
ON CONFLUENTLY GRAPH-LIKE COMPACTA
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Abstract. For any class K of compacta and any compactum X we say
that: (a) X is a confluently K-representable, if X is homeomorphic to
the inverse limit of an inverse sequence of members of K with confluent
bonding mappings, and (b) X is confluently K-like, provided that X
admits, for every ε > 0, a confluent ε-mapping onto a member of K. The
symbol LC stands for the class of all locally connected compacta. It is
proved in this paper that for each compactum X and each family K of
graphs, X is confluently K-representable if and only if X is confluently
K-like. We also show that for any compactum the properties of: (1)
being confluently graph-representable, and (2) being 1-dimensional and
confluently LC-like, are equivalent. Consequently, all locally connected
curves are confluently graph-representable. We also conclude that all
confluently arc-like continua are homeomorphic to inverse limits of arcs
with open bonding mappings, and, all confluently tree-like continua are
absolute retracts for hereditarily unicoherent continua.

1. Introduction

Confluent mappings for compacta, defined by J. J. Charatonik in [6] (very
similar classes of mappings were earlier studied in [20]), turned out to be
very important. They form a much narrower family than the one of all
continuous mappings. However, this family is essentially larger than any
of the following classes of: covering, branch-covering, open, or monotone
mappings. Yet confluent mappings share some important properties with
those listed above. They preserve end points, atriodicity, tree-likeness [13],
the property of Kelley and many other topological properties of compacta.
They even have (approximate) path lifting properties [7]. The class of con-
fluent mappings is, in a sense, more “regular” than some other well known
classes of mappings. For instance, while the inverse limit of open mappings
is not necessarily open, the inverse limit (or even the weakly induced limit
in the sense of Mioduszewski [14]) of confluent mappings is always confluent
(cf. [9, 17, 10]).

The main purpose of this paper is to study confluently graph-like com-
pacta and to generalize known results for continuous functions to the class
of confluent mappings. A compactum X is said to be confluently graph-like
provided that for every ε > 0 there exists a confluent ε-mapping from X
onto a graph. There are many important examples of confluently graph-
like compacta. The Menger curve and the Sierpiński universal plane curve
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are such spaces. More generally, in this paper we prove that all locally
connected, 1-dimensional compacta are confluently graph-like (see Corol-
lary 3.15). The solenoids are confluently graph-like (precisely, they form
the class of all confluently circle-like continua, see [3]). Inverse limits of
arcs with open bonding mappings (called “Knaster type continua”) are, ob-
viously, confluently graph-like. Actually, this last class is the class of all
confluently arc-like continua (see Corollary 3.4 below). “Case continua”
[1] and their generalizations [18], [15] are also confluently graph-like. In a
recent paper [4] it was proved that every inverse limit of trees with con-
fluent bonding mappings is an absolute retract for hereditarily unicoherent
continua, and thus it has many other strong properties including the fixed
point property (see [7], [2], [5] and [4]). In this paper we show that every
confluently tree-like continuum is such a retract (see Corollary 3.7).

Confluently graph-like compacta share many properties with the mem-
bers of a larger class of all confluently LC-like compacta, i.e., compacta
admitting, for every ε > 0, a confluent ε-mapping onto a locally connected
compactum (LC stands for the class of all locally connected compacta).
For instance such compacta have the arc property of Kelley [3] (cf. Remark
1.1). This last property, satisfied by all locally connected compacta and all
absolute retracts for hereditarily unicoherent continua, is interesting by its
own right. Confluent mappings on such compacta are known to have some
approximate lifting properties [7] (cf. Remark 1.1).

Remark 1.1. Actually, the main results of papers [3] and [7] are formulated
for continua, i.e. connected compacta. However, those mentioned above
remain true also for non-connected compacta. The proofs are the same.

Let K be a class of compacta and X be a compactum. We say that X
is confluently K-like provided that X admits, for every ε > 0, a confluent
ε-mapping onto a member of K. If X is homeomorphic to the inverse limit
of an inverse sequence of members of K with surjective confluent bonding
mappings, then X is called a confluently K-representable compactum.

Let K be a class of compacta. It is an easy observation that if a com-
pactum X is confluently K-representable, then X is confluently K-like. In
this paper we ask for what classes K the converse is true. The following
question is crucial to this paper.

Question 1.1. Let K be any of the classes of: polyhedra, ANR’s, locally con-
nected compacta, and suppose X is a confluently K-like compactum. Does
it follow that X is confluently K-representable?

In this paper we answer this question in the affirmative for each 1-dimen-
sional compactum X, and this is the main result of this paper. Within the
class of continuous functions a similar result was obtained by Mardešić and
Segal [12] in 1963. Using this result we obtain a number of conclusions,
some of them mentioned above.

Answering Question 1.1 for compacta of dimension greater than 1 is the
most important problem of this paper that remains open.

All results described above are presented in Section 3. Section 2 contains
some results concerning confluent mappings from locally connected continua



ON CONFLUENTLY GRAPH-LIKE COMPACTA 3

onto an arc. Namely, we prove a “confluent” Urysohn’s lemma (Theorem
2.12) and confluent extension and retraction theorems (Theorem 2.14 and
Corollary 2.15).

Spaces are assumed to be metric and mappings to be continuous in this
paper. A (compact) polyhedron of dimension at most 1 is called a graph.
If f : X → Y is a mapping, ε is a positive number and diam(f−1(y)) < ε
for each y ∈ Y , then f is called an ε-mapping. A mapping f : X → Y
is said to be confluent provided that for every subcontinuum K of Y and
every component L of f−1(K) we have f(L) = K. All confluent mapping
considered in this paper are surjective and their domain and range spaces
are compact. A continuum X is called arc-like (circle-like, tree-like, graph-
like), if, for every ε > 0, there exists an ε-mapping fε : X → Yε, where
Yε is an arc (a circle, a tree, a graph; respectively). If, additionally, the
mappings fε are confluent, then we say that X is confluently arc-like (con-
fluently circle-like, confluently tree-like, confluently graph-like; respectively).
If X is homeomorphic to the inverse limit lim←(Yn, fn+1

n ), where the map-
pings : fn+1

n : Yn+1 → Yn are confluent and surjective, and spaces Yn are
arcs (circles, trees, graphs), then X is called a confluently arc-representable
(confluently circle-representable, confluently tree-representable, confluently
graph-representable; respectively). A continuum X is said to be hereditarily
unicoherent provided that the intersection of every two subcontinua of X is
connected. If a hereditarily unicoherent continuum X, whenever embedded
into another hereditarily unicoherent continuum Y , is a retract of Y , then
we say that X is an absolute retract for hereditarily unicoherent continua.
A compactum X is said to have the arc property of Kelley provided that for
every continuum K ⊂ X, every p ∈ K and every sequence pn converging to
p in X there exists a sequence of arcwise connected continua Kn such that
pn ∈ Kn and Kn converges to K in the sense of the Hausdorff distance.

2. “Confluent” Urysohn’s lemma, confluent extensions and
retractions for locally connected continua

In this section we study confluent mappings of locally connected continua
onto the unit interval [0, 1]. We will show a stronger, “confluent” variant of
the Urysohn lemma for locally connected continua (see Theorem 2.12). This
theorem will be applied in the next section. Using similar technique we also
obtain extension and retraction theorems for confluent mappings (Theorem
2.14, Corollary 2.15). We add these two last results for completeness of this
study. Some results of a similar type concerning classes of mappings related
to confluent ones can be found in [21].

To obtain these results we need some preparation. Let X be a continuum.
For any surjective mapping g : X → [0, 1] and any a ∈ (0, 1) let F (g, a) be
the union of all components K of X \ g−1(a) such that:

either 0 < inf(g(K)) < a , or a < sup(g(K)) < 1 .

Lemma 2.1. For any surjective mapping g : X → [0, 1], where X is a
continuum, the following conditions are equivalent:
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(1) The mapping g is confluent.
(2) For any a ∈ (0, 1), any component C of g−1(a) and any ε > 0 there

exists a continuum L ⊂ Nε(C) such that C ⊂ L and a ∈ Int(g(L)).
(3) The set F (g, a) is empty for each a ∈ (0, 1).

Proof. Let g = f ◦m be the canonical representation of g as the composition
of a monotone mapping m and a light mapping f . Assume that g is con-
fluent, then it easy to see that f is also confluent. By Lelek and Read [11],
f is open. We show next that condition (2) is equivalent to the openness
of f . Suppose f is open and that a ∈ (0, 1) and C is a component is of
g−1(a). Let Jn = [a − 1/n, a + 1/n] ⊂ (0, 1) and let Hn be the component
of f−1(Jn) containing m(C). Then f(Hn) = Jn. Let Ln = m−1(Hn), then
∩Ln = C and g(Ln) = Jn. Hence, for n sufficiently large, Ln ⊂ Nε(C) and
(2) holds. Conversely, if (2) holds, then for each z ∈ m(X) and each open
set U ⊂ m(X) containing z, f(z) ∈ Int(f(U)) and f is open. Thus (1) is
equivalent to (2).

Suppose (3) does not hold, i.e. there exists an a ∈ (0, 1) with F (g, a) 6= ∅.
Thus there is a component K of X \g−1(a) such that either 0 < inf(g(K)) <
a, or a < sup(g(K)) < 1. Suppose 0 < inf(g(K)) < a (the other case is
similar). Let b ∈ K be such that c = g(b) = inf(g(K)). Let C be the
component of g−1(c) that contains b. Then for any continuum L that con-
tains C and is sufficiently close to C in the sense of the Hausdorff distance,
g(L) ⊂ K. Thus g(L) ⊂ [c, 1] and c /∈ Int(g(L)) for such L. Thus (2) does
not hold. Hence (2) implies (3).

Suppose (2) does not hold, i.e. there are a ∈ (0, 1), a component C of
g−1(a) and an ε > 0 such that for every continuum L ⊂ Nε(C) with C ⊂ L
we have a /∈ Int(g(L)). Since g(L) for L 6= C is an interval, then a is either
left hand end point or right hand end-point of g(L) for all such L. Assume
the former case (the latter one is similar). Then for sufficiently small δ > 0,
letting a′ = a + δ the set g−1(a′) separates X between C and any point
p ∈ X with g(p) < a. Hence C is a subset of a component K of X \ g−1(a′)
such that 0 < min g(K) < a′ and thus F (g, a′) 6= ∅. So (3) does not hold.
This completes the proof of implication from (3) to (2) and of the entire
lemma. ¤

Suppose that g : X → [0, 1] is a surjective mapping and X is a locally con-
nected continuum. For any a ∈ (0, 1) and any x ∈ F (g, a) we let g(a)(x) = a,
and, for x ∈ X \ F (g, a) let g(a)(x) = g(x). By the local connectedness of
X the set Nε(g

−1(a)) contains, for every ε > 0, almost all components of
X \ g−1(a). In particular, this set contains almost all components K of
F (g, a). This observation leads to the conclusion that g(a) : X → [0, 1] is
a continuous mapping. Observe that F (g, a) = {x ∈ X : g(a)(x) 6= g(x)}.
Define I(g) = {a ∈ (0, 1) : g(a) = g} = {a ∈ (0, 1) : F (g, a) = ∅}.

In Propositions 2.2-2.11 we assume that X is a locally connected contin-
uum and g : X → [0, 1] is a surjective mapping. By Lemma 2.1 we observe
that such a mapping g is confluent if and only if I(g) = (0, 1).

Proposition 2.2. If g is not confluent, then there exists an ε > 0 and an
open interval (p, q) ⊂ [0, 1] such that for every surjective mapping h : X →
[0, 1] with dsup(h, g) < ε we have (p, q) ∩ I(h) = ∅.
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Proof. Since g is not confluent, then there exists an number a ∈ (0, 1) such
that g(a) 6= g, or equivalently, F (g, a) 6= ∅. Let K be a component of
F (g, a). Then either 0 < min g(K) < a, or a < max g(K) < 1. Assume
0 < min g(K) < a (the proof in the other case is similar). Fix a point
x0 ∈ K such that g(x0) = min g(K) and two numbers p, q ∈ (0, 1) satisfying
g(x0) < p < q < a. Put ε = 1

2
min {|g(x0)− 0|, |p− g(x0)|, |a− q|}, and let

h : X → [0, 1] be a surjective mapping such that dsup(h, g) < ε.
Fix a number r ∈ (p, q). We will complete the proof by showing that

r /∈ I(h). Indeed, since h is ε-near to g we have h(x) > 0 for each x ∈ K,
h(x0) < p, and h(x) > q for each x ∈ g−1(a). Therefore the set h−1(r)
separates Cl(K) between h(x0) and Bd(K). Thus the component K1 of
X\h−1(r) that contains x0 satisfies 0 < min h(K1) < r. Hence r /∈ I(h). ¤

By the definition we obtain the next proposition.

Proposition 2.3. For each a ∈ (0, 1) we have g(a)(g−1(0)) = {0} and
g(a)(g−1(1)) = {1}.
Proposition 2.4. For each a ∈ (0, 1) we have {a} ∪ I(g) ⊂ I(g(a)).

Proof. Evidently, we have (g(a))(a) = g(a). Thus a ∈ I(g(a)).
Suppose b /∈ I(g(a)). Thus b ∈ (0, 1) \ {a}. Then there exists a nonempty

component K of F (g(a), b). For any x ∈ X if g(a)(x) 6= g(x), then g(a)(x) =
a. Using this implication we conclude:

(1) Since neither 0 nor 1 belong to g(a)(K), then neither 0 nor 1 belong
to g(K).

(2) Since g(a)(Bd(K)) = {b} 6= {a}, we have g(Bd(K)) = {b}.
(3) Since g(a)(K) contains some numbers different from b, then g(K)

contains some numbers different from b.

From (1), (2) and (3) it follows that K contains a nonempty component
K1 of X \ g−1(b) such that 0 /∈ g(K1) and 1 /∈ g(K1). Therefore K1 ⊂
F (g, b) 6= ∅ and thus b /∈ I(g). The proposition is proved. ¤

Proposition 2.5. Let a, p, q be numbers such that 0 < p < a < q < 1 and
p, q ∈ I(g). Then g(F (g, a)) ⊂ [p, q] and g(a)(F (g, a)) = {a} ⊂ (p, q).

Proof. The second part of the conclusion follows by the definition. To see the
first one suppose, on the contrary, that a component K of F (g, a) contains
a point x such that either g(x) < p or g(x) > q. Assume g(x) < p (the
other case is similar). The the component of X \ g−1(p) that contains x is
a subset of F (g, p). On the other hand, p ∈ g(I) and thus F (g, p) = ∅. A
contradiction. ¤

Proposition 2.6. Let a1, a2, ... be a sequence of numbers in (0, 1) such that
Cl({a1, a2, ...}) = [0, 1]. Then the sequence of mappings fn : X → [0, 1]

defined by f0 = g and fn+1 = f
(an+1)
n uniformly converges to a confluent

mapping f : X → [0, 1].

Proof. Applying Proposition 2.4 inductively we see that for any m ≥ n
we have a1, ..., an ∈ I(fm). Let x ∈ X. If ai < fn(x) < aj for some
i, j ∈ {1, ..., n}, then according to Proposition 2.5 we have ai < fm(x) < aj
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for all m > n. By the density of {an} in [0, 1] the sequence fn must converge
uniformly.

Let f be the limit of this sequence. Since a1, ..., an ∈ I(fm) for every
m > n and the set {a1, a2, ...} is dense in [0, 1], then there are no numbers
p, q as in Proposition 2.2 for g = f . Hence f is confluent. ¤

In Propositions 2.7-2.11 we fix a sequence {an} ⊂ (0, 1) such that Cl({a1, a2, ...}) =
[0, 1], and, we assume that mappings fn and f are as in Proposition 2.6.
For any p ∈ X let Cn(p) be the component of f−1

n (fn(p)) that contains p.
Define C(p) as the component of f−1(p) that contains p, and, X0 = {x ∈
X : f(x) = fn(x) for each n ∈ {0, 1, ...}}. Observe that X0 is closed in X.
The proof of the following proposition is straightforward. The details are
left to the reader.

Proposition 2.7. For every p ∈ X we have:

(1) Cn(p) ⊂ Cn+1(p);
(2)

⋃{Cn(p) : n ∈ {0, 1, ...}} ⊂ C(p)}; and
(3) If p ∈ X \X0, then

⋃{Cn(p) : n ∈ {0, 1, ...}} \X0 is open in X and
Bd((

⋃{Cn(p) : n ∈ {0, 1, ...}}) \X0) ⊂ C(p) ∩X0.

Proposition 2.8. For every x ∈ X each component C of the set C(x) \X0

is open in X. In particular, we have Bd(C) ⊂ X0 ∩ C(x) for such C, and
thus C(x) ∩X0 6= ∅ for each x ∈ X.

Proof. Let z ∈ C(x)\X0 = C(z)\X0. Then z ∈ Int(
⋃{Cn(z) : n ∈ {0, 1, ...}} \X0) ⊂

C(z) = C(x) by Proposition 2.7, parts (3) and (2), and thus C(x) \ X0 is
open. By the local connectedness of X any component C of C(x) \ X0 is
open too. ¤
Proposition 2.9. Let t ∈ [0, 1] and suppose f−1

0 (t) is connected. Then
f−1(t) is connected.

Proof. Let p ∈ f−1
0 (t). If a1 6= t, then C0(p) = C1(p) = f−1

0 (t). If a1 =
t, then C1(p) may properly contain f−1

0 (t) but it must remain connected.
Similarly, we can argue that f−1

0 (t) ⊂ Cn(p) for each n. Thus the set
f−1(t) ∩X0 = f−1

0 (t) is connected. According to Proposition 2.8, for each
x ∈ f−1(t)\X0 we have ∅ 6= C(x)∩X0 ⊂ f−1(f)∩X0, which completes the
proof. ¤

To prove the next proposition we will apply the following lemma.

Lemma 2.10. Let Y be a closed subset of a locally connected compactum
Z. If Y is the union of two locally connected sets A and B such that A is
open in Z, then Y is locally connected.

Proof. First, note that Bd(A) ⊂ B. Let a sequence {xn} ⊂ Y converge to
a point x0 ∈ Y . We prove that for almost all n there are connected sets
Kn ⊂ Y such that x0, xn ∈ Kn and lim diam(Kn) = 0, which will complete
the proof. Since A is open in Z, and Z is locally connected, then such Kn’s
exist for x0 ∈ A. Suppose x0 ∈ Y \A = B\A. Since Z is a locally connected
compactum, then it is locally arc connected. Thus, for almost all n, there
are arcs An ⊂ Z such that x0, xn ∈ An and lim diam(An) = 0. Let pn be
the first point in An (in the ordering from xn to x0) such that pn /∈ A, and
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A′
n be the arc in An from xn to pn. Then pn ∈ Bd(A) ⊂ B. Since B is

locally connected, there are connected sets Ln ⊂ B such that pn, x0 ∈ Ln

and lim diam(Ln) = 0. Note that the sets Kn = A′
n∪Ln are as desired. ¤

Proposition 2.11. Let t ∈ [0, 1] and suppose f−1
0 (t) is locally connected.

Then f−1(t) is locally connected.

Proof. In view of Proposition 2.8 the set A0 = X0 ∩ f−1(t) is nonempty.
Applying Proposition 2.7 part (1), we see that A0 is the union of some com-
ponents of f−1

0 (t), and thus A0 is locally connected. Using again Proposition
2.8 we see that the set f−1(t) \X0 =

⋃{C(x) \X0 : x ∈ f−1(t)} is open in
X. Thus the compactum f−1(t) is the union of a locally connected set A0

and an open subset f−1(t) \X0 of X. Hence f−1(t) is locally connected by
Lemma 2.10. ¤
Theorem 2.12. Let X be a locally connected continuum. Then for every
two disjoint closed subsets A and B of X there exists a confluent map f :
X → [0, 1] such that f(A) = {0} and f(B) = {1}.

Moreover, the map f can be chosen so that in addition:

(1) f−1(0) and f−1(0) are locally connected; and
(2) if the sets A and B are connected, then f−1(0) and f−1(1) are con-

nected too.

Proof. Let f0 : X → [0, 1] be a mapping guaranteed by the Urysohn lemma
such that f−1

0 (0) = A and f−1
0 (1) = B. Let a1, a2, ... be a sequence of

numbers in (0, 1) such that Cl({a1, a2, ...}) = [0, 1]. Inductively define

fn+1 = f
(an+1)
n . By Proposition 2.6 the sequence fn uniformly converges to

a confluent mapping f : X → [0, 1]. Applying Proposition 2.3 inductively
we see that fn(A) = {0} and fn(B) = {1} for each n. Hence f(A) = {0}
and f(B) = {1}.

Now we prove part (1). Since X is a locally connected continuum, every
point of X has arbitrarily small closed, connected and locally connected
neighborhoods. Thus we can slightly enlarge sets A and B to some cor-
responding locally connected, compact, disjoint sets A′ and B′, and apply
the previous argument for A′ and B′ in place of A and B, respectively [16,
Proposition 8.7]. Then part (1) follows by Proposition 2.11.

Part (2) of the theorem follows by Proposition 2.9. ¤
Remark 2.13. The converse of Theorem 2.12 is false. For example, the
harmonic fan F is not locally connected while it is possible to construct for
each pair of disjoint closed subsets A and B a confluent map f : F → [0, 1]
to an arc such that f(A) = 0 and f(B) = 1.

Theorem 2.14. Let X be a closed subset of a locally connected continuum
Y and f : X → [0, 1] be a confluent mapping. Then there exists a confluent
extension f ∗ : Y → [0, 1] of the mapping f .

Moreover, if the sets f−1(0) and f−1(1) are (locally) connected, then we
can choose f ∗ so that, additionally, the sets (f ∗)−1(0) and (f ∗)−1(1) are
(locally) connected too.

Proof. Since [0, 1] is an absolute retract there exists some extension f0 : Y →
[0, 1] of the mapping f . Let a1, a2, ... be a sequence of numbers in (0, 1)
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such that Cl({a1, a2, ...}) = [0, 1]. Inductively define fn+1 = f
(an+1)
n . By

Proposition 2.6 the sequence fn uniformly converges to a confluent mapping
f ∗ : X → [0, 1]. To show that f ∗|X = f it suffices to prove that fn|X = f for
each n. Indeed, by the definition of f0 we have f0|X = f . Suppose fn|X = f
for some n and let x ∈ X. If fn(x) = an+1, then fn+1(x) = an+1 = f(x).
Suppose x belongs to a component K of Y \ f−1

n (an+1). Let C be the
component of X that contains x. Then the mapping g = f |C : C → [0, 1]
is confluent. Since fn is an extension of f (and thus of g), the set K must
contain the component K ′ of C \ g−1(an+1) that contains x. The mapping
g is confluent, and thus F (g, an+1) = ∅ (see Lemma 2.1). Therefore either
0 ∈ g(K ′) or 1 ∈ g(K ′). Consequently, either 0 ∈ fn(K) or 1 ∈ fn(K).
This implies that K ∩ F (fn, an+1) = ∅. So fn+1|K = fn|K. In particular
fn+1(x) = fn(x) = f(x). Hence fn+1|X = f .

We have proved that fn|X = f for each n, and thus f ∗|X = f . To
see the last part of the theorem observe that the extension f0 of f can,
additionally, satisfy the condition f−1

0 (0) = f−1(0) and f−1
0 (1) = f−1(1).

Then the conclusion follows by Propositions 2.9 and 2.11. The proof is
complete. ¤
Corollary 2.15. For any arc [a, b] in a locally connected continuum X
there exists a confluent retraction r : X → [a, b] such that the sets r−1(a)
and r−1(b) are locally connected continua.

Remark 2.16. No nondegenerate continuum different from an arc can re-
place the segment [0, 1] in Theorem 2.14 or the arc [a, b] in Corollary 2.15.
To see this it suffices to show that such a continuum must have each pair
of different points joined by a free arc. The details are left to the reader.

3. Confluently graph-like compacta

In this section we prove the main results of the paper. First we prove
that for any class K of graphs and any compactum the properties of be-
ing confluently K-representable and the one of being confluently K-like are
equivalent (Theorem 3.2). Then we show (Corollary 3.14) that for any
compactum the following three conditions are equivalent: (1) being conflu-
ently graph-representable, (2) being confluently graph-like, and (3) being
1-dimensional and confluently LC-like. In particular, this theorem implies
that each 1-dimensional locally connected compactum is confluently graph-
representable (Corollary 3.15).

Theorem 3.1. Let f : X → F be a confluent mapping from a compactum
X onto a graph F . Then for each ε > 0 there is a δ > 0 such that for every
confluent δ-mapping g : X → G from X onto a graph G, there exists an
onto confluent mapping h : G → F satisfying dsup(h ◦ g, f) < ε.

Proof. Let e1, ..., en be mutually different points in F such that all compo-
nents of F \{e1, ..., en} are open arcs of diameter less than ε/2 and each two
points ei, ej are the two boundary points of at most one, if any, component
of F \ {e1, ..., en}. Note that, in particular, all end points, all ramification
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points and all isolated points of F are included in {e1, ..., en}. For any
i ∈ {1, ..., n} define

Li = {ei} ∪
⋃
{L : L is a component of F \ {e1, ..., en} with ei ∈ Bd(L)}.

Notice that diam(Li) < ε for each i. Let σ > 0 be such that Nσ(ei) ⊂ Li

for each i ∈ {1, ..., n}. Put Ei = f−1(ei) and ξ = min{dX(Ei, Ej) : i 6= j}.
Fix a number δ > 0 such that δ < ξ/2 and, for any pair x, y ∈ X, we have
dF (f(x), f(y)) < σ whenever dX(x, y) < δ. Let g : X → G be a confluent
δ-mapping onto a graph G. Define Di = g(Ei) for i ∈ {1, ..., n} and note
the sets D1, ..., Dn are mutually disjoint by the definition of δ.

Claim 1. For every component K of G\(D1∪...∪Dn) if Bd(K)∩Di 6= ∅,
then f(g−1(K)) ⊂ Li.

Indeed, suppose there exists a point x ∈ Di∩Bd(K) and let M be a com-
ponent of g−1(K). Since g is confluent, g(M) = K and also dX(M, g−1(x)) =
0. Moreover, g−1(x)∩Ei 6= ∅ and g is a δ-mapping. Therefore dX(M,Ei) <
δ. Thus dF (f(M), ei) < σ by the choice of δ. Since the set f(M) is a con-
nected subset of F \ {e1, ..., en}, the last inequality implies, by the choice
of σ, that f(M) ⊂ Li. Therefore f(M) ⊂ Li for every component M of
g−1(K), and thus the claim is proved.

Claim 2. For every component K of G \ (D1 ∪ ... ∪Dn) the set Bd(K)
intersects at most two different sets Di, Dj. Moreover, if Bd(K)∩Di 6= ∅ 6=
Bd(K) ∩Dj and i 6= j, then ei, ej are the two different boundary points of
a component L of F \ {e1, ..., en} and f(g−1(K)) ⊂ L.

Indeed, this is a consequence of Claim 1 and of the fact that any three
different sets Li, Lj, Lk have empty intersection. Since any two different
sets Li, Lj are either disjoint, or have a component L of F \ {e1, ..., en} as
their intersection, the last part of the claim follows.

We are ready to define the desired mapping h : G → F . For any x ∈ Di

put h(x) = ei. To define h on G let K be a component of G\ (D1∪ ...∪Dn).
First, suppose Di, for some fixed i ∈ {1, ..., n}, be such that Bd(K) ⊂ Di.

Then we put h(x) = ei for each x ∈ K. The only other case is that
Bd(K) ⊂ Di ∪ Dj and Bd(K) ∩ Di 6= ∅ 6= Bd(K) ∩ Dj for two different,
fixed sets Di, Dj such there is a component L of F \ {e1, ..., en} with e1,
e2 as their boundary points (see Claim 2). In this case we apply Theorem
2.12 for the graph Cl(K) with two disjoint nonempty subsets Bd(K) ∩Di,
Bd(K) ∩ Dj obtaining a confluent mapping h from Cl(K) to L ∪ {e1, e2}
such that h(Di) = {ei} and h(Dj) = {ej}. We have defined h(x) for each
x ∈ G.

Notice that h : G → F is well-defined, continuous and onto.

Claim 3. dsup(h ◦ g, f) < ε.

Indeed, Let x ∈ X. If x ∈ g−1(Di) for some i, then h ◦ g(x) = ei

and dX(x,Ei) < δ. Thus dF (f(x), ei) < σ by the choice of δ. Therefore
f(x) ∈ Li by the choice of σ, and thus dF (f(x), ei) = dF (f(x), h◦g(x)) < ε.

Now assume that x ∈ X \ (g−1(D1) ∪ ... ∪ g−1(Dn)). Then g(x) belongs
to a component K of G \ (D1 ∪ ... ∪ Dn). This component must satisfy
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Bd(K)∩Di 6= ∅ for some i. By the definition of h we have h(Cl(K)) ⊂ Cl(Li)
and f(x) ∈ Li (compare Claim 1). Since diam(Cl(Li)) < ε we again have
dF (f(x), h ◦ g(x)) < ε, which completes the proof of the claim.

It remains to show that h is confluent. Suppose, on the contrary, that
there exists a continuum P in F and a component Q of h−1(P ) such that
h(Q) is a proper subset of P . Let p be a boundary point of h(Q) in P and
fix a point q in Q ∩ h−1(p). Choose an arc A in P such that

(i) p is an end point of A;
(ii) A ∩ h(Q) = {p};
(iii) if p ∈ F \ {e1, ..., en}, then A ⊂ F \ {e1, ..., en}; and
(iv) if p = ei for some i, then A ⊂ Li.

Then the component C of h−1(A) that contains q satisfies h(C) = {p}.
Suppose first that C ∩ (D1 ∪ . . . ∪ Dn) = ∅. Then C is contained in a
component K of G \ (D1 ∪ . . . ∪ Dn). Put K ′ = Cl(K) and let {an} be a
sequence of points in A converging to p, An = [p, an] ⊂ A and let Bn the
component of h−1(An) containing C. Then Bn ⊂ Q and there exists an n
such that Bn ⊂ K. Since h|K′ is confluent, h(Bn) = An. This contradicts
the definition of p and A .

Hence we may assume that there exists an i such that C∩Di 6= ∅ and thus
h(C) = ei. Note that A is contained in the closure L′ of a unique component
L of F \ {e1, . . . , en} with end points ei and ej. Choose r ∈ C ∩ Di and
u ∈ g−1(r) ∩ Ei. Let B be the component of f−1(L′) which contains the
point u. Since f is confluent, f(B) = L′ and, hence, g(B) is a subgraph of
G which meets Di, Dj and r ∈ g(B) ∩ C.

Let Ki,j denote the union of Di, Dj and all components K of G \ (D1 ∪
. . . ∪Dn) such that ∂K ⊂ Di ∪Dj.

Claim 4. The set g(B) is contained in Ki,j.

Indeed, if a component K of G \ (D1 ∪ ... ∪ Dn) meets g(B) at a point
x, then f(g−1(K)) ∩ L 6= ∅. By Claims 1 and 2 the set f(g−1(K)) must
be contained in some set Lk. But Lk ∩ L 6= ∅ only in the case k ∈ {i, j}.
Therefore f(g−1(K)) ⊂ Li ∪ Lj. We also have Bd(K) ∩ Dm = ∅ for each
m different from i and j because otherwise f(g−1(K)) ⊂ Lm (see Claim 1)
and Lm ∩ L = ∅, which is impossible.

Let Ki denote the union of Di and all components K of G\(D1∪ . . .∪Dn)
such that ∂K ⊂ Di. Note that by the definition of h, h(Ki) = ei. Recall
that r ∈ C ∩Di. Let Ki(r) be the component of Ki which contains r. Then
Ki(r) ⊂ Q. Since g(B) meets Dj it follows from Claim 4 that there exists
a component K of G \ (D1 ∪ . . . ∪Dn) such that z ∈ Cl(K) ∩ Ki(r) 6= ∅ 6=
∂K ∩Dj. Hence h(Cl(K)) = Cl(L) and h|Cl(K) is confluent. Let D be the
component of h−1(A) containing the point z, then h(D) = A and, hence,
A ⊂ h(Q). This contradicts the choice of p and A and completes the proof
of the Theorem. ¤
Theorem 3.2. Let K be any class of graphs and X be a compactum. Then
X is confluently K-representable if and only if X is confluently K-like.

Proof. Suppose that K is a class of graphs such that for each ε > 0 there
exists a confluent ε-map from the continuum X onto a member of K. We
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may assume by Theorem 3.1 that there exists a sequence εn → 0, a countable
family of graphs Gn, confluent, onto mappings fn : X → Gn and gn+1

n :
Gn+1 → Gn such that

(1) X ∪ (∪nGn) is a subset of the Hilbert cube Q with metric d,
(2) d(x, fn(x)) < εn for each x ∈ X and each n,
(3) for each k ≤ m ≤ n and each x ∈ X, d(gm

k (fm(x)), gn
k (fn(x))) < ek.

By [14], there exists a continuous and onto mapping f : X → lim←(Gn, gn+1
n )

defined by f(x) = (yk), where each yk = limn→∞ gn
k (fn(x)). It suffices to

show that f is one-to-one. Let πn : lim←(Xn, g
n+1
n ) → Xn denote the natural

projection. Suppose that x, y ∈ X such that d(x, y) > η > 0. Choose n such
that

∑∞
n εi < η/6. Then d(πn(f(x)), πn(f(y))) > d(x, y) − 4

∑∞
n εi > 0.

This completes the proof of the Theorem. ¤
Using a different approach the following result about confluently circle-

like continua was also proved in [3].

Corollary 3.3. A continuum X is confluently circle-like if and only if X is
a solenoid.

The next result answers a question from [3].

Corollary 3.4. A continuum X is confluently arc-like if and only if X is
a Knaster type continuum, i.e. X is homeomorphic to an inverse limit of
arcs with open bonding mappings.

Let LC stand for the class of all locally connected compacta.

Corollary 3.5. An atriodic continuum X is confluently LC-like if and only
if X is either a solenoid, or a Knaster type continuum.

Corollary 3.6. Each confluently tree-like continuum is confluently tree-
representable.

In a recent paper [4] it was proved that confluently tree-representable
continua are absolute retracts for hereditarily unicoherent continua. The
question whether the same is true for confluently tree-like ones was an im-
portant inspiration to the research presented here. The next result answers
this question in the affirmative.

Corollary 3.7. Each confluently tree-like continuum is an absolute retract
for hereditarily unicoherent continua.

It is known that if a dendroid X is an absolute retract for hereditarily
unicoherent continua, then X is a dendroid with the property of Kelley (in
particular, such a dendroid must be smooth). In view of Corollary 3.7, the
following question is of some interest (compare [4]).

Question 3.1. Is every dendroid with the property of Kelley a confluently
tree-like continuum?

Let G be a graph and S be a simplicial complex structure on G. The
0-dimensional elements of such a structure will be denoted by {e1}, ..., {εn}
and points e1, ..., en will also be called vertices of S. Denote by S(G) the
family of all simplicial complex structures S such that each pair of two
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different vertices ei, ej of S can be boundary points of at most one, if any,
1-dimensional element of S. For any S ∈ S(G) and vertex ei of S, let

Li(S) = {ei} ∪
⋃
{Int(F ) : F ∈ S, dim F = 1 and ei ∈ Bd(F )},

and, if F ∈ S with dim F = 1,

LF (S) = Li(S) ∪ Lj(S), where ei, ej are the boundary points of F.

If F = {v} = {ei}, i.e., v = ei is a vertex of S, we also write Li(S) =
Lv(S) = LF (S). Let f : X → G be a mapping, where X is compact. We
say that a family P of sets refines the family Q if for each P ∈ P there exists
Q ∈ Q such that P ⊂ Q. If Q is a family of sets in X and f : X → Y is a
mapping such that the family {f−1(y) : y ∈ Y } refines Q, we say that the
mapping f refines Q. The following observation follows by the compactness
of the domain of the function f .

Observation 3.8. If U is a family of open sets covering a compactum X
and f : X → G is a mapping to a graph G such that f refines U , then there
exists S ∈ S(G) such that the family {f−1(LF (S)) : F ∈ S} refines U .

Lemma 3.9. Let U be an open cover of a locally connected compactum X
and suppose X admits a mapping, that refines U , onto a graph H. Then
there exists a graph G, a structure S ∈ S(G) and a surjective mapping
g : X → G such that the family {g−1(LF (S)) : F ∈ S} refines U and the set
g−1(F ) is connected for each F ∈ S.

Proof. We begin with the following claim.

Claim 1. There exists a graph H, a mapping h : X → H and a structure
S ∈ S(H) such that the family {h−1(LF (S)) : F ∈ S} refines U and h−1(v)
has finitely many components only for each vertex v of S.

Indeed, let h1 : X → H be a mapping onto a graph H that refines
U . By Observation 3.8 there exists a structure S ∈ S(H) such that the
family {h−1

1 (LF (S)) : F ∈ S} refines U . Let ξ be the minimum of the
numbers dX(h−1

1 (ei), h
−1
1 (X \ Li(S)) for all vertices ei of S. Since X is a

locally connected compactum and h−1
1 ({e1, ..., en}) is compact, there exists

a finite collection of continua K1, ..., Km in X such that diam(Kj) < ξ,
h−1

1 ({e1, ..., en}) ∩ Kj 6= ∅ for each j ∈ {1, ..., m}, and h−1
1 ({e1, ..., en}) ⊂

K1 ∪ ... ∪ Km. The condition diam(Kj) < ξ implies that for each j ∈
{1, ...,m} there exists exactly one i ∈ {1, ..., n} such that Kj ∩ h−1

1 (ei) 6= ∅,
and, we have Kj ⊂ h−1

1 (Li(S)) for such i. Define Mi =
⋃{Kj : Kj ∩

h−1
1 (ei) 6= ∅} for i ∈ {1, ..., n}. For any F ∈ S with dim F = 1 and with end

points ei, ej let Pi,j = Mi ∪Mj ∪ h−1
1 (F ) and observe that Pi,j is compact.

Then by the Urysohn lemma there exists a mapping hi,j : Pi,j → F such
that h−1

i,j (ei) = Mi and h−1
i,j (ej) = Mj. For each F ∈ S with dim F =

1 and Bd(F ) = {ei, ej}, and for each x ∈ Mi ∪ Mj ∪ h−1
1 (F ) we define

h(x) = hi,j(x). Observe that h : X → H is a well defined continuous
function. Moreover, the set h−1(ei) = Mi is the finite union of continua,
and, h−1(LF (S)) ⊂ h−1

1 (LF (S)) for 1-dimensional sets F ∈ S. Hence the
family {h−1(LF (S)) : F ∈ S} refines U , which completes the proof of the
claim.
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For any graph H, any structure S ∈ S(H) and any mapping h : X → H
such that the family {h−1(LF (S)) : F ∈ S} refines U let k(h, S) be the
difference between the number of components of h−1({e1, ..., en}) and the
number of nonempty sets h−1({ei}). Fix a graph G1, a structure S1 ∈ S(G1)
with vertices e1, ..., en, and a mapping g1 : X → G1 such that the family
{g−1

1 (LF (S1)) : F ∈ S1} refines U and the number k(g1, S1) is minimal. By
Claim 1, k(g1, S1) is finite.

Claim 2. For every i ∈ {1, ..., n} each two different components of g−1
1 (ei)

are subsets of two different components of g−1
1 (Li(S1)).

Suppose, on the contrary, that two different components of g−1
1 (ei) are

contained in the same component of g−1
1 (Li(S1)). Since components of

open subsets of locally connected compacta are arcwise connected and
g−1
1 (Li(S1)) is open in X, there exists an arc ab in g−1

1 (Li(S1)) joining two
different components A and B of g−1

1 (ei) such that ab ∩ g−1
1 (ei) = {a, b},

a ∈ A, and b ∈ B. Let K1, ..., Km be all components of g−1
1 ({e1, ..., en}) with

Km−1 = A and Km = B. Define K ′
m−1 = A ∪ ab ∪ B. Using the continua

K1, ...Km−2, K
′
m−1 we modify the mapping g1 to a mapping g′1 : X → G1

(in the same way as the mapping h1 was modified to the mapping h in the
proof of Claim 1) so that the family {(g′1)−1(LF (S1)) : F ∈ S1} refines U
and K1, ...Km−2, K

′
m−1 are all components of (g′1)

−1({e1, ..., n}). Thus we
have k(g′1, S1) < k(g1, S1). So k(g1, S1) is not minimal, a contradiction.

Now we will prove that k(g1, S1) = 0. Suppose, on the contrary, that
k(g1, S1) > 0. Thus the set g−1

1 (ei) is not connected for some i. Without
loss of generality we can assume that g−1

1 (en) is not connected. Let D be a
component of g−1

1 (en) and W be the component of g−1
1 (Ln(S1)) that contains

D. Using Claim 2 we see that other components of g−1
1 (en) are contained

in components of g−1
1 (Ln(S1)) different from W .

Let G′
1 be a homeomorphic copy of G1 disjoint with G1, and f : G1 → G′

1

be a homeomorphism. For each x ∈ X \W we identify the pair x and f(x)
in the disjoint union G1∪G′

1. Let q : G1∪G′
1 → q(G1∪G′

1) be the quotient
map of this identification. Put G2 = q(G1 ∪ G′

1) and en+1 = (f ◦ q)(en).
We will identify the graph G1 with q(G1) by the homeomorphism q|G1. So
G1 ⊂ G2. Let S2 ∈ S(G2) be the simplicial complex structure on G2 in-
troduced by vertices e1, ..., en, en+1. Define g2(x) = g1(x) for x ∈ X \ W ,
and g2(x) = (g1 ◦ q ◦ f)(x) for x ∈ W . Observe that g2 : X → G2 is a
well defined, continuous mapping. Moreover, g−1

2 (Li(S2)) ⊂ g−1
1 (Li(S1)) for

i ∈ {1, ..., n} and g−1
2 (Ln+1(S2)) ⊂ g−1

1 (Ln(S1)). This implies that the fam-
ily {g−1

2 (LF (S2)) : F ∈ S2} refines U . Note that the sets g−1
1 ({e1, ..., en})

and g−1
2 ({e1, ..., en, en+1}) are identical while the number of nonempty sets

g−1
2 (ei) (for i ∈ {e1, ..., en, en+1}) is greater, by 1, than the number of

nonempty sets g−1
1 (ei) (for i ∈ {1, ..., n}). So k(g2, S2) < k(g1, S1), and

thus k(g1, S1) is not minimal, a contradiction.

We have proved that k(g1, S1) = 0. Thus g−1
1 (ei) is connected for each

i ∈ {1, ..., n}. Now we are ready to define the required mapping g. Let
x ∈ g−1

1 ({e1, ..., en}). Then we put g(x) = g1(x). Let P be a component
of G1 \ {e1, ..., en} with the boundary points ei, ej, and let x belong to a
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component Q of g−1
1 (P ). If Bd(Q) ∩ g−1

1 (ei) 6= ∅ 6= Bd(Q) ∩ g−1
1 (ej), we

put g(x) = g1(x). If Bd(Q) meets g−1
1 (ei) only, we put g(x) = ei, and, if

Bd(Q) meets g−1
1 (ej) only, we put g(x) = ej. Since X is locally connected,

then g is a well defined continuous mapping into G1. Define G = g(X)
and let S ∈ S(G) be the simplicity complex structure on G introduced by
the set of vertices E = {e1, ..., en} ∩ G. Then for each ei ∈ E we have
g−1(Li(S)) ⊂ g−1

1 (Li(S1)), and thus the family {g−1(LF (S)) : F ∈ S}
refines U . By the construction the set g−1(ei) is connected for every ei ∈ E.
If F ∈ S, dim F = 1 and ei, ej are the boundary points of F , then every
component Q of g−1(F \{ei, ej}) satisfies g(Q) = F \{ei, ej}. Employing this
last observation and the fact that the sets g−1(ei), g−1(ej) are connected,
we conclude that g−1(F ) is connected too. The proof is complete. ¤
Theorem 3.10. Let U be an open cover of a locally connected continuum X
and suppose X admits a mapping, that refines U , onto a graph. Then there
exists a graph G, a structure S ∈ S(G) and a confluent mapping g : X → G
such that the family {g−1(LF (S)) : F ∈ S} refines U and the set g−1(F ) is
a locally connected, connected continuum for each F ∈ S.

Proof. First, let g′ : X → G be a mapping guaranteed by Lemma 3.9 with a
structure S ∈ S(G) and vertices {e1, ..., en}. Then the sets Di = (g′)−1(ei)
for i ∈ {1, ..., n} are continua. Since X is locally connected, then, similarly
as in the proof of Theorem 2.12, part 1, we can slightly enlarge continua
Di to some locally connected, mutually disjoint continua Vi containing Di,
correspondingly. Let F ∈ S, dim F = 1 and ei, ej be the end points of
F . Then the continuum DF = (g′)−1(F ) ∪ Vi ∪ Vj is the union of the open
subset (g′)−1(F \ {ei, ej}) of X and the locally connected one Vi ∪ Vj. So
DF is locally connected in view of Lemma 2.10. Using Theorem 2.12, parts
1 and 2 including, there exists a confluent mapping gF : DF → F such
that Vi ⊂ g−1

F (ei), Vj ⊂ g−1
F (ej) and the sets g−1

F (ei), g−1
F (ei) are locally

connected continua in X. Define g : X → G as the combination of mappings
gF for all 1-dimensional F ∈ S, i.e. g(x) = gF (x) for x ∈ F , and observe
that g is a well defined, continuous, surjective mapping. Note that the set
g−1(ei) =

⋃{g−1
F (ei) : F ∈ S, dim F = 1, ei ∈ F} is a finite union of locally

connected continua with nonempty intersection. Thus g−1(ei) is a locally
connected continuum for each i. Moreover, for each F ∈ S with dim F = 1
and end points ei, ej the continuum g−1(F ) = DF∪g−1(ei)∪g−1(ej) is a finite
union of locally connected continua. Thus g−1(F ) is a locally connected
continuum. For each ei we have g−1(Li(S)) ⊂ (g′)−1(Li(S)). Therefore the
family {g−1(LF (S)) : F ∈ S} refines U . Hence g is a mapping as desired. ¤
Corollary 3.11. A continuum X is a locally connected curve if and only
if it admits, for every ε > 0, a confluent mapping g : X → G onto a graph
G with a structure S ∈ S(G) such that for each F ∈ S the set g−1(F ) is a
locally connected continuum of diameter less than ε.

Let X be a compactum, W and U = (U1, ..., Un) be open covers of X.
Define ord(U) as the maximal number of Ui’s with nonvoid intersection.
Consider the following conditions:

(i) ord(U) = 2.
(ii) Cl(Ui) ∩ Cl(Uj) 6= ∅ if and only if Ui ∩ Uj 6= ∅.
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(iii) The cover (Cl(U1), ..., Cl(Un)) refines the cover W .
(iv) Bd(Ui) ∩ Bd(Uj) = ∅ for all i, j ∈ {1, ..., n} with i 6= j.

It is known that for any 1-dimensional compactum X and any open cover
W of X there exists a cover U = (U1, ..., Un) that satisfies conditions (i)-(iv)
[8]. The following lemma is easy to see.

Lemma 3.12. Let X be a compactum and U = (U1, ..., Un) be an open cover
of X that satisfies conditions (i), (ii) and (iv). Then for sufficiently small
positive number δ and for any δ-mapping f : X → Y onto some compactum
Y the family V = (V1, ..., Vn), where Vi = {y ∈ Y : f−1(y) ⊂ Ui} for
i ∈ {1, ..., n}, is an open cover of Y that satisfies (i) and (ii).

Let X be a compactum with an open cover U = (U1, ..., Un) that satisfies
conditions (i), (ii) and, G be a graph with a structure S ∈ S(G) having
vertices e1, ..., en such that there is 1-dimensional element Li,j ∈ S with end
points ei, ej if and only if Ui ∩ Uj 6= ∅. Let Di,j = (Ui ∪ Uj) \

⋃{Uk : j 6=
k 6= i, k ∈ {1, ..., n}} be defined for all pairs i, j with Ui∩Uj 6= ∅. For every
such a pair i, j, according to the Urysohn lemma, there exists a mapping
gi,j : Di,j → Li,j such that g−1

i,j (ei) = Ui \
⋃{Uk : k 6= i, k ∈ {1, ..., n}},

g−1
i,j (ej) = Uj \

⋃{Uk : k 6= j, k ∈ {1, ..., n}}. If some set Ul does not
intersect other elements of U we let gl(Ul) = {el}. Define g : X → G as the
combination of all mappings gi,j and gl. Then g is a well defined continuous
mapping. Observe that g refines U . We call the pair (G,S) the nerve of the
cover U and g a natural map of X into the nerve of (G,S) (compare [8]).

Theorem 3.13. Every confluently LC-like compactum X with dim X ≤ 1
is confluently graph-like.

Proof. Fix an ε > 0 and let U = (U1, ..., Un) be an open cover of X such
that diam(Ui) < ε for i ∈ {1, ..., n} and the conditions (i), (ii) and (iv) are
satisfied. Let δ be a positive number guaranteed by Lemma 3.12 for the
cover U . By the assumption there exists a confluent δ-mapping f : X → Y
onto a locally connected compactum Y . Then the family V = (V1, ..., Vn),
where Vi = {y ∈ Y : f−1(y) ⊂ Ui}, is an open cover of Y such that (i)
and (ii) are satisfied for V . Let (G1, S1) be the nerve of the cover V and
g1 : Y → G1 be a natural map into the nerve of (G1, S1). Then g1 refines V .
By Theorem 3.10 there exists a confluent mapping g : Y → G onto a graph
G with a structure S ∈ S(G) such that the family {g−1(LF (S)) : F ∈ S}
refines V . In particular, g refines V . Define h = g◦f : X → G and note that
h is a confluent mapping. Since the family {f−1(V1), ..., f

−1(Vn)} refines U ,
we observe that the composition mapping h refines U , i.e. for each z ∈ G
we have h−1(z) ⊂ Ui for some i ∈ {1, ..., n}. We also have diam(Ui) < ε.
Hence h : X → G is a confluent ε-mapping onto a graph G. The proof is
complete. ¤

The following corollary is a consequence of Theorems 3.2 and 3.13, and
this is one of the main results of the paper.

Corollary 3.14. For each continuum X the following three conditions are
equivalent:

(1) X is confluently graph-representable;
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(2) X is confluently graph-like;
(3) X is confluently LC-like and dim X ≤ 1.

Corollary 3.15. Each locally connected curve is confluently graph-like, and
consequently, it is confluently graph-representable.

We end the paper with the two following questions. The first one is related
to the study of absolute retracts for hereditarily unicoherent continua and
for tree-like continua (compare questions of [4]).

Question 3.2. Let X be an absolute retract for the class of hereditarily
unicoherent continua (of tree-like continua). Must X be confluently tree-
like?

The second question relates this study to the one of homogeneous curves.
All known homogeneous curves that contain arcs are confluently graph-
like, so the following question naturally appears (compare a discussion of
classifying homogeneous curves in [19]).

Question 3.3. Let X be a homogeneous curve that contains an arc. Must
X be confluently graph-like?
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