 4.5, X is indecomposable, so it has no cut points. By
Proposition 3.24, ∂Yδ is a Carathéodory loop. Since X has no cut points,
neither does Yδ. A Carathéodory loop without cut points is a simple closed
curve.

Let Z ∈ {Y +
δ , Y −

δ }. Fix a Riemann map φ : ∆∞ → C∞ \ Z such that
φ(∞) = ∞. Corresponding to the choice of Z, let W ∈ {G+

δ ,G−δ }. Ap-
ply Lemma 4.2 and find the maximal collection J of disjoint open subarcs
of ∂∆∞ over which φ can be extended continuously. The collection J is
countable. Since X has no cutpoints the extension is one-to-one over ∪J .
Since angles that correspond to accessible points are dense in ∂∆∞, so is
∪J . If Z = Y +

δ , then it is possible that ∪J is all of ∂∆∞ except one point,
but it cannot be all of ∂∆∞ since there is at least one negative geometric
outchannel by Theorem 4.5. ¤

Theorem 4.6 still leaves open the possibility that Z ∈ {Y +
δ , Y −

δ } has a
very complicated boundary. The set C = ∂∆∞ \ ∪J is compact and zero-
dimensional. Note that φ is discontinuous at points in C, we may call C
the set of outchannels of Z. In principle, there could be an uncountable set
of outchannels, each dense in X. The one-to-one continuous images of R
lying in ∂Z are the “sides” of the outchannels. If two elements J1 and J2

of the collection J happen to share a common endpoint t, then the prime
end Et is an outchannel in Z, dense in X, with φ(J1) and φ(J2) as its sides.
It seems possible that an endpoint t of J ∈ J might have a sequence of
elements Ji from J converging to it. Then the outchannel Et would have
only one (continuous) “side.” Such exotic possibilities are eliminated in the
next section.

In the lemma below we show that pieces of the boundary of Y −
δ which

correspond to arc components in the set of accessible points, are well behaved
and do not contain large unnecessary “wiggles.”

Lemma 4.7. Assume that ∂Y −
δ is not a simple closed curve. Let K be

an arc component of the set of accessible points of Y −
δ . Then for each ε,

0 < ε < δ/2, there exists ξ > 0 such that for any two points x, y ∈ K ∩X, if
Q is any crosscut of Y −

δ joining x to y, and diam(Q) < ξ, Then there exists
an arc B ⊂ K, joining x to y such that diam(B) < 8ε.

Proof. Let ε > 0 be fixed and choose ξ as in Proposition 3.15. Let B be
the unique arc in K joining x to y. By Theorem 4.6, K is a one-to-one
continuous image of R. We will denote the unique subarc of K which joins
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two points p, q ∈ K by 〈p, q〉. Hence B = 〈x, y〉. Suppose there exist z ∈ B
such that d(z, Q) ≥ 8ε. Let b ∈ T (Q ∪ Y −

δ ) \ Y −
δ such that d(b, z) ≤ ε/2.

Let P = 〈x, z〉 \B(b, ε) and M = 〈z, y〉 \B(b, ε). Then P and Q are disjoint
closed sets in Y −

δ . Let N be a component of B(Q, 3ε)\Y −
δ which separates b

from∞ in C\Y −
δ and such that N is contained in the bounded component of

T (Q∪Y −
δ ). By Proposition 3.15, each point of N lies in an element Fx ∈ F

with diameter at most 2ε. Since Fx is small and meets Y , Fx ∩ (P ∪M) 6= ∅
for each x ∈ N . It follows from Proposition 3.16 that there exists x ∈ N
such that Fx = F meets both P and M and, hence, F separates b from ∞
in C \ Y −

δ . We may assume that F is a chord, since if it is a gap F = V (B)
then we can replace it by one of the chords of ∂V (B).

Now, var(f, F, X) ≤ 0. For if var(f, F, X) > 0, there exists a positive
geometric outchannel Es for which a defining chain starts with F . But, if the
end points of F are x′, y′, then Rs would cross some chord G ⊂ 〈x′, y′〉 ⊂ K
essentially. This is a contradiction since K contains no crosscuts of positive
variation. So var(f, F, X) ≤ 0. It follows that F ⊂ Y −

δ and T (Y ∪F ) ⊂ Y −
δ .

This contradicts that b ∈ C \ Y −
δ . ¤

5. Uniqueness of the Outchannel

Theorem 4.5 asserts the existence of at least one negative geometric
outchannel which is dense in X. We show below that there is exactly one
geometric outchannel, and that its variation is −1. Of course, X could have
other dense channels, but they are “neutral” as far as variation is concerned.

Theorem 5.1 (Unique Outchannel). Assume the standing hypothesis 1.1.
Then there exists a unique geometric outchannel Et for X, which is dense in
X = ∂Y . Moreover, for any sufficiently small chord Q in any chain defining
Et, var(f, Q, X) = −1, and for any sufficiently small chord Q′ not crossing
Rt essentially, var(f,Q′, X) = 0.

Proof. Suppose by way of contradiction that X has a positive outchannel.
Let δ > 0 such that T (B(Y, 2δ)) contains no fixed points of f and such that,
if M ⊂ B(Y, 2δ) with diam(M) < 2δ, then f(M) ∩M = ∅. Since X has a
positive outchannel, ∂Y −

δ is not a simple closed curve. By Theorem 4.6 ∂Y −
δ

contains an arc component K which is the one-to-one continuous image of
R. Note that each point of K is accessible.

Let ϕ : ∆∞ → U∞ = C \ Y −
δ a conformal map. By Theorem 4.6, and

its proof, ϕ extends continuously and injectively to a map ϕ̃ : ∆̃∞ → Ũ∞,
where ∆̃∞ \ ∆∞ is a dense and open subset of S1 which contains K in
its image. Then ϕ̃−1(K) = (t′, t) ⊂ S1 is an open arc with t′ < t in the
counterclockwise order on S1. Let < denote the order in K induced by ϕ̃
and for x < y in K, denote the arc in K with endpoints x and y by 〈x, y〉.
Let 〈x,∞〉 = ∪y>x〈x, y〉

Let Et be the prime-end corresponding to t. Then Pr(Et) is a positive
geometric outchannel and, hence, by Lemma 4.4, Pr(Et) = X. Let Rt =
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Figure 4. Uniqueness of the negative outchannel.

ϕ(reit), r > 1, be the external conformal ray corresponding to the prime-
end Et. Since Rt \ Rt = X and the small chords which define Pr(Et) have
one end point in K (c.f., Proposition 3.15), 〈x,∞〉 ∩ Y −

δ = X.
Let ε > 0 such that T (B(Y, ε)) ⊂ B(Y, δ) (by Proposition 3.14). It follows

from Propositions 3.14, 3.16 and 3.19, there exists x ∈ K such that in each
arc M ⊂ 〈x,∞〉 with diam(M) > ε/4, there exists y ∈ M and a chord
G ∈ Gδ with end point y which crosses Rt essentially.

Let a0 ∈ K ∩ X so that a0 > x and Ja0 a junction of Y −
δ . Let W be

a topological disk about a0 with simple closed curve boundary of diameter
less than ε so that the component of K ∩W containing a0 has closure 〈a, b〉,
a < a0 < b in K and f(W ) ∩ (W ∪ Ja0) = ∅. We may suppose that
(K ∩W )\〈a, b〉 is contained in one component of W \ 〈a, b〉 since one side of
K is accessible from ∞ in C\Y −

δ . Since X ⊂ 〈a0,∞〉, there are components
of W ∩ 〈b,∞〉 which pass arbitrarily close to a0. Choose 〈c, d〉 to be the
closure of a component of W ∩ 〈b,∞〉 such that:
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(1) a and d lie in the same component of ∂W \ {b, c},
(2) there exists y ∈ 〈c, d〉 ∩X ∩ W and an arc I ⊂ (W \ 〈a, d〉)∪ {a0, y}

joining a0 to y, and
(3) there is a chord Q ⊂ W with y and z as endpoints which crosses Rt

essentially.

To see the above, note that there are small chords or simplexes which
cross Rt essentially through each point of Rt. By Proposition 3.16 given an
arc A that crosses Rt essentially and is sufficiently close to X, there is a small
diameter chord that essentially crosses Rt and meets A. By Lemma 4.7, it
follows that if two small chords both cross Rt essentially and both meet a
small diameter arc in Rt, then they both meet a small diameter arc in K.
Thus we can satisfy (3) on any arc in W ∩K which gets close to a0. Note
that (2) holds for any point of 〈c, d〉 for which (3) holds.

Let B be the arc in ∂W \{b} with end points a and d. Let A be a bumping
arc in (C \ [Ja0 ∪ T (〈a, d〉 ∪B)]) ∪ {a, d} with end-points a and d such that
Y \T (〈a, d〉∪B) ⊂ T (A∪B). Hence, S = 〈a, d〉∪A is a simple closed curve
and Y ⊂ T (S). We may suppose that A ⊂ B(Y, ε) so that f is fixed point
free on T (S) and each component of A \X has diameter less than δ so that
variation is defined on each such component.

Since Q ∩ Y = {y, z} we may suppose that A ∩Q = {z}. Note that I is
an arc in T (S) which meets S only at its end points a0 and y. Since I ⊂ W ,
f(I)∩Ja0 = ∅. Let R = T (〈a0, y〉∪ I) and let L = T (〈y, d〉∪ I ∪A∪〈a, a0〉).
Let Jy be a junction for S such that Jy ∩ Q = {y}, Ja0 \W ⊂ Jy so that
R∗

a0
\W ⊂ R∗

y for each ∗ ∈ {+, i,−} and Jy runs very close to 〈a0, y〉 ∪ Ja0 .
Note that the order < on K coincides with the counterclockwise order on

S. It follows that W ∪Ri
y separates L ∪R−

y \ Ja0 from R ∪R+
y \ Ja0 . Since

Q crosses Rt essentially, we know that var(f, Q, Y ) > 0. We will use this
information to show that f(y) ∈ R. To compute var(f, Q, Y ) = var(f,Q, S)
we will use the fact that the variation is invariant under a homotopy which
keeps y and z in h(Uy) (see Proposition 2.10 and the remark following that
proposition). Hence, if we homotope f |Q to a map f ′ : Q → C\W such that
f |f−1(T (S))∩Q = f ′|f−1(T (S))∩Q, then var(f ′, Q, S) = var(f, Q, S). Moreover,
we can choose f ′ such that the number of components of f ′−1(C \ T (S)) is
minimal (the set of components of Q ∩ f−1(C \ T (S)) whose closures meet
both f−1(T (L)) and f−1(T (R)) is finite since f(Q) ∩ W = ∅). Then to
compute var(f ′, Q, S) we use the following recipe: As we go along Q from y
to z, each time the image of f ′ goes from R to L count +1. Each time the
image goes from L to R count −1. Make no other counts. Then it follows
that if f ′(y) = f(y) ∈ R and f(z) ∈ L, then var(f ′, Q, S) = +1, if f ′(y) ∈ L
and f ′(z) ∈ R, then var(f ′, Q, S) = −1. Otherwise var(f ′, Q, S) = 0. Since
var(f ′, Q, S) > 0, f(y) ∈ R.

The Lollipop Lemma, Theorem 2.14, applies to S and the arc I. Also,
since Y ⊂ T (S), var(f, C, S) = var(f, C, Y ) for each chord C contained in S.
Hence, there exists a chord Q1 ⊂ 〈a0, y〉 such that var(f,Q1, Y ) < 0. Since
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there are no chords of positive variation on 〈a0, y〉 and

0 = ind(f, I ∪ 〈a0, y〉) =
∑

C∈G, C⊂〈a0,y〉
var(f, C, Y ) + 1,

we know that var(f, Q1, Y ) = −1.
We repeat the above argument starting with y ∈ K in place of a0 and

Jy in place of Ja0 and an open disk V ⊂ W about y to find a second chord
Q2 ⊂ 〈y,∞〉 with var(f, Q2, Y ) = −1.

We will now show that the existence of chords Q1 and Q2 in K with
variation −1 on each leads to a contradiction. Choose c′ < d′ ∈ K such
that 〈c′, d′〉 is the closure of a component of K ∩W satisfying the following
conditions.

(1) Q1, Q2 ⊂ 〈a0, c
′〉 ⊂ K,

(2) {a, d′} is contained in one component of ∂W \ {b, c′},
(3) there exist y′ ∈ 〈c′, d′〉 ∩ Y ∩ W and an arc I ′ from a0 to y′ in

{a0, y
′} ∪ (W \ 〈a, d′〉), and

(4) there exists a chord Q′ ⊂ W with endpoints y′ and z′ such that Q′
crosses Rt essentially.

Let B′ be the arc in ∂W \{b} with endpoints {a} and {d′}. Let A′ be an arc
in {a, d′}∪C\T (〈a, d′〉∪B′) such that Y \T (〈a, d′〉∪B′) ⊂ T (A′∪B′) and such
that the components of A′ \X have diameter less than δ. We may suppose
that Q

′∩A′ = {z′}. We can prove, as above, that f(y′) ∈ R′ = T (〈a0, y
′〉∪ I ′)

and, hence all conditions of the Lollipop Lemma 2.14 are again satisfied for
S′ and I ′ and

ind(f, 〈a0, y
′〉 ∪ I ′) =

∑

C∈G, C⊂〈a0,y′〉
var(f, C, S′) + 1.

Since 〈a0, y
′〉 contains Q1 and Q2, var(f,Qi, S

′) = var(f, Qi, Y ) < 0 and
contains no chords of positive variation,

∑
var(f, C, S′) + 1 ≤ −1.

Since f is fixed point free on R′, ind(f, 〈a0, y
′〉 ∪ I ′) = 0 by Theorem 2.5.

This contradiction shows that X has no positive outchannels.
By Theorems 4.5 and 2.13, X has exactly one negative outchannel and

its variation is −1. ¤

6. Oriented maps

A perfect map is a closed continuous surjection, each of whose point in-
verses is compact. A map f : X → Y is monotone provided for each contin-
uum K ⊂ Y , f−1(K) is connected. A map f : X → Y is confluent provided
for each continuum K ⊂ Y and each component C of f−1(K), f(C) = K.
A map f : X → Y is light provided for each point y ∈ Y , f−1(y) is totally
disconnected.

It is well know that each homeomorphism of the plane is either orientation-
preserving or orientation-reversing. In this section we will establish an ap-
propriate extension of this result for confluent perfect mappings of the plane
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(Theorem 6.7) by showing that such maps either preserve or reverse local
orientation. As a consequence it follows that all perfect and confluent maps
of the plane satisfy the Maximum Modulus Theorem. We will call such maps
positively- or negatively-oriented maps, respectively. For perfect mappings
of the plane, Lelek and Read have shown that confluent is equivalent to
the composition of open and monotone maps [14]. Holomorphic maps are
prototypes of positively-oriented maps but positively-oriented maps, unlike
holomorphic maps, do not have to be light. A non-separating plane contin-
uum is said to be acyclic.

Definition 6.1 (Degree of a map). Let f : U → C be a map from a simply
connected domain U into the plane. Let S be a simple closed curve in U ,
and p ∈ U \ f−1(f(S)) a point. Define fp : S → S1 by

fp(x) =
f(x)− f(p)
|f(x)− f(p)| .

Then fp has a well-defined degree, denoted degree(fp). Note that degree(fp)
is the winding number win(f, S, f(p)) of f |S about f(p)),

Definition 6.2 (Bell). A map f : U → C from a simply connected domain
U is positively-oriented (respectively, negatively-oriented) provided for each
simple closed curve S in U and each point p ∈ T (S)\f−1(f(S)), degree(fp) ≥
0 (degree(fp) ≤ 0, respectively). If for each p ∈ T (S)\f−1(f(S)), the degree
of fp, degree(fp) > 0 (degree(fp) < 0, respectively), we say that f is strictly
positively-oriented (respectively, strictly negatively-oriented).

Definition 6.3. A perfect map f : C → C is oriented provided for each
simple closed curve S and each x ∈ T (S), f(x) ∈ T (f(S)).

Clearly every strictly positively- or strictly negatively-oriented map is
oriented. The definition immediately implies that all oriented maps satisfy
the Maximum Modulus Theorem.

It is well known that both open and monotone maps (and hence compo-
sitions of such maps) of continua are confluent. It will follow (Lemma 6.6)
from a result of Lelek and Read [14] that each perfect mapping of the plane
is the composition of a monotone map and a light open map. The following
Lemmas are in preparation for the proof of Theorem 6.7.

Lemma 6.4. Suppose f : C → C is a perfect map. It follows that f is
confluent if and only if f is oriented.

Proof. Suppose that f is oriented. Let A be an arc in C and let C be a
component of f−1(A). Suppose that f(C) 6= A. Let a ∈ A \ f(C). Since
f(C) does not separate a from infinity, we can choose a simple closed curve S
with C ⊂ T (S), S∩f−1(A) = ∅ and f(S) so close to f(C) that f(S) does not
separate a from∞. Then a 6∈ T (f(S)). Since f is oriented, f(C) ⊂ T (f(S)).
Hence there exists a y ∈ A ∩ ∂T (f(S)) ⊂ A ∩ f(S). This contradicts the
fact that A ∩ f(S) = ∅.
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Now suppose that K is an arbitrary continuum in C and let L be a
component of f−1(K). Let x ∈ L and let Ai be a sequence of arcs in C
such that limAi = K and f(x) ∈ Ai for each i. Let Mi be the component
of f−1(Ai) containing the point x. By the previous paragraph f(Mi) = Ai.
Since f is perfect, M = lim supMi ⊂ L is a continuum and f(M) = K.
Hence f is confluent.

Suppose next that f : C→ C is not oriented. Then there exists a simple
closed curve S in C and p ∈ T (S)\f−1(f(S)) such that f(p) 6∈ T (f(S)). Let
L be a half-line with end-point f(p) running to infinity in C \ f(S). Let L∗
be an arc in L with endpoint f(p) and diameter greater than the diameter of
the continuum f(T (S)). Let K be the component of f−1(L∗) which contains
p. Then K ⊂ T (S), since p ∈ T (S) and L ∩ f(S) = ∅. Hence, f(K) 6= L∗,
and so f is not confluent. ¤
Lemma 6.5. Let f : C→ C be a light open perfect map. Then there exists
an integer k and a finite subset B ⊂ C such that f is a local homeomorphism
at each point of C \B, and for each point y ∈ C \ f(B), |f−1(y)| = k.

Proof. Let C∞ be the one point compactification of C. Since f is perfect,
we can extend f to a map of C∞ onto C∞ so that f−1(∞) = ∞. By abuse
of notation we also denote the extended map by f . Then f is a light open
mapping of the compact 2-manifold C∞. The result now follows from a
theorem of Whyburn [22, X.6.3]. ¤

The following is the special case for confluent perfect maps of the monotone-
light factorization theorem.

Lemma 6.6. Suppose that f : C→ C is a confluent perfect map. It follows
that f = g ◦ h, where h : C → C is a monotone perfect map with acyclic
fibers and g : C→ C is a light open perfect map.

Proof. By the monotone-light factorization theorem [15, Theorem 13.3], f =
g◦h, where h : C→ X is monotone, g : X → C is light, and X is the quotient
space obtained from C by identifying each component of f−1(y) to a point
for each y ∈ C. Let y ∈ C and let C be a component of f−1(y). If C were
to separate C, then f(C) = y would be a point while f(T (C)) would be a
non-degenerate continuum. Choose an arc A ⊂ C \ {y} which meets both
f(T (C)) and its complement and let x ∈ T (C) \ C such that f(x) ∈ A. If
K is the component of f−1(A) which contains x, then K ⊂ f(T (C)). Hence
f(K) cannot map onto A contradicting the fact that f is confluent. Thus
for each y ∈ C, each component of f−1(y) is acyclic.

By Moore’s Plane Decomposition Theorem [9], X is homeomorphic to
C. Since f is confluent, it is easy to see that g is confluent. By a theorem
of Lelek and Read [14] g is open since it is confluent and light (also see
[15, Theorem 13.26]). Since h and g factor the perfect map f through a
Hausdorff space C, both h and g are perfect [10, 3.7.5]. ¤
Theorem 6.7 (Maximum Modulus Theorem). Suppose that f : C → C is
a perfect map. Then the following are equivalent:
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(1) f is either strictly positively or strictly negatively oriented.
(2) f is oriented.
(3) f is confluent.

Proof. It is clear that (1) implies (2). By Lemma 6.4 every oriented map
is confluent. Hence suppose that f : C → C is a perfect confluent map.
By Lemma 6.6, f = g ◦ h, where h : C → C is a monotone perfect map
with acyclic fibers and g : C→ C is a light open perfect map. By Stoilow’s
Theorem [23] there exists a homeomorphism j : C → C such that g ◦ j is
an analytic map. Then f = g ◦ h = (g ◦ j) ◦ (j−1 ◦ h). Since k = j−1 ◦ h
is a monotone surjection of C with acyclic fibers, it is a near homeomor-
phism. That is, there exists a sequence ki of homeomorphisms of C such
that lim ki = k [9, Theorem 25.1]. We may assume that all of the ki

have the same orientation. Let fi = (g ◦ j) ◦ ki, S a simple closed curve
and p ∈ T (S) \ f−1(f(S)). Note that lim f−1

i (fi(S)) ⊂ f−1(f(S)). Hence
p ∈ T (S) \ f−1

i (fi(S)) for i sufficiently large. Moreover, since fi converges
to f , fi|S is homotopic to f |S in the complement of f(p) for i large. Thus
for large i, degree((fi)p) = degree(fp), where

(fi)p(x) =
fi(x)− fi(p)
|fi(x)− fi(p)| and fp(x) =

f(x)− f(p)
|f(x)− f(p)| .

Since g ◦ j is an analytic map, it is positively oriented and degree((fi)p) =
degree(fp) > 0 if ki is orientation preserving and degree((fi)p) = degree(fp) <
0 if ki is orientation reversing. Thus, f is positively-oriented if each ki is
orientation-preserving and f is negatively-oriented if each ki is orientation-
reversing. ¤

Let X be an acyclic plane continuum. We shall need the following three
results in the next section.

Lemma 6.8. Let X and Y be non-degenerate acyclic plane continua and
f : C → C a perfect map such that f−1(Y ) = X and f |C\X is confluent.
Then for each y ∈ C \ Y , each component of f−1(y) is acyclic.

Proof. Suppose there exists y ∈ C\Y such that some component C of f−1(y)
is not acyclic. Then there exists z ∈ T (C) \ f−1(y) ∪X. By unicoherence
of C, Y ∪ {y} does not separate f(z) from infinity in C. Let L be a ray in
C \ [Y ∪ {y}] from f(z) to infinity. Then L = ∪Li, where each Li ⊂ L is an
arc with end-point f(z). For each i the component Mi of f−1(Li) containing
z maps onto Li. Then M = ∪Mi is a connected closed subset in C \ f−1(y)
from z to infinity. This is a contradiction since z ∈ T (f−1(y)). ¤

Theorem 6.9. Let X and Y be non-degenerate acyclic plane continua and
f : C → C a perfect map such that f−1(Y ) = X and f |C\X is confluent. If
A and B are crosscuts of X such that B ∪X separates A \ f−1(f(B)) from
∞ in C, then f(B) ∪ Y separates f(A) \ f(B) from ∞.
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Proof. Suppose not. Then there exists a half-line L joining f(A) to infinity
in C \ (f(B) ∪ Y ). As in the proof of Lemma 6.8, there exists a closed and
connected set M ⊂ C \ (B ∪X) joining A to infinity, a contradiction. ¤
Corollary 6.10. Under the conditions of Theorem 6.9, if L is a ray ir-
reducible from Y to infinity, then each component of f−1(L) which meets
C \X is a closed and connected set from X to infinity.

7. Induced maps of prime ends

Suppose that f : C → C is an oriented perfect map and f−1(Y ) = X,
where X and Y are acyclic continua. We will show that in this case the map
f induces a confluent map F of the circle of prime ends of X to the circle of
prime ends of Y . This result was announced by Mayer in the early 1980’s
but never appeared in print. It was also used (for homeomorphisms) by
Cartwright and Littlewood in [7]. There are easy counterexamples that show
if f is not confluent then it may not induce a continuous function between
the circles of prime ends. We denote by ∆ the closed unit ball in C. Then
∆ ⊂ C ⊂ C∞. Note that by the Riemann Mapping Theorem, if X ⊂ C∞ is a
non-degenerate acyclic continuum, then there exists a conformal surjection
φ : C∞ \X → ∆.

Theorem 7.1. Let X and Y be non-degenerate acyclic plane continua and
f : C→ C a perfect map such that:

(1) Y has no cut point,
(2) f−1(Y ) = X and
(3) f |C\X is confluent.

Let ϕ : C∞ \X → C∞ \∆ and ψ : C∞ \Y → C∞ \∆ be conformal mappings.
Define f̂ : C∞ \∆ → C∞ \∆ by f̂ = ψ ◦ f ◦ ϕ−1.

Then f̂ extends to a map f̄ : C∞ \∆ → C∞ \∆. Moreover, f̄−1(S1) = S1

and F = f̄ |S1 is a confluent map.

Proof. Note that f takes accessible points of X to accessible points of Y .
For if P is a path in [C \X] ∪ {p} with end point p ∈ X, then by (2), f(P )
is a path in [C \ Y ] ∪ {f(p)} with endpoint f(p) ∈ Y .

Let A be a crosscut of X such that the diameter of f(A) is less than half of
the diameter of Y and let U be the bounded component of C\(X∪A). Let the
endpoints of A be x, y ∈ X and suppose that f(x) = f(y). If x and y lie in
the same component of f−1(f(x)) then each crosscut B ⊂ U of X is mapped
to a generalized return cut of Y based at f(x) (i.e., the endpoints of B map
to f(x)). Note that in this case by Theorem 6.9, ∂f(U) ⊂ f(A) ∪ {f(x)}.

Now suppose that f(x) = f(y) and x and y lie in distinct components
of f−1(f(x)). Then by unicoherence of C, ∂U ⊂ A ∪X is a connected set
and ∂U 6⊂ Ā ∪ f−1(f(x)). Now ∂U \ (Ā ∪ f−1(f(x))) = ∂U \ f−1(f(Ā))
is an open set in ∂U . Thus there is a crosscut B ⊂ U \ f−1(f(Ā)) of
X with B̄ \ B ⊂ ∂U \ f−1(f(Ā)). Now f(B) is contained in a bounded
component of C \ (Y ∪ f(A)) = C \ (Y ∪ f(Ā)) by Theorem refconfeq. Since
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Y ∩ f(Ā) = {f(x)} is connected and Y does not separate C , it follows
by unicoherence that f(B) lies in a bounded component of C \ f(Ā). Since
Y \{f(x)} meets f(B̄) and misses f(Ā) and Y \f(x) is connected, Y \{f(x)}
lies in a bounded complementary component of f(Ā). This is impossible as
the diameter of f(A) is smaller than the diameter of Y . It follows that there
exists a δ > 0 such that if the diameter of A is less than δ and f(x) = f(y),
then x and y must lie in the same component of f−1(f(x)).

In order to define the extension f̄ of f over the boundary S1 of C∞ \∆,
let Ci be a chain of crosscuts of C∞ \∆ which converge to a point p ∈ S1

such that Ai = ϕ−1(Ci) is a null chain of crosscuts of X with end points ai

and bi which converge to a point x ∈ X. There are three cases to consider:
Case 1. f identifies the end points of Ai for some Ai with diameter less

than δ. In this case the chain of crosscuts is mapped by f to a chain of
generalized return cuts based at f(ai) = f(bi). Hence f(ai) is an accessible
point of Y which corresponds (under ψ) to a unique point q ∈ S1. Define
f̄(p) = q.

Case 2. Case 1 does not apply and there exists an infinite subsequence
Aij of crosscuts such that f(Āij )∩ f(Āik) = ∅ for j 6= k. In this case f(Aij )
is a chain of generalized crosscuts which converges to a point f(x) ∈ Y .
This chain corresponds to a unique point q ∈ S1 since Y has no cut points.
Define f̄(p) = q.

Case 3. Cases 1 and 2 do not apply. Without loss of generality suppose
there exists an i such that for j > i f(Āi)∩f(Āj) contains f(ai). In this case
f(Aj) is a chain of generalized crosscuts based at the accessible point f(ai)
which corresponds to a unique point q on S1 as above. Define f̄(p) = q.

It remains to be shown that f̄ is a continuous extension of f̂ and F is
confluent. For continuity it suffices to show continuity at S1. Let p ∈ S1

and let C be a small crosscut whose endpoints are on opposite sides of p
such that A = ϕ−1(C) has diameter less than δ and such that the endpoints
of A are two accessible points of X. Since f is uniformly continuous near
X, the diameter of f(A) is small and since ψ is uniformly continuous with
respect to connected sets in the complement of Y ([21]), the diameter of
B = ψ ◦ f ◦ ϕ−1(C) is small. Also B is either a generalized crosscut or
generalized return cut. Since f̂ preserves separation of crosscuts, it follows
that the image of the domain U bounded by C which does not contain ∞
is small. This implies continuity of f̄ at p.

To see that F is confluent let K ⊂ S1 be a subcontinuum and let H be a
component of f̄−1(K). Choose a chain of crosscuts Ci such that ϕ−1(Ci) =
Ai is a crosscut of X meeting X in two accessible points ai and bi, Ci ∩
f̄−1(K) = ∅ and limCi = H. It follows from the preservation of crosscuts
(see Theorem 6.9) that f̂(Ci) separates K from ∞. Hence f̂(Ci) must meet
S1 on both sides of K and lim f̄(Ci) = K. Hence F (H) = lim f̄(Ci) = K as
required. ¤
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Corollary 7.2. Suppose that f : C → C is a perfect, confluent and onto
mapping of the plane, X ⊂ C is a subcontinuum without cut points and
f(X) = X. Let X̂ be the component of f−1(f(X)) containing X. Let
ϕ : C∞ \ T (X̂) → C∞ \∆ and ψ : C∞ \ T (f(X)) → C∞ \∆ be conformal
mappings. Define f̂ : C∞ \ [∆ ∪ ϕ(f−1(X))] → C∞ \∆ by f̂ = ψ ◦ f ◦ ϕ−1.
Put S1 = C∞ \∆ \ [C∞ \∆].

Then f̂ extends over S1 to a map f̄ : C∞ \∆ → C∞ \∆. Moreover
f̄−1(S1) = S1 and F = f̄ |S1 is a confluent map.

Proof. By Lemma 6.6 f = g ◦m where m is a monotone perfect and onto
mapping of the plane with acyclic point inverses, and g is an open and per-
fect surjection of the plane to itself. By Lemma 6.5, f−1(X) has finitely
many components. Let S in C \ f−1(f(X)) be a simple closed curve sep-
arating X̂ from infinity and all other components of f−1(X) and let U be
the component of C \S which contains X̂. Then U is simply connected and
hence homeomorphic to C. By [13] f(U) is also simply connected. Then
f |U : U → f(U) is a locally confluent map. By [14], f |U\X̂ is confluent. The
result now follows from Theorem 7.1 applied to f restricted to U . ¤

8. Fixed points for positively oriented maps

In this section we will consider a positively oriented map of the plane.
As we shall see below, a straight forward application of the tools developed
above will give us the desired fixed point result. We will assume by way
of contradiction that f : C → C is a positively oriented map, X is a non-
separating plane continuum such that f(X) ⊂ X and X contains no fixed
points of f .

Lemma 8.1. Let f : C → C be a map and X a non-separating continuum
such that f(X) ⊂ X. Suppose C = (a, b) is a crosscut of the continuum X.
Let v ∈ (a, b) be a point and Jv be a junction such that Jv ∩ (X ∪C) = {v}.
Then there exists an arc I such that S = I ∪ C is a simple closed curve,
X ⊂ T (S) and f(I) ∩ Jv = ∅.
Proof. Since f(X) ⊂ X and Jv ∩X = 0, it is clear that there exists an arc
I with endpoints a and b sufficiently close to X such that I ∪ C is a simple
closed curve, X ⊂ T (I∪C) and f(I)∩Jv = ∅. This completes the proof. ¤
Corollary 8.2. Suppose X is an invariant continuum for a positively ori-
ented map f : C → C. Then for each crosscut C such that f(C) ∩ C = ∅,
var(f, C) ≥ 0

Proof. Suppose that C = (a, b) is a crosscut of X such that f(C) ∩ C = ∅
and var(f, C) 6= 0. Choose a junction Jv such that Jv ∩ (X ∪ C) = {v} and
v ∈ C \X. By Lemma 8.1, there exists an arc I such that S = I ∪ C is a
simple closed curve and f(S) ∩ Jv = f(C) ∩ Jv. Moreover, by choosing I
sufficiently close to X, we may assume that v ∈ C\f(S). Hence var(f, C) =
Win(f, S, v) ≥ 0. ¤
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Theorem 8.3. Suppose f : C→ C is a positively oriented map and X is a
non-separating continuum such that f(X) ⊂ X. Then there exists a point
x0 ∈ X such that f(x0) = x0.

Proof. Suppose we are given a non-separating continuum X and f : C→ C a
positively oriented map such that f(X) ⊂ X. Assume that f |X is fixed point
free. Choose a simple closed curve S such that X ⊂ T (S) and points a0 <
a1 < . . . < an in S ∩X such that for each i Ci = (ai, ai+1) is a sufficiently
small crosscut of X, f(Ci) ∩ Ci = ∅ and f |T (S) is fixed point free. By
Corollary 8.2, var(f, Ci) ≥ 0 for each i. Hence, indfS =

∑
var(f, Ci)+1 ≥ 1.

This contradiction completes the proof. ¤

Corollary 8.4. Suppose f : C → C is a perfect and onto confluent map,
and X is a non-separating continuum such that f(X) ⊂ X. Then there
exists a point x0 ∈ X of period 2.

Proof. By Theorem 6.7, f is either positively or negatively oriented. In
either case, the second iterate f2 is positively oriented and must have a
fixed point in X by Theorem 8.3. ¤
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