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Abstract. A continuous map f : X → Y of topological spaces
X, Y is said to be almost 1-to-1 if the set of the points x ∈ X such
that f−1(f(x)) = {x} is dense in X; it is said to be light if point-
wise preimages are 0-dimensional. We study almost 1-to-1 light
maps of some compact and σ-compact spaces (e.g., n-manifolds
or dendrites) and prove that in some important cases they must
be homeomorphisms or embeddings. In a forthcoming paper we
use these results and show that if f is a minimal self-mapping of
a 2-manifold then point preimages under f are tree-like continua
and either M is a union of 2-tori, or M is a union of Klein bottles
permuted by f .

1. Introduction

A number of papers and even books are devoted to one-dimensional
dynamics, i.e. to studying continuous maps of one-dimensional (branched)
manifolds (interval, circle, “graphs”); as excellent sources we recom-
mend the books [ALM01] and [BC92] and the references therein. How-
ever, with the exception of maps of one-dimensional manifolds, the
dynamics of arbitrary continuous maps of manifolds is not extensively
studied. This is quite understandable because continuity puts little
restriction on maps of spaces of dimension higher than 1. Therefore
any substantial study of continuous maps of manifolds is bound to be-
gin with a list of restrictions which could be of smooth or topological
nature. We are concerned with topological problems, so the former
is not really applicable in our situation. The latter so far has been
almost exclusively represented by the assumption that the map is a
homeomorphism. This motivates us to study weaker conditions on
continuous maps which would imply that a map is a homeomorphism
or an embedding.

A natural choice of such conditions is given below. Let us say that a
continuous map f : X → Y of topological spaces X, Y is almost 1-to-1
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if the set of the points x ∈ X such that f−1(f(x)) = {x} is dense in X.
Almost 1-to-1 maps have been studied before; by Whyburn ([Why42],
VIII Theorem 10.2), a continuous onto map f : X → Y between com-
pacta is almost 1-to-1 if and only if there are no closed proper subsets
A of X with f(A) 6= Y (Whyburn calls such maps strongly irreducible).
Our interest in almost 1-to-1 maps is explained by the fact that they
are natural candidates for being homeomorphisms/embeddings, but
also by the fact that all minimal maps are almost 1-to-1 ([KST01]).

More precisely, a map f : X → X of a topological space X is said
to be minimal if all orbits of points are dense (the orbit of a point
x is the set {x, f(x), f2(x), . . . }). Minimal maps are studied in a lot
of papers and books (an excellent survey of this topic can be found
in a 2001 paper in Fundamenta by Kolyada, Snoha and Trofimchuk,
[KST01]). Until relatively recently it has been unknown whether there
exist minimal maps which are not homeomorphisms. The first exam-
ples of non-invertible minimal maps are due to Auslander and Yorke
[AY80] (see also [Ree79] as well as [KST01] in which ideas from [Ree79]
are developed). Still, it was discovered in [KST01] that minimal (not
necessarily invertible) maps resemble homeomorphisms in the sense
that they are almost 1-to-1 thus justifying our interest in such maps.

The paper is arranged as follows. In Section 2 we prove basic re-
sults about almost 1-to-1 maps and study them for one-dimensional
continua. Apart from being interesting by itself, this also serves as an
important ingredient in the proof of our Main Theorem given in Sec-
tion 3. Let us now state the Main Theorem; to do so recall that a map
is said to be light if pointwise preimages are 0-dimensional.

Main Theorem. Suppose that f : M → N is a light and almost 1-to-1
map from an n-manifold M into a connected n-manifold N . Then

f |M\∂M : M \ ∂M → N

is an embedding. In particular, if M is a closed manifold, then f is a
homeomorphism.

A map f : X → Y is called nowhere 1-to-1 if for every open subset
U ⊂ X there exist x1 6= x2 ∈ U such that f(x1) = f(x2). Phil Boyland
asked the following question. Suppose that f : M → M is a nowhere
1-to-1 map of a closed 2-manifold. Does there exist a dense Gδ-set
D ⊂ M such that for every d ∈ D the set f−1(d) is a Cantor set? We
finish Section 3 by deducing from Theorem 3 the affirmative answer to
this question.

To explain how these results apply to minimal maps we would like
to mention that in a number of examples and theorems in [KST01],
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describing some classes of minimal maps of the 2-torus, point preimages
are tree-like continua. A natural question then is whether this is a
general property of minimal maps on the 2-torus, or more generally,
on any 2-dimensional manifold. As it turns out, the Main Theorem
together with some dynamical tools allow us to prove the following
theorem which will appear in the forthcoming paper [BOT02].

Theorem 1.1. Suppose that f : M → M is a minimal map of a 2-
manifold. Then for every point x ∈ M the set f−1(x) is a tree-like
continuum and M is either a finite union of tori, or a finite union of
Klein bottles which are cyclically permuted by f .

Let us fix some general notation and terminology. All spaces are
separable and metric. For a subset Y of a topological space X, we
denote the boundary of Y by Bd(Y ) and the interior of Y by Int(Y ).
A continuum is a compact and connected space. A locally connected
continuum containing no subsets homeomorphic to the circle is called a
dendrite. We rely upon the standard definition of a closed n-manifold
(compact connected manifold without boundary); by a manifold we
mean a manifold of any sort (closed, manifolds with boundary, open).
In the case of a compact manifold M with boundary its boundary is
called the manifold boundary of M and denoted by ∂M . Thus, if D is
homeomorphic to the closed unit ball in a Euclidean space then Bd(D)
is empty while ∂D is the corresponding unit sphere.

We thank the referees for making suggestions which helped improve
our paper. For completeness we add proofs of some easy statements.

2. Light maps of one-dimensional continua

The central question about which our study revolves is the following
one. Suppose that f : X → Y is a map of a σ-compact space X
into a σ-compact space Y . What can be the set of points with unique
preimages? Can we guarantee that if it is in some sense “big” in f(X)
then in fact it has to coincide with f(X) and thus f has to be 1-to-1?
Studying these questions for maps of one-dimensional continua leads
to Theorem 2.4 which is later used in the proof of the Main Theorem.

Let us begin by studying properties of the set Rf of points of Y
with unique preimages. For a map f : X → Y denote by Df the set
of points in X such that f−1(f(x)) = x. Clearly f(Df ) = Rf and
f−1(Rf ) = Df . The following lemma can be easily deduced from some
well-known facts (see, e.g., [Why42], pp. 162–164).

Lemma 2.1. Suppose that f : M → N is a continuous map of metric
σ-compact spaces. Then the set Rf is a Gδ-subset of f(M).
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By Lemma 2.1, Df is always a Gδ subset of X. Lemma 2.2 shows
in what way almost 1-to-1 maps (for which Df is dense) are related
to maps for which Rf is dense. To state it, we need the following
definition: a map f : X → Y is said to be quasi-interior if for every
non-empty open set U ⊂ X, the interior of f(U) is not empty.

Lemma 2.2. Suppose that f : X → Y is a closed map (e.g., this holds
if X is compact). Then the following properties are equivalent:

(1) Df is dense in X,
(2) Rf is dense in f(X) and f is quasi-interior as a map from X

to f(X).

In particular, if Rf is dense in Y then Rf is a dense Gδ-subset of Y .

Proof. Suppose that (1) holds. Since Rf = f(Df ), then Rf is dense in
f(X). Suppose that U is an open subset of X, then there exists a point
d ∈ Df ∩ U . Put F = X \ U . Then f(d) ∈ Y \ f(F ) ⊂ f(U) where
Y \f(F ) is open because f(F ) is closed (recall that f is a closed map).
So the interior of f(U) is non-empty and f is quasi-interior. Suppose
next that (2) hold. Then, since f is quasi-interior and Rf is dense in
f(X), Df = f−1(Rf ) is dense in X. �

From now on we assume in this section that all topological spaces
are metric and compact. We want to know when the fact that Rf

is “big” implies that f is a homeomorphism/embedding. In general
it is not always so. For instance, consider a non-strictly monotone
surjective map f : [0, 1] → [0, 1] with one flat spot J . Then f(J) is a
point and Rf = [0, 1] \ {f(J)} is very big, still the map f is far from
being a homeomorphism. Judging from this example, a natural extra
assumption on the map is that it is light. However, this is still not
enough. Indeed, consider a map which identifies one pair of antipodal
points of a circle and thus maps the circle onto a figure 8. This light
map is of course 1-to-1 everywhere but at two points, but it is neither a
homeomorphism nor an embedding. Hence, yet additional restrictions
are needed. They could be of various nature; we begin by imposing
more general ones and proving a useful Lemma 2.3.

Lemma 2.3. Suppose that f : X → Y is a light map where X is a
continuum. Suppose that the following holds:

(1) for every y ∈ f(X) there exists a sequence of sets Ki containing
y whose diameters converge to 0 such that the boundary of every
Ki consists of points of Rf (i.e. having a unique f -preimage);

(2) for every Ki as above and for every component T of f(X) \Ki

the intersection T ∩Ki consists of one point.
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Then f is an embedding (and so if Rf is dense in Y then f is a home-
omorphism).

Proof. To prove the lemma assume by way of contradiction that there
is a point y ∈ Y which has two preimages u and v. Since the map f is
light, there exists a positive ε such that any set of diameter less than ε
containing y has a disconnected preimage. Choose a set Ki satisfying
(1) for y; we may assume that Ki is of diameter less than ε. Consider
its closure Ki. Then the full preimage of Ki is disconnected and can
be divided into two disjoint closed subsets R and S.

Consider the sets R′ = f(R) ∩ Bd(Ki) and S ′ = f(S) ∩ Bd(Ki).
Then by the assumptions all points of the boundary of Ki have unique
preimages under f , and so R′ and S ′ are disjoint. Now, the set Y \
Int(Ki) can be divided into components each of which either intersects
R′ at one point, or intersects S ′ at one point (this follows from (2)).
The union of those components intersecting R′ (resp. S ′) is denoted R′′

(resp. S ′′), and for each such component its unique point of intersection
with R′ ∪ S ′ = Bd(Ki) is called its basepoint.

Clearly the sets R′′, S ′′ are disjoint. Let us show that R′′ and S ′′ are
closed. By way of contradiction suppose that there exists a sequence
of components Ai from R′′ with basepoints ai such that some points
bi ∈ Ai converge to a point b ∈ S ′′. Choose a subsequence of Ai such
that ai → a. Since sets R′, S ′ are closed and disjoint we see that a ∈ R′.

So, components Ai stretch between smaller and smaller neighbor-
hoods of a and b. Hence a and b must belong to the same component
of Y \ Int(Ki). Indeed, otherwise consider a separation of Y \ Int(Ki),
i.e. two closed disjoint sets P and Q containing a and b respectively.
Since Ai are connected, each of them must be contained in either P
or Q. Choosing a subsequence we may assume that they all are con-
tained in P , and, therefore, cannot approach b ∈ Q, a contradiction.
However, a ∈ R′ and so all components of Y \ Int(()Ki) which have a
as their basepoint are themselves contained in R′′ while b ∈ S ′′ by the
assumption. This contradiction implies that R′′ and S ′′ are closed.

Consider now two subsets of X: the set R∪ f−1(R′′) and the set S ∪
f−1(S ′′). It follows that they are disjoint and closed while their union
is X, a contradiction with the assumption that X is connected. �

The next theorem relies upon Lemma 2.3 and is later used in the
proof of the Main Theorem. It is the main result of Section 2 which
serves as a model for several forthcoming theorems, if not in terms of
the method than at least in terms of the result. Lemma 2.3 also shows
that for the topic discussed here the topology of the range is more
important than that of the domain. To state it we need the following
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definition: a subset A of a topological space Y is said to be con-dense
if any non-degenerate sub-continuum of Y contains a point of A.

Theorem 2.4. Suppose that f : X → Y is a light map, X is a con-
tinuum and Y is a dendrite. Moreover, suppose that the set Rf is
con-dense in f(X). Then f is an embedding (so if Rf is also dense in
Y then f is a homeomorphism of X onto Y ).

Proof. First observe that a set A ⊂ Y is con-dense if and only if every
subarc of Y contains a point of A. This follows from the fact that every
non-degenerate continuum in Y must contain an arc.

Observe also that without the “con-density” assumption the con-
clusion of the theorem fails. Indeed, given a dendrite Y and an arc
I = [a, b] such that Y \ I is dense in Y , let us construct a continuum
X which is the union of Y and an arc J attached to Y at the point
a. Then let us define the map f as the map f : X → Y which acts
as the identity on Y and folds the arc J of X onto the arc I of Y .
Then all points of Y but those of I \ {a} have one preimage while the
points of I \ {a} have two preimages. In other words, although the set
Rf = (Y \ I) ∪ {a} is dense in Y , the map f is not an embedding.
Thus, the assumption that any arc contains a point of Rf is necessary,
and we need to prove that it is sufficient.

The idea of the proof is to apply Lemma 2.3. To do so we need to
verify its conditions. First we check that for every point y ∈ Y there
exists a sequence of sets Ki containing y whose diameters converge to 0
such that the boundary of every Ki consists of points having a unique
preimage under f . Indeed, given ε = 1/i choose a neighborhood Wi of
y of diameter less than ε such that its boundary is a finite collection of
points y1, . . . , yn (this can be done because Y as a dendrite has a basis
of neighborhoods each of which has finite boundary). Then for each
j we have [y, yj] ⊂ Wi and by the assumption we can choose points
y′j ∈ [yj, y), 1 ≤ j ≤ n, which have a unique f -preimage. Denote by Ki

the component of Y \ {y′1, . . . , y′n} containing y. Clearly, the diameter
of Ki is at most ε and the boundary of Ki is the set {y′1, . . . , y′n} ⊂ Rf .

It remains to check that for every component T of Y \Ki the inter-
section T ∩Ki consists of one point. Indeed, by the Boundary Bumping
Theorem the intersection T ∩ Ki is always non-empty. If it contains
two points then there exists a path connecting them inside T as well
as inside Ki, a contradiction. Hence all the conditions of Lemma 2.3
are satisfied and so our Theorem 2.4 holds. �
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For the sake of completeness and to pose some open problems we
would like to finish this section by mentioning other types of one-
dimensional continua for which similar questions can be raised. In-
deed, the dendrites are a particular case dendroids defined as arcwise
connected and hereditarily unicoherent continua (a continuum X is
hereditarily unicoherent if the intersection of any two subcontinua is
connected). Clearly, every dendrite is a dendroid but not otherwise.
In the case of dendroids the situation with almost 1-to-1 maps is more
complicated; Proposition 2.5 below is our only result in this direction.

Proposition 2.5. Suppose that f : X → Y is a light map from an
arcwise connected continuum X onto a dendroid Y . Moreover, suppose
that the set Rf is con-dense. Then f is a homeomorphism.

Proof. If there are points x 6= z ∈ X with f(x) = f(z) = y then we
connect x and z in X by an arc [x, z]. Then g = f |[x,z] : [x, z] → f([x, y])
is a light map from a continuum onto a dendrite g([x, y]) such that Dg

is con-dense. By Theorem 2.4 g is an embedding, a contradiction. �

We do not know if the assumption that X is arcwise connected can
be omitted, or replaced by the assumption that X is hereditarily de-
composable.

3. Light almost 1-to-1 maps of manifolds

The aim of this section is to prove the Main Theorem. We also
answer the question of Phil Boyland, quoted in Introduction. To begin
with observe that since light maps of manifolds do not lower dimension
we have the following useful lemma.

Lemma 3.1. A light map of an n-dimensional manifold X into an
n-dimensional manifold Y is quasi-interior. In particular, the interior
of f(X) is dense in f(X) and all relatively open subsets of f(X) have
non-empty interior in Y .

Below we need the following definitions. A map f : X → Y from a
Hausdorff space X to a Hausdorff space Y is weakly-confluent provided
for every continuum K ⊂ f(X) there exists a component C of f−1(K)
such that f(C) = K. A map f : X → Y from a Hausdorff space X
to a Hausdorff space Y is perfect if for every compact set A ⊂ Y its
preimage f−1(A) is compact too.

Let us now list some results of [Why42] concerning strongly irre-
ducible maps and some results of [KST01] concerning minimal maps
(these results were briefly mentioned in Introduction). In Theorem VIII
10.2 [Why42] it is shown that an onto map f : A → B on a compact
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space A is strongly irreducible if and only if Df is dense in A. More-
over, a Corollary on the same page states that if f is also open then it
is a homeomorphism. It is proven in [KST01] that any minimal map
in a compact Hausdorff space is quasi-interior; if in addition the map
is open then it is shown to be an onto homeomorphism. Moreover, it is
proven in [KST01] that for any minimal map f : X → X of a compact
metric space X into itself, the set Rf is a dense Gδ-subset of X.

The following lemma extends the above quoted corollary [Why42] ac-
cording to which an open strongly irreducible map is a homeomorphism
onto locally connected spaces and serves as a useful tool. Observe that
instead of open maps we consider quasi-interior maps, but on the other
hand we use some extra-assumptions.

Lemma 3.2. Suppose that g : X → Y is a weakly confluent, light,
perfect and almost 1-to-1 mapping of a locally compact space X onto a
locally compact and locally connected space Y (in particular, this is so
if X is a continuum and Y is a locally connected continuum). Then g
is a homeomorphism.

Proof. We show that g is closed. Indeed, let F ⊂ X be closed. To see
that g(F ) is closed it is enough to show that if g(xi) → y with xi ∈ F ,
then y ∈ g(F ). By the assumptions y has a compact neighborhood W
whose full preimage is compact. Since xi ∈ g−1(W ) then we can choose
a subsequence of xi converging to some point x. Since F is closed then
x ∈ F and by continuity f(x) = y as desired.

Hence it suffices to show that g is 1-to-1. Suppose that g is not 1-to-
1. Then there exists a point y ∈ Y such that g−1(y) contains at least
two points. Since g is light and Y is locally connected and compact
there exists a sufficiently small open and connected neighborhood V of
y such that if C = V , then C is compact and g−1(C) has at least two
components which meet g−1(y). Since g is weakly confluent there exists
a component K of g−1(C) such that g(K) = C. Then g−1(C∩Dg) ⊂ K.
Let x be a point in g−1(y) \K and let U be an open neighborhood of
x such that U ∩ K = ∅ and g(U) ⊂ V . Since g is quasi-interior,
g(U) ∩Dg 6= ∅ contradicting the fact that g−1(V ∩Dg) ⊂ K. �

Note that weak confluence is essential in Lemma 3.2 as there is a
light, almost 1-to-1, quasi-interior map of the interval [0, 1] onto the
two-dimensional disk. In fact, a significant part of the proof of the
claim (1) of the Main Theorem is to show that in the case of manifolds
almost 1-to-1 and light maps are weakly confluent. So it makes sense to
consider some examples in low dimensions which allow us to introduce
all necessary techniques dealing with the property of weak confluence.
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Let us show (the well-known fact) that every map f of a continuum
X onto [0, 1] is weakly confluent (given a < b, consider the components
of the set F = f−1([a, b]) containing a, the components of F , containing
b and observe that if no component is common for these two families,
then X can be shown to be non-connected, a contradiction). In the
case of n-manifolds weak confluence does not follow this easily. To
show that in some case maps of n-manifolds are weakly confluent, we
need the following technical definition. Let X be a closed subset of a
connected n-manifold N and let F ⊂ X be dense in X. Let B be a
closed n-disk in the interior of N and let Sn−1 be its boundary sphere.
We say B is an (F, X)-basic disk and Sn−1 is an (F, X)-basic sphere if
Sn−1 separates X and F ∩ Sn−1 is dense in X ∩ Sn−1.

In the Lemma below we show that basic (F, X)-disks are ubiquitous.

Lemma 3.3. Suppose that N is a n-manifold, X ⊂ N is a non-
degenerate compact set and F ⊂ X is dense in X. Then for any
ε > 0 and any n-disk B ⊂ N \ ∂N such that X ∩ Int(B) 6= ∅ 6= X \B,
there exists a (F, X)-basic n-disk D such that the Hausdorff distance
H(B, D) < ε.

Proof. We may assume that X is a compact subset of an open subset
U ⊂ Rn and S0 is the boundary of a closed n-disk D0 with Int(Do)∩X 6=
∅ 6= X \D0. We may assume that X ∩S0 6= ∅ (otherwise we are done).
Since F is dense in X, we may assume that actually F ∩ S0 6= ∅ by
adjusting D0 slightly if necessary.

Let P0 be the closure of F ∩ S0 and assume that (X ∩ S0) \ P0 6= ∅.
Choose x1 ∈ (X ∩ S0) \ P0 such that the distance d(x1, P0) = r1 is
maximal. Since F is dense in X, there exists arbitrarily close to x1 a
point f1 ∈ F . Hence we can slightly modify our disk D0 only inside
B(x1, r1/2) to a disk D1 such that f1 ∈ S1 = ∂D1. Observe that all
points in the set B(x1, r1/2)∩S1 are at most .75r1-distant from f1 ∈ F .
Also, the set F ∩ S1 ⊃ F ∩ S0.

By inductively choosing xn, Dn, Sn = ∂(Dn), Pn and rn as above we
either have Sn∩X = Pn for some n or lim rn = 0. Indeed, the sequence
rn is decreasing by the construction. Suppose that lim rn = r > 0 and
consider the sequence of points xi. A subsequence of points xik will
converge to some point x. Then by the previous paragraph the points
of the set B(xik , rik/2) ∩ Sik are at most .75rik-distant from fik ∈ F .
This leads to a contradiction. Thus rn → 0. By choosing Sn sufficiently
close to one another we can assure that lim Dn = D∞ is a n-disk with
boundary S∞ such that S∞ ∩ F is dense in S∞ ∩X as required. �
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Observe that Lemma 3.3 applies in the case when X = N . Now we
prove the Main Theorem; for convenience we restate it here.

Main Theorem. Suppose that f : M → N is a light and almost 1-to-1
map from an n-manifold M into a connected n-manifold N . Then

f |M\∂M : M \ ∂M → N

is an embedding. In particular, if M is a closed manifold, then f is a
homeomorphism.

Proof. Assume first that M is a closed n-manifold. We begin by proving
that f is weakly confluent (and, hence, onto). If n = 1 then M is a
circle and it is easy to see that f is one-to-one. Hence, let us assume
that n ≥ 2.

The following claim immediately implies that f is an onto map.
Ultimately it will enable us to prove that f is weakly confluent.
Claim A. For any (Rf , f(M))-basic sphere Sn−1 in N there exists a
continuum C ′ in M such that f(C ′) = Sn−1.
Proof of Claim A. Suppose Sn−1 is a (Rf , f(M))-basic sphere. Then
S = f−1(Sn−1) separates M . Hence there exists 0 6= gn−1 ∈ Ȟn−1(S),

where we use C̆ech cohomology. By continuity of C̆ech cohomology,
there exists a minimal closed subset T n−1 of S such that gn−1 is not
homologous to zero on T n−1. Since n ≥ 2, T n−1 is a connected (n− 1)-
Cantor manifold. Hence, since f is light, f |T n−1 : T n−1 → Sn−1 is
quasi-interior and almost one-to-one.

We claim that f(T n−1) = Sn−1. If n = 2, this follows immediately
from Theorem 2.4 since Ȟ1(T 1) 6= 0. Hence assume n ≥ 3 and by way
of contradiction suppose f(T n−1) is a proper non-degenerate subset of
Sn−1. By Lemma 3.3, there exists a (Rf , f(T n−1))-basic (n− 2)-sphere
Sn−2 ⊂ Sn−1 such that Sn−2\f(T n−1) 6= ∅. Then T = f−1(Sn−2)∩T n−1

separates T n−1.
Let T n−1 \ T = U ∪ V where U and V are non-empty, disjoint and

open sets in T n−1. Let A = U ∪ T and B = V ∪ T , then A∪B = T n−1

and A ∩B = T . Since T n−1 is minimal, gn−1 is homologous to zero on
each of A and B. By Mayer-Vietoris,

Ȟn−2(T ) → Ȟn−1(T n−1) → Ȟn−1(A)⊕ Ȟn−1(B)

is exact. Hence there exists gn−2 ∈ Ȟn−2(T ) which maps to gn−1. So

0 6= gn−2. By continuity of C̆ech cohomology there exists a minimal
closed set T n−2 in T such that gn−2 is not homologous to zero on T n−2.
As above, T n−2 is a connected (n − 2)-Cantor manifold and f |T n−2 :
T n−2 → Sn−2 is almost one-to-one.
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This describes the induction step. Inductively, we can construct a
sequence of spheres Sn−i and connected (n− i)-Cantor manifolds T n−i

for i = 1, . . . , n− 1 such that the following hold:

(1) f(T n−i) is a proper subset of Sn−i;
(2) f |T n−i : T n−i → Sn−i is almost one-to-one;
(3) there is 0 6= gn−i in Ȟn−i(T n−i) such that gn−i is 0 when re-

stricted to any proper closed subset of T n−i;
(4) Sn−i−1 is a (Rf , f(T n−i))-basic (n− i− 1)-sphere in Sn−i.
(5) T n−i−1 ⊂ T n−i ∩ f−1(Sn−i−1).

Thus for i = n− 1 the properties (1)-(3) are translated into the follow-
ing:

(1) f(T 1) is a proper subset of S1;
(2) f |T 1 : T 1 → S1 is almost one-to-one;
(3) Ȟ1(T 1) 6= 0.

By (1) the set f(T 1) is an interval. By Theorem 2.4 f |T 1 is an embed-
ding and so T 1 is an interval, a contradiction with (3). This completes
the proof of Claim A. In particular, f : M → N is an onto map.

Next let K be an arbitrary subcontinuum of N . Observe that K can
be approximated by (Rf , N)-basic spheres Ci. By Claim A, for every i
there exists a subcontinuum Di of M such that f(Di) = Ci. We may
assume that lim Di = D∞ is a continuum. Then f(D∞) = lim Ci = K.
This shows that f is weakly confluent. Thus f is onto, by Lemma 3.1
f is quasi-interior, and now Lemma 3.2 it is a homeomorphism.

Our next step is to deal with the remaining case of the Main The-
orem. We begin by considering the case of the closed disk. Namely,
suppose that f : D → N is a light and almost 1-to-1 mapping from
the closed n-disk into a n-manifold N . We want to show that then f
restricted to D \ ∂D is an embedding.

The case n = 1 is trivial, so let n ≥ 2. Denote the set Rf by F . By
Lemma 2.2 f−1(F ) is dense in D and, hence, f−1(f(∂D)) is nowhere
dense in D. Then I = D \ f−1(f(∂D)) is dense and open in D.

Let J be a component of I. Then f |J : J → f(J) is perfect since
f(J) = f(J) \ f(∂D) is locally compact. Moreover, f(J) is open in
f(J). By the proof of claim (1), f(J) is open in N . (In Claim A
of the proof of claim (1) choose basic (Rf , f(J))-sphere to lie in N \
∂N ∪ f(∂D)). As in the proof of claim (1) f restricted to J is weakly
confluent. By Theorem 3.2 f restricted to J is an embedding. Since f
is almost one-to-one it follows that f restricted to I is an embedding.

Let x ∈ f−1(f(∂D)) \ ∂D. Then since f−1(f(x)) is 0-dimensional
and closed there exists a closed disk D′ in D such that D′ contains all
of D except for an arbitrary small neighborhood of f−1(f(x))∩∂D and
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the boundary of D′ misses f−1(f(x)). Let I ′ = D′ \f−1(f(∂D′)). Then
x ∈ I ′ and f restricted to I ′ is an embedding as above. It follows that
f restricted to D \ ∂D is an embedding. Since every pair of points in
M \ ∂M are contained in the interior of a closed D in M , the rest of
the Main Theorem easily follows. �

Let us make a few remarks concerning the Main Theorem. The
assumption that both topological spaces are manifolds is essential here:
the map which pinches a circle S at one point and thus maps it onto
a space B homeomorphic to a figure 8 is almost 1-to-1, but not even
weakly confluent. Also, the standard maps from the 2-disk onto the
2-torus or onto the 2-cylinder show the difficulties of extending the
homeomorphism on M \ ∂M over the boundary. Another example is
an embedding of the open 2-disk into itself which bypasses a radial
cut; if extended to the closed disk, it will identify two adjacent arcs
on the boundary into that radial cut. All this shows difficulties in
strengthening the Main Theorem.

We finish the paper by showing an application of our results. First
though we need a general result about light maps of continua.

Lemma 3.4. Suppose that f : X → Y is a light mapping from a
continuum X onto a continuum Y .

Then either:

(1) there exists an open set U ⊂ X and a dense Gδ subset D′ of
f(U) ⊂ Y such that for all y ∈ D′,

|f−1(y) ∩ U | = 1, or

(2) there exists a dense Gδ-subset D of Y such that for each y ∈ D,
f−1(y) is homeomorphic to the Cantor set.

Proof. Let g : X → 2Y be the function defined by g(y) = f−1(y). Then
g is upper semi continuous. Hence there is a dense Gδ set E ⊂ Y such
that g is continuous at each point of E. So for each y ∈ E and each
sequence yn → y, lim f−1(yn) = f−1(y). Let B = {Bn} be a countable
basis in X, set Fn = {y ∈ E| |f−1(y) ∩Bn| = 1} and En = E \ Fn.

We claim that En is a Gδ-subset of E. To see this note that En =
(Pn ∩ E) ∪ (Rn ∩ E) where Pn = {y ∈ Y |g(y) ∩ Bn = ∅} and Rn =
{y ∈ Y | |g(y) ∩ Bn| ≥ 2}. It follows easily from the continuity of g
at each point of E that Rn is an open subset of Y and that Pn is a
Gδ-subset of Y . Hence indeed En is a Gδ- subset of Y . Consider the
set D = ∩En. Points of D are such that their preimages intersect any
open set either in the empty set or in sets of cardinality greater than
2. Thus, preimages of points of D have no isolated points, and since f
is light all such preimages are Cantor sets.
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If each En is dense, then D is a dense Gδ-set and (2) holds. Otherwise
there exists an n and an open set V ⊂ Fn. So, if U = f−1(V )∩Bn, and
D′ = E ∩ f(U), then D′ is a dense Gδ-set in f(U) and for each y ∈ D′,
f−1(y) ∩ U = 1 and (1) holds. Observe that the set D above may be
empty in general (even for an irreducible, nowhere locally one-to-one
and light map from the circle onto a locally connected continuum). �

To apply our results we need the following definition: a continuum X
is called a local tree if for each x ∈ X there exists a neighborhood U of x
such that the closure of U is a finite tree. Phil Boyland asked a question
as to whether point preimages of a dense Gδ-set under a nowhere 1-
to-1, light map of manifolds or local trees are homeomorphic to the
Cantor set. The following theorem answers this question; its proof
uses notation introduced in the proof of Lemma 3.4.

Theorem 3.5. Suppose that X and Y are continua and f : X → Y is
a light and nowhere 1-to-1 map and one of the following holds:

(1) Y is a local tree;
(2) X and Y are n-manifolds.

Then there exists a dense Gδ-subset D of Y such that for each y ∈ D,
f−1(y) is homeomorphic to the Cantor set.

Proof. Suppose first that Y is a local tree. It remains to be shown that
the set D constructed in the proof of Lemma 3.4 is dense in Y . Hence
assume that there exists an n such that En is not dense. Then there
exists an open set O, such that for each y ∈ O ∩ E, |g(y) ∩ Bn| = 1.
Recall that a free arc [a, b] ⊂ X is an arc such that (a, b) is an open
subset of X. Clearly every open set in a local tree contains a free arc
J . Since E is dense in Y we may assume that O itself is a free arc; we
may assume that O does not contain its endpoints.

Let x ∈ Bn and f(x) ∈ E ∩ O. Choose a very small non-degenerate
continuum K such that x ∈ K ⊂ Bn. Then f(K) is a non-degenerate
subarc of O. By Theorem 2.4 f |K is an embedding. Using interval
notation we may assume that K = [a, b] and f(K) = [f(a), f(b)]. Let
us show that (a, b) is open in Bn. To this end we show that (a, b) =
f−1(f(a), f(b)) ∩ Bn. Indeed, otherwise there is a point z ∈ Bn \ K
with f(z) ∈ (f(a), f(b)). Choose a small continuum K ′ ⊂ Bn \ K so
that f(K ′) ⊂ (f(a), f(b)). Since f is light, f(K ′) is a non-degenerate
subarc of (f(a), f(b)). Clearly, all points of f(K ′) have at least two
preimages in Bn, a contradiction with the above made assumption that
for each y ∈ O ∩E, |g(y)∩Bn| = 1. Hence (a, b) is open which in turn
contradicts the assumption that f is nowhere 1-to-1.
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Suppose next that X is a compact n-manifold. Then the possibility
(1) from Theorem 3.4 is ruled out by the Main Theorem, and the
assumption that f is nowhere 1-to-1, hence (2) must hold. �

Note that the assumptions stated above are needed. For example, it
is easy to construct a dendrite D ⊂ S2 such that the branchpoints and
endpoints are dense in D and all branchpoints are of valence exactly
3. Consider the Riemann map f from the unit disk onto S2 \D. Since

D is a dendrite, f can be extended to the map f̂ of the closed unit
disk to S2. The restriction f̂ |S1 : S1 → D of f̂ onto the unit circle is
almost 1-to-1, nowhere 1-to-1 and at most 3-to-1. Similar examples are
frequent in the study of polynomial Julia sets.
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