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Abstract. Given a region U in the 2-sphere S such that the boundary of U con-
tains at least two points, let D(U) be the collection of open circular disks (called
maximal disks) in U whose boundary meets the boundary of U in at least two points
and let U2 be the collection of all regions U ⊂ S such that for each D ∈ D(U), D
meets the boundary of U in at most two points. In this paper we study geometric
properties of regions U ∈ U2. We show for such U that the centerline (i.e., the set
of centers of maximal disks) is always a smooth, connected 1-manifold. We also
show that the boundary of U has at most two components and, if it has exactly two
components, then the boundary is locally connected.

These results are related the set of points E(X, Y ) which are equidistant to two
disjoint closed sets X and Y . In particular we investigate when the equidistant set
is a 1-manifold.

Introduction

Given an region U in the 2-sphere S such that the boundary of U contains at least
two points, let D(U) = {Dα}α∈A be the collection of open circular disks Dα, called
balls, in U such that the boundary of Dα meets the boundary ∂U of U in at least two
points. Hence each Dα is a maximal ball (with respect to containment) in U . Our
work is related to the following results. For each Dα ∈ D(U) let Fα be the convex
hull of Dα ∩ ∂U . It is known that the collection F(U) = {Fα}α∈A foliates U . Here
one can either use the hyperbolic convex hull (see [10]) or the Euclidian convex hull
(see [5]). If we use the hyperbolic convex hull, and use on each Fα the restriction
of the hyperbolic metric on the disk Dα, one obtains the so called K-P metric on U
(see [10], [8] and [7]). This metric is invariant under Möbius transformations of the
2-sphere. In [7], it is show that for regions U ⊂ S with the property that there is an
open circular disk D in the region U such that the boundary of D meets the boundary
of U in at least three points, the only isometries of the K-P metric are restrictions
of Möbius transformations. For a region U ⊂ S, let E2(U) be the set of centers of
disks Dα in D(U). By results in [3], E2(U) is always locally an R-tree (see also [9] for
related results).

Let U2 denote the collection of regions U ⊂ S with the property that for every open
circular disk D in U the boundary of D meets the boundary of U in at most two
points. Simple examples of regions in U2 are an ellipse and a region whose boundary
consists of two disjoint round circles. In a subsequent paper a survey of possible
regions will be presented.

In this paper we show that for each U ∈ U2, the set of centers E2(U) is a non-empty,
connected, smooth one-manifold. This last result is closely related to results about
equidistant sets (see Definition 1.3). In [1], Bell proves that the equidistant set of
two disjoint continua in the plane is a connected one-manifold. In [3] it is shown that
the equidistant set of two disjoint closed sets in S or R2 is always locally connected.
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Under an extra condition of the closed sets being non-interlaced (a condition that is
fulfilled in the case of disjoint continua), we show in section 2 that the equidistant set
is a one-manifold. This result is crucial for the results in [12] where it is shown that
every isotopy of a plane continuum can be extended to an isotopy of the entire plane.
We also study topological properties of the boundary of U . Some of the results in
this paper were first obtained in [3] which also contains additional related results.

1. Preliminaries

We think of the two-dimensional sphere S as the boundary of the unit ball in
Euclidian three-space with the origin as its center. We shall use spherical coordinates:
a point p ∈ S has coordinates (ϕ, ϑ) where ϕ is the angle between the position vector
~p and the xy− plane, −π/2 ≤ ϕ ≤ π/2 and ϑ is the angle from the positive x-axis to
the projection of the position vector ~p of p onto the xy-plane, −π ≤ ϑ < π.

Let x and y be two points in S. The great circle through x and y is the intersection
of the sphere and a plane through the points x, y and the origin; this is also called a
straight line through x and y. By a (straight) line segment between x and y we mean
a part of a straight line between x and y that has shortest length. The length of the
segment between x and y is the spherical distance between x and y; note that the
spherical distance is measured in radians and that its value lies between 0 and π. If
~x and ~y are the position vectors of x and y, then the spherical distance of x and y is
equal to arccos(~x · ~y).
A spherical triangle of which each side has length less than π is called an Euler
triangle. For an Euler triangle the usual triangle inequalities hold: if the sides of an
Euler triangle have length a, b and c respectively, then |a−b| ≤ c ≤ a+b. The former
inequality entails the continuity of the spherical distance function.

Notation 1.1. Consider two disjoint sets X and Y in the sphere S. Let Z = X ∪ Y
denote the union of X and Y . For any w ∈ C let B(w, Z) be the maximal open ball
centered at w that is disjoint from Z. If such a ball does not exist let B(w, Z) = ∅.
Furthermore, in the case that B(w, Z) is nonempty, let S(w, Z) = ∂B(w, Z), the
boundary of B(w, Z). If B(w, Z) = ∅, define S(w,Z) = {w}. Note that Z∩S(w, Z) 6=
∅ for all w ∈ C.

Definition 1.2. Suppose X and Y are disjoint closed subsets of S. Let Z = X ∪ Y .
For any point w ∈ S \Z we shall say that X and Y are non-interlaced with respect to
w if there exist disjoint continua JX and JY in S(w, Z) such that X ∩ S(w,Z) ⊂ JX

and Y ∩ S(w,Z) ⊂ JY . If X and Y are non-interlaced with respect to every point
w ∈ S \ Z, we will simply say that X and Y are noninterlaced. Note that JX or JY

may be empty.

Definition 1.3. Suppose X and Y are disjoint non empty subsets of S. Let

L(X,Y ) = {w ∈ S : d(w,X) < d(w, Y )}
E(X,Y ) = {w ∈ S : d(w,X) = d(w, Y )}

We call E(X,Y ) the equidistant set of X and Y . Note that L(X, Y ) is open and
E(X, Y ) is closed.

Notation 1.4. Let V be a set in S. Then for any δ > 0 let Bδ(V ) = {x ∈ S :
d(x, V ) < δ}. If V = {x} we write Bδ(x) instead of Bδ({x}). Instead of Bδ(B(w, Z))
we will write B(w, Z + δ).
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Lemma 1.5. (Collar) Let Z ⊂ S be the union of two non-interlaced closed sets
X,Y ⊂ S. Pick a point w ∈ S \ Z and consider the ball B(w,Z). Let JX and JY be
as in definition 1.2. Choose ε > 0 such that Bε(JX) and Bε(JY ) are disjoint.

Then there exist δ > 0 such that

B(w,Z + δ) ∩X ⊂ Bε(JX) and B(w,Z + δ) ∩ Y ⊂ Bε(JY ).

Proof. As JX and JY are compact and disjoint there exists an ε as required. By
the compactness of X and Y the existence of δ follows. ¤

Definition 1.6. Let K be a closed subset of the sphere S. For any point x ∈ S we
define the set of closest points cK(x) by cK(x) = S(x,K) ∩K.

Lemma 1.7. Let Z be the disjoint union of two nonempty closed subsets X and Y
of the sphere S. Then we can equivalently define L(X,Y ) and L(Y, X) as follows:

L(X,Y ) = {w ∈ S : cZ(w) ⊂ X}
L(Y,X) = {w ∈ S : cZ(w) ⊂ Y }

Lemma 1.8. Let C ⊂ S be a round circle with center m and let l be a straight line l
going through m. Denote the points where this line intersects the circle by b and −b.
Consider a point a on the straight line segment (m, b]. Then for any point c ∈ C such
that c 6= b we have that d(a, b) < d(a, c). Furthermore, the distance d(a, c) strictly
increases when the point c ∈ C moves along the circle from b to −b (in either way).

Proof. Choose a local coordinate system in three space such that the origin co-
incides with the center of the sphere, m lies on the positive x-axis, the circle C is
parallel to the yz-plane, the y-coordinate of b is zero, and the z-coordinate of b is
positive. Then b = (b1, 0, b3) and a = (a1, 0, a3). Now pick a point c ∈ C such that
c 6= b, then c = (b1, c2, c3) with c3 < b3. Then d(a, b) = arccos(a1b1 + a3b3) and,
similarly, d(a, c) = arccos(a1b1 + a3c3). Since arccos is a strictly decreasing function
and since b3 > c3 we have that d(a, b) < d(a, c). The second statement of the Lemma
follows analogously. ¤

Corollary 1.9. If, in the above Lemma, we choose the point a ∈ [−b,m), then d(a, c)
is strictly decreasing as the point c moves from b to −b along the circle. Clearly, if
a = m, d(a, c) is constant.

Corollary 1.10. Let K be a closed set in the sphere S and let w ∈ S\K. Furthermore
let x ∈ cK(w). Then for every p on the straight line segment (w, x] we have that
B(p, K) ⊂ B(w, K) and cK(p) = {x}.
Lemma 1.11 (Non-crossing Lemma). Let x and y be two points in S \K such that
x 6= y. Furthermore let cx ∈ cK(x) and cy ∈ cK(y). Then one of the following three
situations hold:

(i) [x, cx) ∩ [y, cy) = ∅,
(ii) [y, cy) ⊂ [x, cx),
(iii) [x, cx) ⊂ [y, cy).

Proof. Consider two cases cx 6= cy and cx = cy. The case cx = cy is trivial. If
cx 6= cy then the segments [x, cx] and [y, cy] are disjoint by Corollary 1.10. ¤
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Lemma 1.12. Let Z be the union of two disjoint closed sets X and Y in the sphere
S, and let w ∈ E(X,Y ). Choose x ∈ cX(w) and y ∈ cY (w). Then the straight line
segment (w, x] is contained in L(X, Y ) and the straight line segment (w, y] is contained
in L(Y, X). Secondly, if w ∈ L(X,Y ) and x ∈ cX(w), then the line segment [w, x] is
contained in L(X, Y ). A similar statement holds for points in L(Y, X).

Proof. Let p ∈ (w, x]; by Lemma 1.10 we have that B(p,X) ⊂ B(w,X) = B(w,Z)
and cX(p) = {x}. Therefore cZ(p) = {x} and hence by Lemma 1.7 we have that
p ∈ L(X, Y ). Similarly one can show that (w, y] is contained in L(Y, X). The second
part of the Lemma follows analogously. ¤

Lemma 1.13. Let Z be the union of two disjoint closed sets X and Y in the sphere
S. Then L(X, Y ) is connected if X is connected. Similarly, if Y is connected then
L(Y, X) is connected.

Proof. Let X be connected and let C be a component of L(X, Y ). We want to
show that X ∩ C 6= ∅. Let w ∈ C ⊂ L(X, Y ), then there exists an x ∈ cZ(w) ⊂ X.
By Lemma 1.12 we must have that the straight line segment L = [w, x] (which could
be degenerate) is contained in L(X,Y ). Hence L ⊂ C and x ∈ C. So X ∩ C 6= ∅
and since X ⊂ L(X, Y ) it follows that L(X, Y ) is connected. The second statement
in the Lemma follows similarly. ¤

The following result follows directly from the continuity of the distance function.

Lemma 1.14 (USC Lemma). Let K be a closed subset of the sphere S and let {xi}i∈N
be a sequence converging to a point x∞. Then lim sup cK(xi) ⊂ cK(x∞).

Proof. Let p ∈ lim sup cK(xi), then there exists a sequence {yj}j∈N and a sub-
sequence {ij}j∈N of N such that yj ∈ cK(xij) and lim yj = p. By continuity of the
distance function it follows that limj→∞ d(xij , yj) = d(x∞, p). Let r = d(x∞, K). We
want to show that d(x∞, p) = r (whence p ∈ CK(x∞)). Clearly d(x∞, p) ≥ r since
p ∈ K. Now suppose, by way of contradiction, that d(x∞, p) = r + ε for some ε > 0.
There exists an N ∈ N such that d(xiN , yN) > r + 2ε/3 and d(xiN , x∞) < ε/3. Then

d(xiN , K) = d(xiN , yN) > r +
2ε

3
as well as

d(xiN , K) ≤ d(xiN , x∞) + d(x∞, K) < r +
ε

3
a contradiction. ¤

2. Results

Theorem 2.1. Let X and Y be disjoint closed subsets of S and let w ∈ E(X, Y ) be
such that X and Y are noninterlaced with respect to w. Then there exists an η > 0
such that E(X, Y ) ∩Bη(w) is a one-manifold.

Proof. Let w ∈ E(X, Y ) and let Z = X ∪ Y . Let JX and JY be as in definition
1.2. Without loss of generality, we may assume that Jx and JY are both minimal
with respect to length and that JX is the shorter arc. Choose a spherical coordinate
system (ϕ, ϑ) such that the origin coincides with w and such that the positive ϑ-axis
passes through the midpoint of JX . Let aX be the endpoint of JX that is located
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in the northern hemisphere. Let aY be an endpoint of JY that is closest to JX .
We may assume that aY is located in the northern hemisphere (after a coordinate
change ϕ → −ϕ if necessary). Note that the distance between JX and JY is equal to
d(aX , aY ). Now, choose ε with 0 < ε < d(aX , aY )/4. Then by Lemma 1.5 there is a
δ > 0 such that

B(w,Z + δ) ∩X ⊂ Bε(JX) and B(w, Z + δ) ∩ Y ⊂ Bε(JY ).

Then for any point in Bδ(w) the closest point in Z to that point is in Bε(JX)∪Bε(JY ).
Suppose that w1 = (0, ϑ1) with 0 < ϑ1 < δ/2. Let B1 be the closed ball with center

w1 and radius d(w1, aX). Then we have B1∩Z ⊂ Bε(JX) in view of Lemma 1.8, hence
w1 ∈ L(X,Y ). In a similar fashion, suppose that w2 = (0, ϑ2) with −δ/2 < ϑ2 < 0.
Let B2 be the closed ball with center w2 and radius d(w2, aY ). Then B2∩Z ⊂ Bε(JY )
and w2 ∈ L(X, Y ). As has been noted before L(X, Y ) and L(Y,X) are open. Hence
there exists σ with 0 < σ < ε such that for all ϕ ∈ (−σ, σ) we have (ϕ, ϑ1) ∈
Bδ(w) ∩ L(X, Y ) and (ϕ, ϑ2) ∈ Bδ(w) ∩ L(Y, X).

For every ϕ ∈ (−σ, σ) define

lϕ = {(ϕ, ϑ) ∈ C : ϑ2 ≤ ϑ ≤ ϑ1}
Claim: |lϕ ∩ E(X, Y )| = 1
Proof of claim: Let p = (ϕ, ϑp) and q = (ϕ, ϑq) be two points in `ϕ ∩ E(X, Y )
with ϑq < ϑp. Furthermore, let pX ∈ cX(p) ⊂ Bε(JX) and pY ∈ cY (p) ∈ Bε(JY ).
Then we have d(p, pX) = d(p, pY ). In a similar fashion we define qX and qY with
d(q, qX) = d(q, qY ).

Now consider the sphere S(p, Z). The line pq is a diameter of S(p, Z). Let p∗ be
the intersection of S(p, Z) and the line pq so that p is on the line segment qp∗. We
choose a new spherical coordinate system by translating the origin to (ϕ, 0). In the
new system the diameter pq falls along the ϑ axis. The set JX need not be symmetric
with respect to the new ϑ-axis, but has been shifted up or down over ≤ σ. Let q∗ be
the intersection of qqX and S(p, Z) and let q∗∗ be the reflection of q∗ in the diameter
pq. Note that d(q, q∗) = d(q, q∗∗). Moving counterclockwise around the circle S(p, Z)
from p∗ we first meet q∗ or q∗∗ and next pY . In view of Lemma 1.8 we may conclude
d(q, pY ) < d(p, q∗∗). It follows that

d(q, qX) ≥ d(q, q∗) = d(q, q∗∗) > d(q, pY ) ≥ d(q, qY ),

a contradiction. /
Let K = {(x, 0) ∈ S : −σ′ < x < σ′}. Then we can define a function f : K →

E(X, Y ) by letting f((x, 0)) = lx ∩ E(X, Y ).
Claim: f : K → E(X, Y ) is continuous.
Proof of claim: Suppose, by way of contradiction, that f is not continuous. Then
there exists a sequence {(zi, 0)}i∈N in K converging to a point (z, 0) ∈ K such that
y∞ = lim f((zi, 0)) 6= f((z, 0)). But since E(X, Y ) is closed we must have that
y∞ ∈ E(X, Y ). This clearly contradicts the previous claim. /

This last claim establishes the fact that locally E(X,Y ) is the graph of a contin-
uous function from R to R. We can now pick η = σ′ so that E(X, Y ) ∩ Bη(w) is a
one-manifold. ¤

It follows from results in [3] that if X and Y are disjoint and closed, then E(X, Y )
is locally connected and 1-dimensional. Hence, E(X, Y ) is a 1-manifold if and only if
it does not contain a triod. By the proof of Theorem 2.1 this is the case if and only
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if X and Y are non-interlaced. Hence we have the following corollary (see also [2] for
related results).

Corollary 2.2. Suppose that X and Y are disjoint closed subsets of the sphere. Then
E(X, Y ) is a 1-manifold if and only if X and Y are non-interlaced.

Theorem 2.3. (Bell) If X and Y are disjoint continua in S then E(X, Y ) is a
connected one-manifold.

Proof. Since X and Y are disjoint continua it follws from the Θ-Curve Theorem
that they are noninterlaced. Therefore, by Theorem 2.1, E(X, Y ) is a one-manifold.
The connectedness of E(X, Y ) follows from 1.13. ¤

We will show next that for every U ∈ U2 the boundary of U consists of at most two
components. This result is also obtained independently in [8]. Since the argument
used in the proof will be used later in the paper, we have included a complete proof.
We will assume, by way of contradiction that the boundary of U contains more than
two components. Notice that in this case S \ U has at least three components and
we can divide the complement of U into three disjoint compact sets K1, K2, and
K3. Each of these sets is non-interlaced with respect to the union of the other two,
because each point in U has at most two closest points. So by Theorem 2.1 it follows
that the three corresponding equidistant sets are one-manifolds. We then consider
components of these equidistant sets, which will be simple closed curves. We will
show that for every simple closed curve one of the complementary domains consists
of closest points to a set Ki. After that we will show that these simple closed curves
cannot intersect each other; this in turn shows that the sphere S is a finite union of
disjoint closed disks, which clearly is a contradiction.

Theorem 2.4. Let U be an open connected set in S with boundary ∂U . If for every
x ∈ U we have that |c∂U(x)| ≤ 2, then ∂U consists of at most two components.

Proof. Let K = S \ U . Suppose, by way of contradiction, that ∂U consists of
more than two components. Then we can write K = K0∪K1∪K2, where K0, K1, K2

are mutually disjoint compact sets. Note that the condition |c∂U(x)| ≤ 2 for every
x ∈ U implies that all three sets are non-interlaced with respect to each other. Let ⊕
denote addition modulo 3. By Theorem 2.3 we have that Ei = E(Ki, Ki⊕1 ∪Ki⊕2) is
a 1-manifold for i = 0, 1, 2. Note that since S is compact this implies that each Ei has
finitely many components. Furthermore we have that each of these components is a
simple closed curve. For i = 0, 1, 2, denote the components of Ei by Cn

i where n ∈
Ni = {1, . . . , ki}. For every i = 0, 1, 2 and every n ∈ Ni let Dn

i be the complementary
domain of Cn

i that contains a point p ∈ Ki such that d(p, Cn
i ) = d(Ki, C

n
i ). Clearly

each Dn
i is an open disk. We claim that each Dn

i consist of points closest to Ki. To
see that this is true note that every point in Cn

i cannot have two closest points in
Kn

i = Ki ∩Dn
i , since it already has a closest point in Ki⊕1 ∪Ki⊕2 by definition of the

Cn
i . For every point p ∈ Cn

i we can consider the straight line segment to its unique
closest point cp in ∂Kn

i . It follows from Lemma 1.11 that for two distinct points p
and q in Cn

i we have that [p, cp) ∩ [q, cq) = ∅. Notice that since U is connected no
component of Ki separates the sphere S. Hence Kn

i has exactly one complementary
domain which we will call Kc

i . We now claim the following

Dn
i ∩Kc

i ⊂ P =
⋃

p∈Cn
i

[p, cp]
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To see why this is true assume, by way of contradiction, that there exists an x ∈
Dn

i ∩Kc
i such that x /∈ P . Note that Dn

i ∩Kc
i is an open connected set. Since x lies

in the complementary domain of Kn
i there exists an arc A from x to a point q ∈ Cn

i

such that A ∩Kn
i = ∅. Since q ∈ P and P is closed by Lemma 1.14, there exists a

last point r, going along A from q to x, such that r ∈ P . Let p ∈ Cn
i be such that

r ∈ [p, cp] and let A′ be the part of the arc A going from r to x. Now part of the arc
[p, cp] is shielded from one side by A′. This is a contradiction since there should be
arcs [t, ct] converging to the arc [p, cp] from both sides. This shows that Dn

i consist of
points that are closest to Kn

i .
Since the disks Dn

i consist of closest points it is clear that if i 6= j then Dn
i ∩Dm

j = ∅
for all n ∈ Ni and m ∈ Nj.

Let i, j ∈ {0, 1, 2} and let n ∈ Ni, m ∈ Nj. We claim that if {i,m} 6= {j, n} then
Cn

i ∩ Cm
j = ∅.

To see this, first consider the case that i = j. In this case m 6= n and it is clear
that Cn

i ∩ Cm
j = ∅ since Ei is a one manifold. Now consider the case that i 6= j and

Cn
i 6= Cm

j . Assume, by way of contradiction, that if Cn
i ∩ Cm

j 6= ∅, then Cn
i * Cm

j .

Pick a point w in Cn
i ∩ Cm

j ⊂ U , such that w ∈ Cn
i \ Cm

j ∩ Cm
j . This point will have

a closest point a in Kn
i and a closest point b in Km

j . Now choose a sequence {wk}k in
Cn

i \Cm
j converging to w. Note that each wk has a closest point ck in Ki⊕1∪Ki⊕2\Dm

j .
Let c = limk→∞ ck, then c ∈ Ki⊕1 ∪Ki⊕2 \Dm

j and therefore c 6= b. But by Lemma
1.14 c is closest point of w, a contradiction to the assumption that |c∂U(x)| ≤ 2 for
all x ∈ U . The last case to consider is if Cn

i = Cm
j . But in this case it would follow

that S is the disjoint union of Dn
i , Cn

i = Cm
j and Dm

j . This means that for i 6= k 6= j
there are no points in S that are closest to Kk, a contradiction. Hence it follows that
S is the finite disjoint union of closed disks Dn

i = Dn
i ∪ Cn

i , which is a contradiction
since S is connected. ¤

A natural question to ask is: If U is an open connected subset of S with the property
that each point in U has at most n closest points, does it follow that U can have at
most n boundary components?. The following result answers that question negatively.

Example 2.5. We present an example of an open connected subset U of S with
boundary ∂U with the property that |c∂U(x)| ≤ 3 for all x, but yet ∂U has infinitely
many components.

Proof. First we will construct a nested sequence of open sets Un inductively such
that each Un has the following properties. Each Un is open, for every x ∈ Un we have
that |c∂Un(x)| ≤ 3 and ∂Un has n+3 components. Furthermore, any given round circle
hits Un in at most three points. Start by choosing three points z1, z2, z3 that lie on one
round circle S1. Let U0 = S \ {z1, z2, z3}. Choose a point z4 such that d(z4, z3) < 1/2
and such that z4 /∈ S1. Let U1 = U0 \ {z4}, clearly U1 satisfies all mentioned proper-
ties. Suppose we have constructed Un. Then the points z1, . . . , zn+3 determine

(
n+3

3

)
circles Si. Now choose a point zn+4 such that d(zn+4, z3) < 1/2n+1 and such that zn+4

does not lie on any of the circles Si. Then define Un+1 = Un \ {zn+4}. We can now
define a set U by U = ∩iUi, this set is open because it is the complement of a closed
set and it has infinitely many boundary components z1, z2, . . .. For every x ∈ U we
have that |c∂Un(x)| ≤ 3, since if this was not the case there would be a circle in S
containing 4 points, but that would contradict the construction of the Ui’s. ¤
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Definition 2.6. Let K be a set in the sphere S and let x ∈ K. Furthermore let N
be the cardinality of the set of components of K \ {x}. The point x ∈ K is called a
cutpoint of order N if N ≥ 2.

Theorem 2.7. Let U be an open connected set in S with boundary ∂U and suppose
that for every x ∈ U we have |c∂U(x)| ≤ 2 and that ∂U consists of exactly two
components. Let K1 and K2 be the components of S \ U . Then ∂U = ∂K1 ∪ ∂K2 is
locally connected and ∂Ki has the property that any cutpoint is of order two. Moreover,
if ∂Ki = Ki then Ki is a point or an arc.

Proof. By Theorem 2.3 E = E(K1, K2) is a compact connected one-manifold,
hence E is a simple closed curve. We show that ∂K1 has the required properties. The
proof for ∂K2 will be analogous. Let D1 be the complementary domain of E that
contains K1. Since every point in S has at most two closest points it follows that
each point x ∈ E has a unique closest point cx in ∂K1. This allows us to define a
continuous function f : E → ∂K1 by letting f(x) = cx. In a similar way as was done
in the proof of Theorem 2.4 we can show:

D1 = K1 ∪X, where X =
⋃
x∈E

[x, cx]

Note that by the USC Lemma 1.14, X is closed. The straight line segments (x, cx)
foliate the complement of K1 in D1. This shows that the function f : E → ∂K1 is
onto. Since if there would exist a y ∈ ∂K1 such that y /∈ f(E) then y /∈ X and hence
there would be an open neighborhood V of y inside D1 such that V ∩ X = ∅. But
V ∩ S \ K1 6= ∅ contradicts the fact that D1 = K1 ∪ X. Therefore ∂K1, being the
continuous image of a locally connected continuum, is a locally connected continuum.
From now on we will assume that ∂K1 is non-degenerate. For any y ∈ ∂K1 define Ny

to be the cardinality of the set of components of f−1(y).
Claim: For every y ∈ ∂K1 we have that Ny ≤ 2. Furthermore, if Ny = 2 then

f−1(y) = {y1, y2} for some y1, y2 ∈ E and [y1, y] ∪ [y2, y] is a straight line segment.
Proof of claim: Let y ∈ ∂K1. Without loss of generality we may assume that

f−1(y) consists of more than one point. Let y1 6= y2 ∈ f−1(y) and let A12 be the open
arc in E between y1 and y2. Suppose that [y1, y]∪ [y2, y] is not a straight line segment
(see figure).
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In this case we see that the boundary of K1 has to be disjoint from the open area
bounded by the arcs [y1, y], [y2, y] and A12. For every point x ∈ A12 we have that
(x, cx) ∩ A12 = ∅ and (x, cx) ∩ (yi, y) = ∅ for i = 1, 2. Therefore, every point in A12

has to have y as a closest point. So in this case f−1(y) is connected. This shows that
Ny ≤ 2 for all y ∈ ∂K1. /

Now assume, by way of contradiction, that there exists a point y ∈ ∂K1 such that
∂K1 \ {y} has at least three components. Label three of these components by C1, C2

and C3. Each of these components is open in ∂K1 since ∂K1 is locally connected,
therefore the components of f−1(Ci) are open intervals for each i. Choose three such
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open intervals U1, U2 and U3. Then E \ {U1 ∪ U2 ∪ U3} consists of three components
and since the endpoints of Ui map to y, each of these components contains a point
mapping to y. So Ny ≥ 3, a contradiction. Hence every cutpoint of ∂K1 has order
two.

Now assume that ∂K1 = K1. This implies that ∂K1 cannot contain a simple closed
curve and therefore that ∂K1 is a dendrite. By the result above every cutpoint of this
dendrite has order two. Hence ∂K1 is an arc or a point. ¤

Definition 2.8. Let U be an open set in the sphere S. We define E2(U) as follows:

E2(U) = {x ∈ U : |c∂U(x)| = 2}
Theorem 2.9. Let U ∈ U2. Then E2(U) is a connected smooth non-empty one-
manifold.

Proof. The proof consists of several parts. First we show that E2(U) is non-empty.
Next we prove that E2(U) is a manifold (not necessarily connected). Then we present
an analysis of the foliation of U which is generated by E2(U). This analysis is used
to prove the connectedness of E2(U). Finally it is shown that E2(U) is smooth.

Let m ∈ U such that d(m, ∂U) is maximal.
Claim 1: m ∈ E2(U)
Proof of claim: Suppose, by way of contradiction, that |c∂U(m)| = 1. Let cm ∈

c∂U(m) be the unique closest point of m. Consider a local spherical coordinate system
such that m = (0, 0) and cm = (0, ϑ) with ϑ > 0. Since ∂U is non-degenerate, the
coordinates of cm are well defined. By Lemma 1.5 there exist δ and ε such that for all
x ∈ Bδ/2(m) we have that c∂U(x) ⊂ Bε(cm). But then for any point y = (0, ϑy) with
−δ/2 < ϑy < 0 we have by Lemma 1.8 that d(y, ∂U) > d(m, ∂U), a contradiction. /

This claim shows that E2(U) is non-empty. For every point w ∈ E2(U) let c1
w and

c2
w denote its two closest points in ∂U . For a point w /∈ E2(U) let cw = c1

w = c2
w

denote its unique closest point.
Claim 2: For every x ∈ U \E2(U) there exists a w ∈ E2(U) such that x ∈ [w, c1

w)∪
[w, c2

w)
Proof of claim: Let cx denote the unique closest point of x in ∂U . Choose a local

spherical coordinate system such that x = (0, 0) and cx = (0,−ϑ), where ϑ > 0.
Consider the set D = {y ≥ 0 : c∂U

(
(0, y)

)
= {cx}} and let m be the supremum of

D. Let w = (0,m); clearly x ∈ [w, cx). If w ∈ E2(U) the claim is proved, so we may
assume that w has cx as unique closest point. Now assume, by way of contradiction,
that w /∈ E2(U). Then there exists a ξ > 0 such that for all y ∈ Bξ(w) we have
|c∂U(y)| = 1. By Lemma 1.5 there exist 0 < ε < d(x, ∂U)/10 and a 0 < δ < ξ such
that for all y ∈ Bδ(w) we have that c∂U(y) ⊂ Bε(cx). For every y in Bδ(w) let cy

denote its unique closest point. Define the following subsets of S(w, ∂U):

R = {p ∈ S(w, ∂U) : pϕ > 0, pϑ < m}
L = {q ∈ S(w, ∂U) : qϕ < 0, qϑ < m}

Clearly cx ∈ R ∩ L. We can define a function f : Bδ(w) → R ∪ L by letting f(y) =
S(w, ∂U) ∩ [y, cy]. This function is continuous by Lemma 1.14. Let A = {(0, yϑ) ∈
Bδ(w) : m < yϑ < m+δ}. Then for all y ∈ A we must have that f(y) ∈ L or f(y) ∈ R.
In fact, since f−1(R) ∩ A and f−1(L) ∩ A are open in A and A = f−1(R) ∪ f−1(L)
we must have that f(A) ⊂ L or f(A) ⊂ R. Without loss of generality we may
assume that f(A) ⊂ L. Choose a point p ∈ Bδ(w) and a point q ∈ A such that
pϕ > 0, pϑ = m, and the straight line segment B = [p, q] is contained in Bδ(w). Then
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f(p) ∈ R and every point in B \ {q} has positive ϕ-coordinate. Going from p to q
along the straight line segment B let r be the last point such that f(r) ∈ R. Let l
be the straight line through the points r and w. Now let s ∈ l ∩ S(w, ∂U) be such
that sϑ < m. Note that sϕ < 0 since rϕ > 0. Then for every point y ∈ (r, q) we have
that the point f(y) must lie to the left of s by Lemma 1.11. But this contradicts
continuity of f at r. /

Claim 3: E2(U) is a one-manifold.

Proof of claim: Let w ∈ E2(U) and choose ε > 0 such that Bε(c1
w) ∩ Bε(c2

w) = ∅
and Bε(c

1
w) ∩ S(w, ∂U), Bε(c

2
w) ∩ S(w, ∂U) are both arcs. Define closed sets X and

Y as follows:

X = Bε(c1
w) ∩ ∂U

Y = Bε(c2
w) ∩ ∂U

Clearly X and Y are noninterlaced with respect to w and w ∈ E(X, Y ), so by Theorem
2.1 there exists a 0 < δ < d(w,X)/10 such that E(X, Y ) ∩ Bδ(w) is a one manifold.
Furthermore, by Lemma 1.5, we can choose δ so small that for all z ∈ Bδ(w) we have
c∂U(z) ⊂ X ∪Y . Clearly E(X, Y )∩Bη(w) ⊂ E2(U)∩Bη(w) for all 0 < η < δ. Hence
E2(U) is a 1-manifold. /

Let E be the component of E(X,Y ) ∩ Bδ(w) containing w. We can define two
functions fX : E → ∂U and fY : E → ∂U by for each x ∈ E:

fX(x) = c∂U(x) ∩X

fY (x) = c∂U(x) ∩ Y

Both functions are continuous by Lemma 1.14. We claim that both fX and fY are
monotone. To see why this is true for fX , let y ∈ X be such that y has at least
two preimages p and q in E. Let A be the arc in E going from p to q and let T be
the open region enclosed by [p, y], [q, y] and A. Since δ < d(w,X)/10 it follows that
T ⊂ B(p,X) ∪B(q, X) and therefore ∂U ∩ T = ∅. By the Non-crossing Lemma 1.11
and the fact that for every x ∈ E we have that

(
[x, fX(x)) ∪ [x, fY (x))

) ∩ E2(U) = {x}
it follows that each point in A has y as its unique closest point in X, hence fX is
monotone. In a similar fashion it can be shown that fY is monotone. Hence fX(E)
and fY (E) are either an arc or a point. We claim that the following set

CE =
⋃
y∈E

[y, fX(y)) ∪ [y, fY (y)) (1)

is a closed neighborhood of w. The fact that CE is closed follows from the USC
Lemma 1.14, to see why CE is a neighborhood let s and t denote the endpoints of
the arc E. Let SX be the simple closed curve formed by the union of the arcs E,
fX(E) (this set could be a point), [s, fX(s)] and [t, fX(t)]. Define the set RX to be
the closed disk bounded by SX that contains [w, fX(w)]. Similarly define SY and
RY . We will show that CE = RX ∪ RY . Clearly CE ⊂ RX ∪ RY , so assume, by
way of contradiction, that there exists a point y in R = RX ∪RY such that y /∈ CE.
Since CE is closed there exists an open set W ⊂ RX ∪ RY containing y such that
W ∩ CE = ∅. Let V be a component of W containing y, then V ⊂ RX or V ⊂ RY .
Without loss of generality, we may assume that V ⊂ RX . Note that for any z ∈ E we
have that [z, fX(z)] ∩ V = ∅. For every z ∈ E define RX(z) to be the closed region
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enclosed by the arc between s and z, the arc between fX(s) and fX(z), [s, fX(s)] and
[z, fX(z)]. Define two sets El and Er as follows:

El = {z ∈ E : V * RX(z)}
Er = {z ∈ E : V ⊂ RX(z)}

Note that E = El∪Er and Er∩El = ∅. Furthermore both El and Er are closed since
the set {[z, fx(z)]}z∈E forms a continuous family of arcs. Since s ∈ El and t ∈ Er this
contradicts the connectedness of E. Hence CE is a neighborhood of w. Note that
we can use the same method of proof to show that CE is a closed neighborhood for
each point z ∈ [w, fX(w)).

For each y ∈ CE \E we have that y /∈ E2(U). Hence E(X, Y )∩Bη(w) = E2(U)∩
Bη(w) for some η > 0, which proves that E2(U) is a one-manifold.

Let C be a component of E2(U). Define the set P as follows:

P =
⋃

w∈C

[w, c1
w) ∪ [w, c2

w)

Note that in the case that w ∈ ∂U , [w, c1
w) ∪ [w, c2

w) = ∅.
Claim 4: P is closed in U
Proof of claim: Let {zi}i∈N be a sequence in P converging to a point z∞ ∈ U . By the

definition of P there exists a sequence wi in C such that zi ∈ Ai = [wi, c
1
wi

)∪ [wi, c
2
wi

).

Without loss of generality we may assume that w∞ = lim wi exists. Clearly w∞ ∈ C
and if w∞ ∈ ∂U then this would imply that z∞ = lim zi ∈ ∂U . So w∞ /∈ ∂U .
By Lemmas 1.11 and 1.14 we must have that the arcs Ai converge into the arc
A∞ = [w∞, c1

w∞)∪ [w∞, c2
w∞), i.e. lim Ai ⊂ A∞. Hence z∞ = lim zi ∈ A∞. This shows

that z∞ ∈ A∞ ⊂ P . /
Claim 5: P is open in U
Proof of claim: Let z ∈ P , this means there exists a w ∈ C \ ∂U such that

z ∈ A = [w, c1
w) ∪ [w, c2

w). If w ∈ C, then the arc A divides U into two components.
We will refer to these components as the left and right sides of A. If w ∈ C then
choose a p ∈ C on the left side of A and a q ∈ C on the right side such that
d(p, q) < d(w, ∂U)/10. Let C ′ be the closed arc in C going from p to q, then the set
P ′ defined by

P ′ =
⋃

y∈C′
[y, c1

y) ∪ [y, c2
y)

is neighborhood of z contained in P . If w ∈ C \ C then w has a unique closest point
cw, let A = [w, cw). For each x in C let Ax = [x, c1

x) ∪ [x, c2
x). We claim that w /∈ Ax

for each x ∈ C. To see why this is true suppose, by way of contradiction, that there
exists a y ∈ C such that w ∈ Ay. The arc Ay divides U into two components. We
will refer to these components as the left and right sides of Ay. Now pick a point
p ∈ C on the left side of Ay and a point q ∈ C on the right side of Ay. Note that
Ap∩Ay = ∅ = Aq∩Ay and that the arcs Ap and Aq both divide U into two components
as well. Define Fp to be the component of U \Ap that does not contain y and define
Fq to be the component of U \ Aq that does not contain y. Since C ∩ Ax = {x} for
every x ∈ C and C is homeomorphic to the interval (0, 1) ⊂ R it follows that once C
enters Fp or Fq it cannot leave Fp or Fq anymore. But then w /∈ C, a contradiction.
Hence w /∈ Ax for each x ∈ C. For each x ∈ C let Dx be the component of U \Ax such
that w ∈ Dx, note that A ⊂ Dx for every x ∈ C. Since C cannot leave a component
Dx once it has entered it, it follows that the components Dx are nested. We can now
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define an order on C by letting

x < y ⇔ Dx ( Dy

Now pick a point y ∈ C and consider the set

B = (w, y)C = {x ∈ C : x < y}
Choose an strictly decreasing sequence {wi}i∈N in B such that lim wi = w and wi ∈
Bd(w,∂U)(w) for each i ∈ N. The open arc B locally separates the plane, so for every
point x ∈ B we can find a small open neighborhood Nx such that B separates Nx

into two components Lx and Rx. We will call Lx the left side of B at x and Rx the
right side of B at x. By a local compactness argument this allows us to consistently
define a left side LB and a right side RB of B. Choose an strictly decreasing sequence
{wi}i∈N in B such that lim wi = w and wi ∈ Bd(w,∂U)/10(w) for each i ∈ N. We can
now define a function fL : (w,w1]C → ∂U by letting

fL(x) =

{
c1
x if [x, c1

x) ∩ LB 6= ∅
c2
x if [x, c2

x) ∩ LB 6= ∅
Similarly we can define a function fR : (w, w1]C → ∂U . Using arguments similar to
the arguments used to prove that fX and fY are monotone and continuous, we can
show that both fL and fR are monotone and continuous. For each i ∈ N define the
following sets:

Ai = [wi, c
1
wi

) ∪ [wi, c
2
wi

)

Li = fL

(
[wi, w1]C

)

Ri = fR

(
[wi, w1]C

)

By Lemmas 1.11 and 1.14 we must have that the arcs Ai converge to the arc A.
Notice that for each i ≥ 2 the union of the arcs A1, Ai, and the sets Li and Ri (both
of which are either a point or an arc) form a simple closed curve Si. For i ≥ 2 let Di

be the open disk enclosed by Si, containing (wi, w1)C . Then by results from Claim 3
we have

Di =
⋃

x∈(wi,w1)C

Ax

Clearly each Di ⊂ P and Di+1 ⊃ Di for each i. Define D as follows:

D = clU
( ∞⋃

i=2

Di

)

We claim that D is a closed neighborhood of z that is contained in P . The fact
that D is contained in P follows from the fact that each Di is contained in P and
P is closed in U by Claim 4. Since z ∈ A = lim Ai we have that z ∈ D. Let
δ = min{d(cw, z)/10, d(z, w)}. Now assume, by way of contradiction, that there exist
a point x with d(x, z) < δ such that x /∈ D. Since D is closed in U there exists an
open set W ⊂ U containing x such that W ∩D = ∅. Let V be an open ball around x
inside W such that the radius of V is less than δ. Note that V ∩A = ∅, since A ⊂ D.
Since the arcs Ai converge to the arc A it follows that V ⊂ Dk for some k ∈ N, hence
V ⊂ D, a contradiction. /

Claims 4 and 5 show that P = U and hence that E2(U) is connected.
Claim 6: E2(U) is smooth
Proof of claim: Pick a point w in E2(U) and choose a local spherical coordinate

system such that w = (0, 0), and c1
w and c2

w lie symmetric with respect to the negative
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ϕ-axis, the ϑ-coordinate of c1
w being positive. For each x 6= w let arg x be the angle

(in [0, 2π)) between the positive ϕ-axis and the line segment [w, x]. We claim that
the ϕ-axis tangent is to E2(U) at w. Suppose that this is not the case. Then we may
assume, without loss of generality, that there is a sequence wi = (ϕi, ϑi), with ϕi > 0
and ϑi > 0, of points in E2(U) converging to w such that for some α > 0 we have
arg wi > α. Let lα be the line that makes an angle α with the positive ϕ-axis and let
cα be the point on S(w, ∂U) that is symmetric with c1

w with respect to the line lα.
Let B be the subarc of S(w, ∂U) that joins the points c1

w and cα but is disjoint from
c2
w. Choose ε > 0 such that

(1) the ε-neighborhoods of c1
w and c2

w are disjoint,
(2) the ε neighborhoods of c2

w and B are disjoint and
(3) the intersection of B(w, ∂U + δ) and ∂U is contained in the union of the said

neighborhoods (cf Collar Lemma).

Now by the USC Lemma, if one of the closest points of wi to ∂U is in Bε(c
1
w) (and

this holds true if i is large enough), the other must be in Bε(c
2
w). But inspection of

the intersection of S(wi, ∂U) and ∂U shows that the other closest point must be in
the ε-neighborhood of B. This is a contradiction /

This completes the proof of the Theorem. ¤

We have shown that if U ∈ U2 such that the boundary of U has two components,
then the boundary of U is locally connected and any cut point in the boundary is
of order two. The case when the boundary of U is connected (or equivalently when
U is simply connected) is more complicated. It can be shown that in this case the
boundary of U is not necessarily locally connected. However, it can be shown that the
set of accessible points in ∂U consists of at most two arc components A1 and A2 which
are associated with the two sides of the centerline E2(U). Hence U can be roughly
pictured as a long thin tube with two ends and E2(U) as its center line. The closure
of the center line is no longer necessarily an arc: the remainder of E2(U) may be non-
degenerate (i.e., the centerline can behave like a sin(1/x) function). In particular, the
boundary of U can be an indecomposable continuum (i.e., cannot be written as the
union of two of its proper sub-continua; see [3] for additional information).
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