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Abstract. We prove that a minimal self-mapping of a compact
2-manifold has tree-like fibers (i.e. all points have preimages which
are connected, at most 1-dimensional and with trivial shape). We
also prove that the only 2-manifolds (compact or not) which admit
minimal maps are either finite unions of tori, or finite unions of
Klein bottles.

1. Introduction

Minimal maps are one of the main topics of topological dynamics (see
e.g. [AU88, Br79, deV93]). A map f : X → X is minimal provided
for each x ∈ X the orbit O(x) = {x, f(x), f2(x), . . . } is dense in X.
For compact spaces this is equivalent to: there exists no proper closed
non-empty subset A ⊂ X such that f(A) = A.

An excellent brief introduction into a number of problems related to
minimal maps can be found in recent papers [Brkosn03] and [KST00].
One basic problem is whether a given space admits a minimal map or a
minimal homeomorphism (see e.g. [Brkosn03, E64, E64, GW79, P74]).
Another question, due to Auslander ([AG68], p. 514) is whether on a
given space there exist minimal maps which are not homeomorphisms
(it is now known that in general such maps exist, see e.g. [AY80, Ree79]
as well as [KST00] in which a nice construction using ideas from [Ree79]
is suggested). A number of results deal with the case when the space is a
Cantor set. For example, in one-dimension it turns out that restrictions
of interval maps on the so-called “wild attractors” (whose existence
is proven in [BKNS96]) must be minimal [L91], and in the case of
negative Schwarzian maps they must be minimal maps of specific type
[BL91, BM98]; in all these cases the wild attractor on which the map is
minimal is a Cantor set. A lot of other examples and results concerning
minimal maps are obtained within the framework of symbolic dynamics
(see e.g. [LM95] for general references).
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Our approach to studying minimal maps is the following: minimal
maps have several important topological properties which were estab-
lished in [KST00] (see also [Why42] for alternative ways to establish
some of those properties). Since maps with those topological properties
were studied in [BOT02], we can apply the tools from [BOT02] together
with some dynamical arguments in order to obtain our results.

To state our main results we need to introduce the following two
basic notions.

Definition 1.1. A continuous map f : X → Y is said to be light if
there exist no connected non-degenerate subsets of X which are col-
lapsed by f into points.

Definition 1.2. A continuous map f : X → Y is said to be monotone
if for every y ∈ Y the set f−1(y) is connected.

We leave the task of suggesting examples of light or monotone maps
to the reader. The importance of these maps is explained partly by the
existence of the so-called monotone-light decomposition of an arbitrary
continuous map of compact spaces. Namely, it can be shown that if
f : X → Y is a continuous map of compact metric spaces then there
exists a compact metric space Z, a monotone map g : X → Z and a
light map h : Z → Y such that f = hg. The idea of the proof is to
define the map g by collapsing all components of preimages of points
under f and thus to create a quotient space Z for which g is the factor
map; it is easy to see that then h is well-defined and g and h have the
required properties.

All spaces considered in this paper are separable and metric. A
continuum is a compact and connected space. A continuum X is tree-
like provided for every ε > 0 there exists an open cover of mesh less
than ε whose nerve is a finite tree (alternatively, X is homeomorphic to
the inverse limit of finite trees). For a subset Y of a topological space
X, we denote the boundary of Y by Bd(Y ). We also rely upon the
standard definition of a closed manifold (compact, connected manifold
without boundary). Finally, in the case of a compact manifold M
with boundary its boundary is called the manifold boundary of M and
denoted by ∂M . Thus, if D is homeomorphic to the closed unit ball
in a Euclidean space then Bd(D) is empty while ∂D is homeomorphic
to the corresponding unit sphere. Finally, by a disk we mean an open
(closed) set homeomorphic to the Euclidean open (closed) unit disk.

2. Preliminaries

We need the following definitions. which are due to Whyburn ([Why42],
Chapter VIII, pp. 162-164).
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Definition 2.1. Suppose that f : X → Y is a continuous map of
compact metric spaces. Then f is said to be strongly irreducible if for
every closed proper subset A of X we have f(A) 6= Y . If for every
proper subcontinuum K of X we have f(K) 6= Y then the map f is
called irreducible.

An example of an onto map which is irreducible but not strongly irre-
ducible can be an interval map f : [0, 1] → [0, 1] such that f−1{0, 1} =
{0, 1} while there exist two disjoint open intervals U, V such that
f(U) = f(V ); then clearly f([0, 1] \ U) = [0, 1] while any interval I
such that f(I) = [0, 1] must contain 0, 1 and hence must coincide with
[0, 1].

For other compact manifolds such examples are impossible as yielded
by the following result from [Why42] (we state a version of Whyburn’s
theorem convenient for our purposes).

Theorem 2.2. ([Why42], VII Theorem 10.4) If X is locally connected
and the non-cut points of X are dense in X then all irreducible maps
f : X → Y of compacta are strongly irreducible (in particular this holds
if X is a compact manifold and not an interval).

In other words, if for a map f : X → Y there exists a closed subset
F ⊂ X, F 6= X such that f(F ) = Y then there exists a subcontinuum
K ⊂ X, K 6= X such that f(K) = Y .

We need several other definitions (here we follow our previous paper
[BOT02] and some classical sources such as [Why42] while drawing the
reader’s attention to the fact that in some papers, e.g. in [KST00],
some terms may have slightly different meanings).

Definition 2.3. A map f : X → Y is quasi-interior if for every non-
empty open set U ⊂ X, the interior of f(U) is not empty.

For a map f : X → Y denote by Df the set of points such that
f−1(f(x)) = x and by Rf the set of points y ∈ Y such that |f−1(y)| = 1.
Clearly f(Df ) = Rf and f−1(Rf ) = Df . Now we can introduce another
notion.

Definition 2.4. A map f : X → Y of compact metric spaces is almost
1-to-1 if the set Df is dense in X.

We list a few important properties of minimal maps related to the
above introduced notions. These properties are established in [KST00]
(we state them using the above terminology).

Theorem 2.5. Suppose that f : X → X is a minimal map of a compact
metric space. Then f is strongly irreducible, quasi-interior and almost
1-to-1.
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To clarify terminology let us point out that some of the above notions
can be given different but equivalent definitions. As an example, let us
look at almost 1-to-1 maps. The following lemma is proven in [BOT02].

Lemma 2.6. Suppose that f : M → N is a continuous map of metric
σ-compact spaces. Then the set Rf is a Gδ-subset of f(M) and the set
Df is a Gδ-subset of M .

Maps with the property that Df is dense are closely related to maps
for which Rf is dense, as another lemma from [BOT02] shows.

Lemma 2.7. Suppose that f : X → Y is a map of compact metric
spaces. Then the following properties are equivalent:

(1) Df is dense in X,
(2) Rf is dense in f(X) and f is quasi-interior as a map from X

to R(X).

Hence one can equivalently define almost 1-to-1 maps of compact
metric spaces as such maps f that Rf is dense in f(X) and f is quasi-
interior (so almost 1-to-1 maps are always quasi-interior). This simple
observation has the following surprising corollary (even though it is
obvious, we have not been able to find it elsewhere). Observe that the
condition of surjectivity of maps in Corollary 2.8 can be weakened, yet
we decided not to do this since in this paper it is not important for
applications.

Corollary 2.8. Suppose that f : X → Y and g : Y → Z are almost
1-to-1 onto maps of metric compact spaces. Then their composition
h = g ◦ f : X → Z is also almost 1-to-1.

Proof. It is enough to show that Dh is dense. Indeed, the sets Dg and
Rf are both dense Gδ-subsets of Y , hence so is their intersection. On
the other hand, it follows from the definition that Dh = f−1(Rf ∩
Dg) and because f is quasi-interior we see that Dh is dense in X as
desired. �

Theorem 2.5 allows us to apply techniques developed in [BOT02] to
minimal maps. Observe that parts of this theorem can be also deduced
from results of Whyburn’s. Indeed, the following theorem is proven in
his book [Why42].

Theorem 2.9. ([Why42], VII Theorem 10.2) A continuous onto map
f : X → Y between compacta is strongly irreducible if and only if it is
almost 1-to-1.

Since by the first part of the claim of Theorem 2.5 minimal maps are
strongly irreducible we conclude by Theorem 2.9 that they are almost
1-to-1, and hence by Lemma 2.7 they are quasi-interior.
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Let us now list the results of [BOT02] dealing with almost 1-to-1
maps. The first one deals with almost 1-to-1 maps of closed manifolds.

Theorem 2.10. If an almost 1-to-1 map f : M → N of a closed n-
manifold M into a connected n-manifold N is light then it is a home-
omorphism.

The next result deals with other types of manifolds.

Theorem 2.11. If an almost 1-to-1 map f : M → N of an open (resp.
with boundary) manifold M to a connected manifold N is light then f
is an open embedding on the entire manifold M (resp. on M \ ∂M).

3. Minimal maps on closed 2-manifolds

As we say in Introduction, it is known that there exist minimal non-
invertible maps (see e.g. [AY80]). In the papers [Ree79] and [KST00]
(the latter contains a construction which develops a construction from
the former) it is shown that there exist minimal maps of closed 2-
manifolds which are not homeomorphisms. In the constructions from
these two papers all minimal maps act on 2-torus and happen to be
monotone and to have tree-like continua as point preimages.

The purpose of this section is to show that all minimal maps of
closed connected 2-manifolds must be monotone with tree-like point
preimages. This allows us to conclude that among closed 2-manifolds
only the torus and the Klein bottle admit minimal maps and thus
extend well-known results concerning minimal homeomorphisms. In
the next sections we will show that in fact 2-manifolds with boundary
and non-compact 2-manifolds do not admit minimal maps.

We begin by proving several results concerning almost 1-to-1 maps
of closed 2-manifolds. First we need the following definition.

Definition 3.1. A map f : M → N of 2-manifolds is said to be
non-separating if every component of any point preimage is a tree-like
continuum.

In other words, f is non-separating if and only if components of point
preimages are continua which are at most 1-dimensional and of trivial
shape.

Now for the sake of completeness we prove a version of Theorem 2.10
for 2-manifolds. We begin by proving the following elementary lemmas.

Lemma 3.2. If A ⊂ D is a dense subset of the open unit 2-disk D then
for every point x ∈ D there exists an arbitrarily small disk U whose
boundary S is a simple closed curve S such that A ∩ S is dense in S.

Proof. Indeed, because of the density of A we can always choose a small
PL simple closed curve S1 which bounds a disk U containing x such
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that all vertices of S1 are points of A. Then we can choose points of A
very close to the midpoints of straight line segments on the boundary
of S1 and consider a new PL simple closed curve whose vertices are
the vertices of S1 and the just chosen points, etc. Clearly, in the end
of this process we will get a simple closed curve S such that A ∩ S is
dense in S as desired. �

Lemma 3.3. Suppose f : X → I is an almost 1-to-1 map from a
continuum X onto an arc I. Then f is monotone. In particular, if f
is also light, then f is a homeomorphism.

Proof. Let f = g ◦m be the monotone-light decomposition which first
collapses components of preimages to points. Then g is also almost
1-to-1, and it suffices to show that g is a homeomorphism. Therefore
we may assume that f is a light map from the very beginning.

Suppose that there exists y ∈ I such that f−1(y) is not connected.
Then there exist open sets U and V such that f−1(y) ∩ U 6= ∅ 6=
f−1(y) ∩ V , U ∩ V = ∅ and f−1(y) ⊂ U ∪ V . Choose u ∈ f−1(y) ∩ U ,
v ∈ f−1(y) ∩ V and let Cu (respectively Cv) be the component of
U which contains u (the component of V which contains v, respec-
tively). By the Boundary Bumping Theorem Cu meets the boundary
of U and Cv meets the boundary of V . Thus both f(Cu) and f(Cv)
are non degenerate continua and, hence, meet only in y (otherwise a
non-degenerate interval in [0, 1] consists of points having preimages in
both Cu and Cv). We may assume that f(x) ≤ y for all x ∈ Cu and
f(x) ≥ y for all x ∈ Cv.

Clearly, f(Cu ∪Cv) is a neighborhood of y. Choose a smaller neigh-
borhood T of y and consider U ′ = U ∩ f−1(T ) and V ′ = V ∩ f−1(T ).
Then both U ′ and V ′ are non-empty disjoint open sets. Let us show
that f(U ′) ≤ y. Indeed, otherwise there exists a point u′ ∈ U ′ such
that f(u′) > y. Consider the component R of U ′ containing u′. Since
it is non-degenerate and f is light then f(R) is non-degenerate too. By
the choice of T this implies that f(R)∩f(Cv) contains an interval while
on the other hand R ∩ Cv = ∅, a contradiction with f being almost
1-to-1. Similarly it can be shown that f(V ′) ≥ y.

Consider the sets U ′′ = U ′ ∪ {u′′ : f(u′′) < y} and V ′′ = V ′ ∪ {v′′ :
f(v′′) > y}. Then it follows that U ′′ and V ′′ are open disjoint sets
whose union is the entire X, a contradiction. �

Now we are ready to prove our theorem specifying Theorem 2.10 for
2-manifolds.

Theorem 3.4. Let f : M → N be an almost 1-to-1 non-separating
map of a closed 2-manifold M into a connected 2-manifold N . Then f
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is a monotone onto map with tree-like point preimages and M is home-
omorphic to N . In particular, if f is light then it is a homeomorphism.

Proof. Let f = g ◦m the monotone-light decomposition of the map f .
By [RS38], m(M) = X is homeomorphic to M . Clearly both m and g
are almost 1-to-1. It suffices to show that g is one-to-one. Hence sup-
pose there exist x1 6= x2 ∈ X such that g(x1) = g(x2) = y. Choose two
disjoint closed disks Di containing xi in X. Let D be a sufficiently small
open disk in N containing y and with simple closed curve boundary S
such that Rg∩S is dense in S and if Hi is the component of g−1(D) con-
taining xi, then Hi ⊂ Di. Now Hi is open since Di is locally connected.
Since Di is unicoherent and Bd(Hi) separates Di, there exist compo-
nents Bi of Bd(Hi) which separate Di. Then g(Bi) are non-degenerate
sub-continua of S since g is light. Moreover, since g is almost 1-to-1,
the intersection of g(B1) and g(B2) consists of no more than 2 points
(recall that g(B1) ⊂ S, g(B2) ⊂ S, and S is homeomorphic to the unit
circle). In particular, g : B1 → I 6⊂ S is an almost 1-to-1 light map of
a continuum to an arc. By Lemma 3.3, B1 is an arc and thus cannot
separate M , a contradiction. Hence g is a homeomorphism and X is
homeomorphic to N . This completes the proof. �

Observe that in fact an analog of Theorem 3.4 for manifolds with
boundary or open manifolds can also be proven (this analog mimics
Theorem 2.11 which holds for light maps). However we do not prove
it here because we do not need it in this paper.

Now we need the following definition.

Definition 3.5. A locally connected continuum which contains no sim-
ple closed curve is called a dendrite. A continuum K is said to be a
local dendrite if every point x ∈ K has a neighborhood U whose closure
is a dendrite (any such neighborhood is then said to be dendritic).

Slightly abusing the language we will also use the following definition.

Definition 3.6. A one-dimensional finite connected polyhedron is called
a graph.

It is known [Kur68, p.303, Theorem 4] that a continuum is a local
dendrite if and only if it is locally connected and there exists a finite
graph containing all its simple closed curves. To study the topology of
local dendrites in more detail we need another definition.

Definition 3.7. Any connected subgraph H of a local dendrite G con-
taining all simple closed curves of G is called a root of G. A subgraph
which is minimal with respect to containing all simple closed curves
is called a minimal root ; any such subgraph is denoted by RG (if G
contains no simple closed curves, set RG = ∅).
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The following lemma contains some basic facts about the structure
of any local dendrite and also explains our terminology. See [Why42,
Chapter 4, 3.1.] for related results.

Lemma 3.8. Let G be a local dendrite. Then G contains a root, the
minimal root RG of G is unique, and the following holds:

(1) the family of components of G \RG is at most countable;
(2) for each component K of the set G \ RG its closure K is a

dendrite and K \K = K ∩RG consists of exactly one point;
(3) for two components L, M of G \ RG the intersection L ∩ M

consists of at most one point and in this case coincides with
L ∩RG = M ∩RG;

(4) for any subcontinuum T of G the intersection T ∩ RG is con-
nected.

Proof. Let R be a root of G and let C be a component of G \R. Since
G\R is open and because G is locally connected, C is open itself. Since
it is also connected, it is arcwise connected [Nad92, Theorem 8.26] and
contains no simple closed curve. Suppose that x 6= y ∈ C \C. Clearly,
both x and y belong to R (otherwise they would have belonged to C).
Then using small disjoint arcwise connected neighborhoods of x and y,
respectively, and two arcs in C and R connecting x and y, it is easy
to see that there exists a simple closed curve which is not contained in
R. Hence C ∩ R = bC is a single point. Then C is locally connected
because it is such everywhere but at bC by the definition and it is easy
to see that it is locally connected at bC . Since C contains no simple
closed curve, it is a dendrite. This proves (2) in the case of any root.

Since G is locally connected, there are at most countably many com-
ponents of G \ R which proves (1) for an arbitrary root. To prove (3)
observe that if two distinct components L, M of G \ R are such that
L ∩ M contains a point not from R than this point must belong to
L ∩M and so L = M , a contradiction.

Let us show that the intersection of any subcontinuum K of G with
R must be connected. Indeed, for any component C of G \R we have
that K \C = K ′ is connected. To see that, observe that if bc 6∈ K then
either K ⊂ C or K ∩ C = ∅. Hence we may assume that K ′ = L ∪M
where L, M are disjoint compacts and bC ∈ L. Then L ∪ (C ∩K) and
M are disjoint compact sets whose union is K, a contradiction. In
countably many steps of this process we will get the set K ∩ R as the
intersection of sets K \ (∪Ci) for components Ci of G \ R. It is easy
to see by way of contradiction that because these intermediate sets are
connected, then so is K∩R. Hence, if A and B are both minimal roots,
the intersection A ∩B must be a root and A = B by minimality. �
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In the situation of the above lemma it is convenient to use the fol-
lowing definition.

Definition 3.9. Given a local dendrite G, its minimal root RG and a
component C of G \ RG, call the point bC = C ∩ RG the basepoint of
C.

So far we have been studying topological questions. Let us now pass
on to dynamics. According to Theorem 2.5, a minimal map is strongly
irreducible. We expand this a little bit and prove the following lemma.

Lemma 3.10. Suppose that f : X → X is a continuous map of com-
pact metric spaces. Then f is minimal if and only if no proper, closed
non-empty subset A of X is such that f(A) ⊃ A.

Proof. Suppose that no proper, closed subset A of X has the prop-
erty that f(A) ⊃ A. Then there are no proper, closed invariant sub-
sets of X and so f is minimal. Now, suppose that f is minimal. By
way of contradiction assume that there exists a proper closed subset
A such that A ⊂ f(A). Put A = A0 and define compact subsets
An ⊂ An−1 inductively such that f(An) = An−1. Then A0 ⊃ A1 ⊃ . . .
and fn(An) = A for each n. Hence An is a non-empty compact subset
and ∩An = A∞ 6= ∅. Clearly A∞ is invariant and proper contradicting
the minimality of f . �

The following definition is related to that of an irreducible map.

Definition 3.11. Say that a map f : X → X of a topological space
is mobile if for any proper (perhaps degenerate) subcontinuum Y of X
we know that f(Y ) does not contain Y .

By Lemma 3.10 any minimal map is mobile; this shows the con-
nection existing between minimal and mobile maps which will be used
below. In what follows we study mobile maps of local dendrites and
apply our results to minimal maps. In fact we prove the following
lemma.

Theorem 3.12. Suppose that G is a local dendrite which is not a finite
graph. Then there are no mobile maps of G into itself.

Proof. Denote by n(G) the maximal number of distinct simple closed
curves in G (or, equivalently, in RG) and prove the claim by induction
on n(G).

If n(G) = 0, then G is a dendrite and f must have a fixed point
contradicting that f is mobile. Hence suppose that G is a non-trivial
local dendrite which admits a mobile map f : G → G such that n(G)
is minimal. Then n(G) > 0. Since G is not a graph, RG is a proper
subcontinuum of G and, since f is mobile, RG \ f(RG) 6= ∅. Then it
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is easy to find a connected open set U such that U ∩ f(RG) = ∅, U
intersects RG and the set G\U is connected and is not a graph. Indeed,
choose a point a ∈ RG \ f(RG) which is on a simple closed curve in
RG and which is not the basepoint of a component of G \ RG and is
not a branchpoint of G; it is possible since the union of the set of all
basepoints of components of G \ RG and all branchpoints of G is at
most countable. Now, choose a small open arc I ⊂ RG ∩ U in such a
way that the following holds:

(1) I is an open neighborhood of a in RG;
(2) I contains no vertices of RG;
(3) the endpoints of I are not the basepoints of components of

G \RG;
(4) if V is defined as the union of I and all components of G \ RG

whose basepoints belong to I, then V is disjoint from RG.

It is easy to see that the choice of the point a enables us to choose I.
Moreover, since nG > 0 then the set RG \ I is connected which easily
implies that K = G \ V is connected too (after all, K is the union of
R \ I and all components of G \RG which “grow” from RG \ I).

It follows from the minimality of RG that n(K) < n(RG). Define a
map g : K → K as follows. First, set g|K∩RG

= f |K∩RG
. By the choice

of K, g(K ∩RG) = f(K ∩RG) ⊂ K. For each x ∈ K \RG, there exists
a unique component C ′ of G \ RG such that x ∈ C ′, and C = C ′ is
a dendrite which meets RG in exactly one point c. If f(c) ∈ Bd(V ),
define g(x) = f(c) for all x ∈ C. Otherwise let D0 be the closure of
the component of C \f−1(Bd(V )) containing c and let {c, eα}α∈A(C) be
the boundary of D0 (this defines the set A(C); clearly, all these points
are endpoints of D0, but there may exist endpoints of D0 which do not
belong to Bd(D0)). Since c ∈ RG, f(c) ∈ K and f(D0) ⊂ K. Moreover
for each α ∈ A(C), f(eα) ∈ Bd(V ). Consider the set P = C \ ∪{eα};
it is easy to see that P has one component containing D0 and perhaps
some other components. For each α ∈ A(C) denote by Dα the union
of all the components of P which contain eα in their closure. Define
g|D0 = f |D0 and g(Dα) = f(eα) for each α ∈ A(C). Then g : K → K
is a continuous function. Moreover, for any subcontinuum X ⊂ K,
g(X) ⊂ f(X) and hence ∅ 6= X \f(X) ⊂ X \g(X). Then g is a mobile
map of a local dendrite K, which is not a graph, and with n(K) < n(G)
contradicting the minimality of n(G). �

Since minimal maps are mobile by Lemma 3.10, we conclude that
a minimal map of a local dendrite X may only exist if X is a graph.
The description of minimal maps now follows from some results from
one-dimensional dynamics whose description can be found below.
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Suppose that f : G → G is a map of a graph G which is not an
irrational rotation but is monotonically and non-trivially semiconjugate
to an irrational rotation. We will call such maps Denjoy maps; they
serve as examples of mobile but not minimal maps. They also play an
important role in Theorem 3.13 which was proven in [Blo84, Blo86a,
Blo86b, Blo87] (in the case of the circle this theorem was actually
proven in [AK79]).

Theorem 3.13. Let f : G → G be a map of a connected graph which
has no periodic points. Then either f is an irrational rotation of the
circle, or f is a Denjoy map.

Now we are ready to prove our main result concerning mobile and
minimal maps on local dendrites; it follows immediately from Theo-
rem 3.13 and Lemma 3.12.

Theorem 3.14. Suppose that G is a local dendrite. If f : G → G is
minimal then G is a circle and f is conjugate to an irrational rotation.

Proof. By Lemma 3.12 G is a graph. By the definition of a minimal
map f has no periodic points. Therefore by Theorem 3.13 f is either
an irrational rotation or a Denjoy map. Since Denjoy maps are not
minimal f is an irrational rotation of a circle as desired. �

To study arbitrary minimal maps of 2-dimensional manifolds we need
the following definitions.

Definition 3.15. Let X be a locally connected continuum. We say
that a subcontinuum Y of X is a true cyclic element if it is maximal
with respect to the property of containing no cut point of itself. We
say that a continuum X is a generalized cactoid if every true cyclic
element of X is a closed 2-manifold and only a finite number of these
are different from the 2-sphere.

Now we are ready to prove our main result describing the properties
of arbitrary minimal maps of closed 2-manifolds.

Theorem 3.16. Suppose f : M → M is a minimal map from a closed
2-manifold to itself. Then f is monotone with tree-like point inverses.

Proof. Suppose f = g ◦m is the monotone-light factorization of f . By
Theorem 2.9 f is almost 1-to-1. Clearly, it implies that both g and m
are almost 1-to-1. If we can prove that for every y ∈ M each component
of f−1(y) is tree-like then it follows from Theorem 3.4 that f is actually
monotone. Therefore it remains to show that point inverses under f
are tree-like.

By way of contradiction assume that there are points whose inverses
are cyclic. Put X = m(M). By [RS38], X is the image of a generalized
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cactoid C on which a finite number of identifications was made. We
consider the following two cases.

Case 1. dim(X) = 2. Then X is the image of a generalized 2-
cactoid C after a finite number of identifications. Hence, there exists
a true cyclic element N in C. Since C is a generalized 2-cactoid, N is
a closed 2-manifold. Then X contains a copy of the closed manifold N
with finitely many points identified. Moreover, the map which identifies
finitely many points of N can be precomposed with g thus resulting
into a light almost 1-to-1 map h : N → M . By Theorem 3.4 h is a
homeomorphism which implies that g is a homeomorphism. It follows
that f is a monotone map with tree-like point inverses as desired.

Case 2. dim(X) = 1. Now X is the image of a dendrite under
finitely many identifications. Moreover, by the results of [RS38] the
number of generators of the fundamental group of X is finite. This
implies that in fact X is a local dendrite. Now consider the minimal
map h : X → X defined as h = m ◦ g. By Theorem 3.14, X is
a simple closed curve. Recall that f and hence m is almost 1-to-1.
Fix two points a, x ∈ X such that m−1(x) and m−1(a) are singletons.
Then m−1({a, x}) is a 2-point set separating M , a contradiction. This
completes the proof. �

It turns out that in some cases, in particular in terms of studying
their periodic points, the maps with the properties listed in Theo-
rem 3.16 can be dealt with in the same manner as homeomorphisms.
To explain this we need the following definition.

Suppose that f : M → M is a minimal map on a closed 2-manifold
with non-zero Euler characteristic. By Theorem 3.16, f is monotone
with tree-like point inverses. Then by [Dav86, Theorem 25.1 and Corol-
lary 1A], f can be approximated by homeomorphisms. In particular
f is a homotopy equivalence and an isomorphism on homology. Hence
by results of Fuller and Halpern [Ful53, Hal68], f cannot be minimal
because it has to have periodic points. Thus we have shown:

Corollary 3.17. The only closed connected 2-manifolds which admit
minimal maps are the Klein bottle and the 2-torus.

4. Minimal maps of compact 2-manifolds with boundary

The aim of this section is to prove that there are no minimal maps of
compact 2-manifolds with boundary. In the case of a homeomorphism
this is clear. Indeed, if f : M → M is a minimal homeomorphism of
a 2-manifold M into itself then the boundary of M must be invariant,
a contradiction with minimality. However in the case of an arbitrary
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map of a manifold M with boundary the set ∂M does not have to be
invariant which does not allow one to use the same arguments as above.

Still, our strategy in the general case develops an idea described in
the previous paragraph for homeomorphisms. First of all, it is enough
to consider connected manifolds. Now, by Lemma 3.10 if f is a minimal
map of a manifold M with boundary then f(∂M) ⊃ ∂M is impossible.
Using this and the techniques developed in previous sections and in
[BOT02] we prove that for some k in the monotone-light decomposition
lk ◦ mk of fk the monotone quotient space mk(M) is a local dendrite
which leads to a contradiction as before.

We begin with a series of lemmas concerning almost 1-to-1 maps.

Lemma 4.1. Let f : A → B be an almost 1-to-1 map of compact
metric spaces. Then a closed C ⊂ A has interior if and only if so does
the set f(C) ⊂ B.

Proof. If C has interior then so does f(C) because by Lemma 2.7 almost
1-to-1 maps are quasi-interior. Suppose that C has no interior and
show that neither does f(C). Indeed, otherwise consider the set D =
f−1(f(C)). The set D has interior because f is continuous, which
together with the fact that C has no interior implies that D \ C = E
has non-empty interior. Since f is quasi-interior we see that the set
Int(f(E)) is an open subset of f(C). Clearly, every point of f(E) has
preimages in both E and C, a contradiction. �

Lemma 4.1 implies the following corollary applicable in particular to
minimal maps of manifolds with boundary.

Corollary 4.2. Let f : M → M be an almost 1-to-1 onto map of a
compact manifold with boundary (e.g., f can be a minimal map). Then
the following holds.

(1) each set of the form f−m(fn(∂M)) is a closed set with empty
interior;

(2) the grand orbit
⋃∞

n=0,m=0 f−m(fn(∂M)) is an Fσ-subset of M .

Proof. It is enough to observe that by Corollary 2.8 the maps fn and
fm are both almost 1-to-1 and then apply Lemma 4.1 to the set ∂M
and these maps. �

Let us denote the grand orbit of a set A by Γ(A). As we announced in
the beginning of this section, our strategy is to show that in the in the
monotone-light decomposition of a possibly existing minimal map of a
2-manifold with boundary the monotone quotient space of the manifold
has to be 1-dimensional (in fact it is a local dendrite). Corollary 4.2
allows us to show that even if there exist 2-dimensional pieces of the
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monotone quotient space in question, they are not coming from the
manifold boundary.

Lemma 4.3. Suppose that f : M → N is an almost 1-to-1 map of
compact 2-manifolds. Let f = l◦m be its monotone-light decomposition.
Then if A ⊂ M is a closed nowhere dense set then m(A) cannot contain
2-disks. Moreover, the set m(Γ(∂M)) is the union of countably many
compact sets not containing 2-disks, and therefore cannot contain 2-
disks either.

Proof. Suppose that m(A) contains a 2-disk. Then since l is almost
1-to-1 and light we see that by Theorem 2.11 the set l(m(A)) = f(A)
contains a 2-disk too. Thus, the interior of f(A) is non-empty, a contra-
diction with Lemma 4.1. The rest easily follows from Corollary 4.2. �

With the notation of Lemma 4.3, Corollary 4.2 and Lemma 4.3 now
imply that the m-image of the grand orbit of the set ∂M is the union
of countably many closed subsets of m(M) none of which contains a
2-disk. Observe that if f : M → M is an onto almost 1-to-1 map
and we replace f by fk for some k and consider for fk its monotone-
light decomposition fk = lk ◦mk, the map mk will not be the same as
m = m1. However, the same conclusion can be made since Corollary 4.2
and Lemma 4.3 are still applicable to fk by Corollary 2.8.

The next lemma narrows down the possibilities for having 2-disks
in m(M) even further. Namely, it turns out that any connected open
set in M disjoint from ∂M whose boundary components are collapsed
under f has a local dendrite as its m-image.

Lemma 4.4. Suppose that f : M → K is an almost 1-to-1 map of
a compact connected 2-manifold M with ∂M 6= ∅ into a connected
compact manifold K with ∂K 6= ∅. Let f = l ◦m be its monotone-light
decomposition. Let V ⊂ M \ ∂M be an open connected set such that
the f -image of each component of Bd(V ) is a point. Then m(V ) is a
local dendrite.

Proof. Let V ⊂ M \ ∂M be a connected open set such that each com-
ponent of the Bd(V ) is mapped by f to a point. Let Oi be components
of M \ V . Since M is a compact manifold there exist finitely many
components O1, . . . , ON such that ∂M ⊂ ∪N

i=1Oi. Let U = M \∪N
i=1Oi.

Then U is a connected open set in M \∂M, V ⊂ U and each component
of Bd(U) is mapped by f into a point. Now it suffices to show that
m(U) is a local dendrite.

Let f ′ = f |U and f ′ = l′ ◦m′ be the monotone-light decomposition
of f ′. We shall prove that there exists an onto map t : m′(U) → m(U)
and a finite set F ⊂ m(U) such that for every y ∈ m(U) \ F the set
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t−1(y) is a point while for each y ∈ F we have t−1(y) is a finite set.
Clearly this would imply that to prove the lemma it is enough to show
that m′(U) is a local dendrite.

For x ∈ m′(U) put t(x) = m ◦m′−1(x). Observe that for every w ∈
m′(U) there exists a unique s ∈ m(U) such that m′−1(w) ⊂ m−1(s).
Hence t is a well-defined continuous function. Let us show that it
has the desired properties. Indeed, for points w not contained in the
m′-image of Bd(U) the map t is trivial. On the other hand, for the
remaining finitely many points the map t is finite-to-one map.

Define an equivalence relation ∼ on U by setting x ∼ y if and only
if x = y or x and y lie in the same component of Bd(U). Then ∼
is upper semicontinuous. Then N = U/ ∼ is a closed manifold. Let
g : U → N be the quotient map. Let h : N → m′(U) be such that
m′|overlineU = h ◦ g; then h is monotone. Now by [RS38], Theorem 5,
either m′(U) = h(N) contains a subset P ′ homeomorphic to a closed
2-manifold with finitely pairs of points identified, or m′(U) is a local
dendrite. Let us show, by way of contradiction, that the former is
impossible.

Indeed, suppose that P ′ ⊂ m′(U) is a quotient of a closed 2-manifold
P with finitely many identifications. Hence P ′ is the continuous image
of the closed 2-manifold P under an almost 1-to-1 light map π : P →
P ′. Then the composition l′ ◦ π : P → K is a continuous almost 1-
to-1 map. By Theorem 2.11 l′ ◦ π is an embedding. However, it is
impossible to embed a closed 2-manifold into a connected 2-manifold
with non-empty boundary. �

The above lemmas deal with almost 1-to-1 maps of 2-manifolds with
boundary and therefore apply to minimal maps. Now we start study-
ing certain specific properties of minimal maps, so before proceeding
further, let us fix notation which will be used from now on. We sup-
pose that f : M → M is a minimal map of a compact 2-manifold
M with ∂M 6= ∅ (the case of compact 2-manifolds without boundary
was covered in Section 3). Our next step is to prove that there exists
a power fk of f such that the following holds: if a point x does not
belong to the grand orbit of ∂M then it has a compact neighborhood
U such that mk(U) does not contain 2-disks where fk = fk ◦ mk is
the monotone-light factorization of fk. This together with Lemma 4.3
would imply that in fact the entire manifold M can be covered by a
countable union of compact sets such that their mk-images contain no
2-disks. Then by [RS38] the space mk(M) is a local dendrite, leading
to the same contradiction as in the proof of Theorem 3.16.
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Lemma 4.5. Let M be a compact 2-manifold with ∂M 6= ∅ and let f
be a minimal map. Then there is an open connected set U ⊂ M \ ∂M
such that every component of the boundary of U is mapped into a point
by f .

Proof. Observe that since f is minimal then by Lemma 3.10 ∂M 6⊂
f(∂M). Choose a point y ∈ ∂M \ f(∂M). Choose x ∈ f−1(y) and a
sufficiently small open disk neighborhood D of y whose boundary is an
arc I, with Rf ∩ I dense in I, such that D ∩ f(∂M) = ∅. Let H be the
component of f−1(D) containing x, then H ∩ ∂M = ∅.

Let B1, . . . , Bn be the components of ∂M . For each i choose a point
zi ∈ Bi. Let Ki ⊂ Bd(H) be an irreducible separator of M between zi

and x. Then Ki is an irreducible separator between x and Bi. Fix i
and put Ki = K and zi = z. We will show that each component of K is
mapped by f into a point. Since M has finite degree of multicoherence
[Sto49], K has finitely many components C(1), . . . , C(m). Since f is
almost 1-to-1 and f(K) ⊂ I we have |f(C(i)) ∩ f(C(j))| ≤ 1 for all
i 6= j.

Let g ◦ m = f be the monotone-light decomposition of f . Since m
is monotone, m(K) is an irreducible separator of m(M) between m(x)
and m(z). If f(C(i)) is non-degenerate, then it follows by Lemma 3.3
that m(C(i)) is an arc which is mapped 1-to-1 into I by g. If m(C(i))
and m(C(j)) are both non-degenerate and if they meet then they must
meet in a single point which is an endpoint of both. Indeed, since g is
1-to-1 on each m(C(t)) and |f(C(i))∩ f(C(j))| ≤ 1, m(Ci) and m(Cj)
meet in at most one point. Since g|m(Ci)∪m(Cj) is almost 1-to-1, this
point must be a common endpoint of both. Since g is light and maps
m(K) almost 1-to-1 into the arc I, it follows from Lemma 3.3 that each
component of m(K) is an arc or a point.

Let N be a closed 2-manifold such that M ⊂ N and N \M consists of
finitely many disjoint open disks. Define an equivalence relation ∼ on
N by setting p ∼ q if and only if p = q or p, q ∈ M and m(p) = m(q).
Then ∼ is a monotone upper semicontinuous decomposition. By [RS38]
the quotient space N/ ∼ is a generalized cactoid with finitely many
pairs of points identified. Since K ∩ ∂M ⊂ H ∩ ∂M = ∅ and m(K)
separates m(M) irreducibly between m(x) and m(z), it follows that
m(K) separates N/ ∼ irreducibly. Since m(K) is a finite union of
arcs and points which irreducibly separates N/ ∼, each component of
m(K) must be a point. This implies that m(C(i)) is a point for each i.
Therefore, for each i the set Ki is an irreducible separator between x
and Bi, each Ki consists of finitely many components each of which is
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mapped into a point by f . In particular, f(∪n
i=1f(Ki)) = F is a finite

set.
Let U be the component of M \∪n

i=1Ki containing x. Then U∩∂M =
∅, Bd(U) ⊂ ∪n

i=1Ki and therefore f(Bd(U)) ⊂ F is finite. In particular
every component of Bd(U) is mapped to a point. This completes the
proof. �

From now on we fix the set U found in Lemma 4.5. Clearly, by
Lemma 4.4 the monotone part m of the monotone-light decomposition
of f = l ◦ m maps U onto a local dendrite. In order to use this fact
in implementing of our plan we now use the minimality of the map
f . Indeed, by the minimality of f and compactness of M there exists
a number N such that for any point y ∈ M one can find a number
r(y) = r ≤ N such that f r(y) ∈ U . The major step now is the
following lemma.

Lemma 4.6. Consider fN . Then every point y 6∈ Γ(∂M) has a neigh-
borhood E such that its boundary consists of components each of which
is collapsed to a point by fN+1.

Proof. Let y 6∈ Γ(∂M). Let us begin by describing the basic construc-
tion and specify the details as to how certain neighborhoods involved
in it should be chosen later on.

Let U be the set given by Lemma 4.5. One can find a number
r(y) = r ≤ N such that f r(y) ∈ U . Since f r(y) ∈ U then the map m
maps the point f r(y) into a local dendrite D = m(U) (as follows from
Lemma 4.4 the set m(U) is a local dendrite). By [Nad92, Theorem
10.2], dendrites are regular (i.e., every pair of points can be separated
by a finite set). Therefore we can find an arbitrarily small neighborhood
V of m(f r(y)) in D such that the boundary of V is finite (the choice of
V will be specified later). The m-preimage of V is an open connected
neighborhood W = m−1(V ) of f r(y) whose boundary is the union of
m-preimages of boundary points of V . Each m-preimage of a boundary
point of V is a continuum collapsed by m (and therefore by f), and
the union of all such continua separates M . Let us take a component
E of f−r(W ) containing y. Let us show that V can be chosen so
small that E is disjoint from ∂M . Indeed, to this end it is enough to
choose V so that V is disjoint from m(f r(∂M)). Now, this is possible
because y 6∈ Γ(∂M) and so f i(y) never belongs to any image of ∂M ,
in particular f r+1(y) 6∈ f r+1(∂M). By the definition of m this implies
that m(f r(y)) 6∈ m(f r(∂M)) which guarantees that V with the desired
properties can be found. Hence E is disjoint from ∂M . Moreover, since
components of the boundary of E are mapped into components of the



18 ALEXANDER BLOKH, LEX OVERSTEEGEN, AND E. D. TYMCHATYN

boundary of W by f r we see that E is a neighborhood of y whose
boundary consists of components each of which is collapsed by f r+1

and therefore by fN+1 as desired. �

We are finally ready to prove the main theorem of this section.

Theorem 4.7. There are no minimal maps on compact connected 2-
manifolds with boundary.

Proof. By way of contradiction assume that there exists a minimal
map f : M → M of a 2-manifold with boundary. It is easy to see
that since M is connected then f i is minimal for every i. Then by
Lemma 4.3, Lemma 4.4 and Lemma 4.6 there exists a number N such
that the manifold M can be covered by a countable collection of sets
each of which has the mN+1-image which contains no 2-disks (where
fN+1 = lN+1 ◦ mN+1 is the monotone-light decomposition of fN+1).
By [RS38] this implies that mN+1(M) is a local dendrite. Thus we
find ourselves in the situation of Theorem 3.16. That is, lN+1 ◦mN+1 :
mN+1(M) → mN+1(M) is a minimal map of a local dendrite. By
Theorem 3.14 mN+1(M) is a circle. Choose two distinct points x and
y in the circle with unique preimages. Then m−1

N+1({x, y}) is a 2-point
set which separated the connected 2-manifold M , a contradiction. �

5. Proof of Main Theorem

We are now ready to establish the main result of this paper:

Theorem 5.1. Suppose that f : M → M is a minimal map of a 2-
manifold. Then f is a monotone map with tree-like point inverses and
M is either a finite union of tori, or a finite union of Klein bottles
which are cyclically permuted by f .

Proof. It follows immediately from [HK53] that X must be compact.
Hence M is a finite union of compact connected 2-manifolds which
are permuted by f . Let C be a component of M . Then there exists
an n ≥ 1 such that the map fn|C : C → C is a minimal map. By
Theorem 4.7, C is a closed manifold. Hence by Corollary 3.17, C
is either a Klein bottle or a 2-torus. Since f is minimal, and M is
compact, the space M is the union of finitely many components which
are permuted by the map; moreover, the map is surjective, and so
each component of M is mapped onto the next one. It is enough
to show that f(C) is homeomorphic to C. Given a point x ∈ f(C)
observe that f−1(x) = fn−1(f−n(x)). On the other hand, f−n(x) is
connected by Theorem 3.16. Hence, f−1(x) is connected too, and f is
monotone. Now, it is easy to see that f−1(x) is a subset of the set F =
f−n(fn−1(x)), and since F is a tree-like continuum by Theorem 3.16,
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we conclude that f−1(x) is a tree-like continuum too. Hence by [RS38],
f(C) is homeomorphic to C.

We showed that point inverses are tree-lime continua and that all
components of M are either cyclically permuted 2-tori, or cyclically
permuted Klein bottles. This completes the proof. �
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