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Abstract. Let (M, d) be a complete topological 2-manifold, possibly with boundary, with a
geodesic metric d. Let X ⊂ M be a compact set. We show that then for all but countably many
ε each component of the set S(X, ε) of points ε-distant from X is either a point, a simple closed
curve disjoint from ∂M or an arc A such that A ∩ ∂M consists of both endpoints of A, and arcs
and simple closed curves are dense in S(X, ε). In particular, if the boundary ∂M of M is empty
then each component of the set S(X, ε) is either a point or a simple closed curve, and the simple
closed curves are dense in S(X, ε).

1. Introduction

The boundary of a Euclidean ball on the plane (or, equivalently, the set S(x, ε) of points ε-distant
from a given point x) is a simple closed curve. If instead of a point x we consider a compact set
X ⊂ R2 then the same claim about the set S(X, ε) of all points ε-distant from X is not true. Thus,
it is natural to ask what are the topological types of the sets S(X, ε) and whether, apart from a
small set of distances ε, the set S(X, ε) can be guaranteed to be a “topologically simple” set.

A strong result in this direction is due to M. Brown who showed in [4] that given a compact subset
X of the plane, for all but countably many ε > 0 the set S(X, ε) is the union of pairwise disjoint
points, arcs, and simple closed curves (see also [1] for related results). In this paper we generalize the
results of [4] in two directions. Instead of the plane with Euclidean metric we consider 2-manifolds
(not necessarily compact, with or without boundary) with metrics that make them proper geodesic
metric spaces (see definitions below). Also, we improve the conclusions of the main theorem of [4].
Our main result is Theorem 1.1.

In what follows we slightly abuse terminology and call singletons (sets with one element) points.
We will also speak of point-components and arc-components of a set meaning components that are
points and arcs respectively. By “countable” we mean “of cardinality ℵ0 or less”, so finite sets are
also countable.

Theorem 1.1. Let a 2-manifold M with metric d be a proper geodesic metric space. Let X ⊂ M
be compact. Then for all but countably many ε > 0 each component of S(X, ε) is either a point, a
simple closed curve disjoint from the boundary ∂M of M or an arc A such that A ∩ ∂M consists of
both endpoints of A, and the union of arcs and simple closed curves is dense in S(X, ε).

Clearly, this theorem implies the following corollary.

Corollary 1.2. Let a 2-manifold M without boundary with metric d be a proper geodesic metric
space. Let X ⊂ M be compact. Then for all but countably many ε > 0 each component of S(X, ε) is
either a point or a simple closed curve, and the union of simple closed curves is dense in S(X, ε).

Additional properties of the set S(X, ε) can be found in Section 5. We also prove in Theorem 2.2
that S(ε) is finitely Suslinian for any ε (planar finitely Suslinian sets are studied, e.g., in [2]). An
example in Section 6 shows that the assumption that the metric is geodesic cannot be dropped.

Let us fix the terminology. We use some standard notions, e.g. arc, (2-)manifold (with or without
boundary) and the boundary of a (2-)manifold. Note that if M is a 2-manifold with boundary then
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∂M is a 1-manifold without boundary. Let (Y, d) be a metric space such that for every pair of
points x, y there exists an arc I[x, y] with endpoints x, y which is an isometric image of the interval
[0, d(x, y)] under a map ψ : [0, d(x, y)] → Y with ψ(0) = x and ψ(d(x, y)) = y. Then the metric d
is called a geodesic metric, (Y, d) is called a geodesic space, and each arc I[x, y] is called a geodesic
segment between x and y. There are lots of examples of geodesic 2-manifolds: smooth 2-manifolds
without boundary with Riemannian metrics (if one adds a boundary, the distance between two
points can be defined as the length of the shortest curve joining them), the plane with any norm
and its convex closed subsets with nonempty interior, etc. (see [3]). By the Hopf-Rinow Theorem
(see, e.g., [3]), a locally compact geodesic space is proper (that is, every closed ball is compact) if
and only if it is complete. From now on we assume that Y = M is a 2-manifold and fix a metric
d on M which is compatible with the standard topology on M and makes (M,d) a proper geodesic
space.

In what follows all standard notions (a circle, a ball, etc.) are understood in the sense of the
metric d. Denote by B(x, ε) the ball of radius ε centered at x. Then ∂B(x, ε) coincides with the
set S(x, ε) = {z ∈ M : d(z, x) = ε}. Let X be a compact subset of M ; from now on we fix the
set X and often omit referring to X (thus, we use notation S(ε) rather than S(X, ε), etc.). Let
d(x) = inf{d(x, y) : y ∈ X}, i.e., d(x) is the distance from a point x to the set X. Since X is
compact, there exists a point z ∈ X with d(x) = d(x, z) and hence there exists a geodesic segment
I[x, z]. Any such segment will be called an x-twig and will be denoted I[x]. A twig I[x] is disjoint
from S(d(x)) except for its endpoint x; this is widely used in the sequel.

Suppose that I ⊂ M is an arc in M such that no point of I, except perhaps endpoints, belong
to ∂M . Then if none of the endpoints of I is in ∂M (that is, the whole arc is disjoint from ∂M),
we will call I loose. If one endpoint is in ∂M and the other is not there, we will call I semi-loose.
If both endpoints are in ∂M , we will call I fastened. Thus, the arcs mentioned in Theorem 1.1 are
fastened arcs.

2. Only points, arcs and simple closed curves

In this section we extend Brown’s results [4] to the situation described above. For given two
disjoint closed sets A, B ⊂ M , a continuum C is said to be irreducible between A and B if C
intersects both A and B and does not contain a subcontinuum with the same property. Given a
continuum D intersecting A and B, one can use Zorn’s Lemma to find a subcontinuum C ⊂ D
irreducible between A and B.

Lemma 2.1. Let K be an irreducible continuum between ∂U and ∂V where U, V are open sets with
disjoint closures. Then K is disjoint from both U and V .

Proof. Set K ′ = K \ V . Take a component Y of K ′ containing a point from ∂U . By the Boundary
Bumping Theorem (Theorem 5.4 from [7, Chapter V, p. 73]) Y intersects ∂V . Since K is irreducible,
Y = K and hence K is disjoint from V . Similarly, K is disjoint from U . ¤

Below convergence of continua is understood in the Hausdorff sense. A compactum Z is said to
be finitely Suslinian if for each ε > 0, each collection of pairwise disjoint subcontinua of diameter
larger than ε is finite. It is known that each finitely Suslinian continuum is locally connected and
arcwise connected [7].

Theorem 2.2. The set S(ε) is finitely Suslinian.

Proof. By the assumptions, S(ε) is compact. Suppose it is not finitely Suslinian. Then there exists a
sequence of pairwise disjoint continua Ki ⊂ S(ε) with diameters bounded away from zero. We may
assume that they converge to a continuum K ⊂ S(ε). Then K is disjoint from X. By taking a smaller
subcontinuum, we may assume that there exists a neighborhood W of K such that W ∩X = ∅ and
W is homeomorphic to a closed disk. Choose points x 6= y ∈ K and set ρ = d(x, y). Choose small
connected neighborhoods U ⊂ W of x and V ⊂ W of y so that U and V are both homeomorphic
to a closed disk, and U ⊂ B(x, ρ/8) and V ⊂ B(y, ρ/8) (see Figure 1). Any continuum Ki with big
enough i intersects both ∂U and ∂V . For every i choose a continuum K ′

i ⊂ Ki irreducible between
∂U and ∂V . We may assume that K ′

i’s converge to a continuum K ′ ⊂ K. By Lemma 2.1 all sets
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Figure 1. Construction from the proof of Theorem 2.2

K ′
i and hence the set K ′ are disjoint from U ∪ V , and we may assume that they are all contained in

W .
For points t ∈ ∂U ∩ K ′ we have d(x, t) ≤ ρ/8 while for points t ∈ ∂V ∩ K ′ by the triangle

inequality we have d(x, t) ≥ 7ρ/8. Hence there is a point z ∈ K ′ with d(z, x) ≥ ρ/2, d(z, y) ≥ ρ/2.
Since K ′

i converge to K ′ then there exists a sequence of points zi ∈ K ′
i, zi → z. We may assume that

d(zi, z) < ρ/8 for all i. For each zi there exists a zi-twig Ii = I[zi, xi] with xi ∈ X and d(zi, xi) = ε.
Then Ii \ {zi} is disjoint from S(ε) and hence from all the sets K ′

i and the set K ′. We show that for
metric reasons Ii \ {zi} is disjoint from U or V while for topological reasons it is trapped between
various sets K ′

r. Since to reach out to X the twig Ii has to exit W , this leads to a contradiction.
To implement this plan let us first show that Ii is disjoint from both U and V . Suppose otherwise

and choose, say, t ∈ Ii ∩ V . Since d(z, y) ≥ ρ/2, d(zi, z) < ρ/8 and d(t, y) ≤ ρ/8 then by the
triangle inequality d(zi, t) ≥ ρ/2 − ρ/8 − ρ/8 = ρ/4. Thus, d(t, xi) ≤ ε − ρ/4. On the other hand,
d(t, y) ≤ ρ/8 and hence d(y, xi) ≤ ε− ρ/4 + ρ/8 = ε− ρ/8, a contradiction with y ∈ S(ε).

To implement the second part note that if we collapse U and V to two points and use Kuratowski’s
“θ-curve theorem” (Theorem 2 from [5, vol. 2, Chapter 10, §61, II, p. 511]), we can find three distinct
continua K ′

l ,K
′
m and K ′

n such that the continuum Z = K ′
l∪K ′

n∪U∪V separates zm ∈ K ′
m from ∂W .

Since by the above argument Ii is disjoint from Z, Ii ⊂ W , a contradiction since W ∩X = ∅. ¤

Since by [6] there are only countably many pairwise disjoint triods in the plane, then for all but
countably many values of ε the set S(ε) contains no triods (this argument is similar to [4]). A
component of a finitely Suslinian compactum is a locally connected, and hence arcwise connected,
continuum, therefore every component of S(ε) is either a point, an arc, or a simple closed curve:

Theorem 2.3. For all but countably many ε > 0 each component of S(ε) is a point, an arc, or a
simple closed curve.

Denote by T1 ⊂ R+ = (0,∞) the set of all parameters ε which satisfy the conditions of Theo-
rem 2.3. By this theorem, the set R+ \ T1 is countable.

3. How components intersect the boundary

In this short section we make the first improvement to Theorem 2.3. It applies only to manifolds
with boundary and has no effect if there is no boundary. By an interior point of an arc A we mean
a point x ∈ A which is not an endpoint of A.

Lemma 3.1. Any family of pairwise disjoint arcs in M , each of whom has an interior point in ∂M ,
is countable.

Proof. Consider the space L in the product M×[0, 1), which is the union of M×{0} and ∂M×[0, 1).
It is a 2-manifold without boundary. If I is an arc in M whose interior point x belongs to ∂M then
the union of I and {x} × [0, 1/2] is a triod in L, and for disjoint arcs I, J those triods are disjoint.
Therefore there can be only countably many such pairwise disjoint arcs. ¤
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Since components of S(ε1) and S(ε2) for ε1 6= ε2 are disjoint, we get the following theorem as a
corollary to this lemma.

Theorem 3.2. For all but countably many ε > 0 each arc-component of S(ε) has no interior point
in ∂M and each component of S(ε) which is a closed curve is disjoint from ∂M .

Let T2 be the set of all ε ∈ T1 which satisfy the conditions of Theorem 3.2. Consider in the
future only ε ∈ T2 (thus, all arc-components of S(ε) will be loose, semi-loose or fastened). Then by
Theorem 3.2 the set R+ \ T2 is countable.

4. Two sides of a local arc

In this section we consider local properties of the function d near components of S(ε) which
are not point-components. Together with components of S(ε) we will consider components of its
complement and sometimes components of other sets. To minimize confusion, we will think of M
with S(ε) as a map (in a geographical sense) that we try to color with two colors. Thus, we will
refer to the components of M \ S(ε) as countries. A country will be called white if its intersection
with X is non-empty and black otherwise.

Lemma 4.1. On each country the sign of the function d(·) − ε is constant. It is positive on black
countries and negative on white ones.

Proof. The function d(·)− ε on a country is a non-zero continuous function on a connected set, and
therefore its sign is constant. If this sign is negative, then each point of the country has a twig
contained in the country, so there are points of X there. Therefore the country is white. If the
sign is positive, then there cannot be points of X there, because for them d is zero. Therefore the
country is black. ¤

Now we prove an important technical lemma. By an open Jordan disk we mean a set U homeo-
morphic to the open unit disk, whose boundary is homeomorphic to the circle. Denote the diameter
of a set E by diam(E). Also, let K(M) be the space of all compact subsets of M with the Hausdorff
metric. Then K(M) has a countable base. Let A be the subspace of K(M) consisting of compo-
nents of all sets S(ξ), ξ > 0; then A has a countable base too. The function ψ : A → R+, given by
ψ(Z) = ξ if Z is a component of S(ξ), is continuous.

Lemma 4.2. Let C ⊂ M be a simple closed curve, bounding an open Jordan disk U disjoint from
X. Let B be a component of S(ε) and A be a component of B ∩ U such that A is an arc.

(1) Suppose that at least one endpoint of A belongs to C and Q is a component of U \A.
(a) Assume that there is a country W and sequences xn ∈ W ∩Q and yn ∈ Q \ S(ε), n =

1, 2, . . . , converging to x ∈ A and y ∈ A respectively (we do not exclude x = y). Then
for all sufficiently large n the points yn belong either to W or to countries contained in
Q and bounded by simple closed curves.

(b) There is only one country W such that the closure of W ∩Q intersects A.
(2) Suppose that both endpoints of A belong to C. Let Q, R be the components of U \A, and let

W,V be white countries such that W ∩Q, V ∩R intersect A. Then ψ attains a strict local
maximum at B.

Proof. (1) It follows from the assumptions that Q is homeomorphic to an open disk.
(a) If yn /∈ W , the set S(ε) ∩ Q separates xn from yn in Q. By a theorem of Kuratowski ([5,

Theorem 1, p. 438]), there is a component Zn of S(ε) ∩ Q separating xn from yn in Q. If Zn

is a simple closed curve, then it bounds an open disk V . Since U ∩ X = ∅, there are no points
of S(ε) in V (otherwise their twigs would lead to points of X in V ), so V is a country. If Zn is
not a simple closed curve, then it is an arc with both endpoints in C (see Figure 2). Since Zn

separates xn (or yn) from A then for a large n the geodesic segment I[xn, x] (or I[yn, y]) intersects
Zn at a point zn, and d(zn, x) < d(xn, x) (or d(zn, y) < d(yn, y)). Since xn → x (yn → y)
then diam(Zn) > min{d(x, ∂U), d(y, ∂U)}/2 for a large n. Thus, if there are infinitely many n’s
such that yn does not belong to W or to a country contained in Q and bounded by a simple
closed curve, then there are infinitely many distinct (and therefore pairwise disjoint) sets Zn with
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Figure 2. Construction from the proof of Lemma 4.2 (1)

diam(Zn) > min{d(x, ∂U), d(y, ∂U)}/2, a contradiction, since S(ε) is finitely Suslinian. This proves
(a).

(b) Clearly, there is a country W such that the closure of W ∩Q intersects A. If there is another
such country V , then by (a) it must be contained in Q and bounded by a simple closed curve.
However, then V cannot intersect A, a contradiction.

(2) Suppose that ψ does not attain a strict local maximum at B. Then there is a sequence Yn,
n = 1, 2 . . . , of components of S(ξn) respectively, convergent in the Hausdorff metric to B and such
that ξn ≥ ε for each n. Since S(ε) is finitely Suslinian, only finitely many ξn can be equal to ε, so we
can assume that ξn > ε for all n. We can choose a sequence of points yn ∈ Yn convergent to some
y ∈ A and we can assume that all yn belong to Q. Since W is white, by Lemma 4.1 those points do
not belong to W . Since W ∩Q intersects A, there exists a sequence of points xn ∈ W ∩Q convergent
to some x ∈ A. Therefore, by (1a), for sufficiently large n the point yn belongs to a country Wn

contained in Q and bounded by a simple closed curve. Then Yn ⊂ Wn, which contradicts the
assumption that Yn converge in the Hausdorff metric to B. This completes the proof. ¤

Remark 4.3. In the setup of Lemma 4.2 (2) W and V cannot be both black because the twigs of
the points of A cannot pass through a black country.

Now we can eliminate loose ends.

Lemma 4.4. Let B be a loose or semi-loose arc-component of S(ε). Then ψ attains a strict local
maximum at B.

Proof. Let z be an endpoint of B not contained in ∂M . There exists a neighborhood U ′ of z, which
is an open Jordan disk disjoint from X, bounded by a simple closed curve C ′ and such that the
closure of the component A of B ∩ U ′ containing z is an arc with one of its endpoints in C ′. Then
Q′ = U ′ \A is connected. Therefore by Lemma 4.2 (1b) there is a unique country W ′ such that the
closure of W ′ ∩Q′ intersects A. Hence, the twigs of points of A (except their endpoints from A) are
contained in W ′, so W ′ is white.

Take a point t ∈ A different than z. Then we can find a neighborhood U of t as in Lemma 4.2 (2)
and contained in U ′. Then both countries W,V from Lemma 4.2 (2) are equal to W ′ (so they are
white), and hence by that lemma ψ attains a strict local maximum at B. ¤

Since the space A is separable, the set of points at which ψ attains a strict local maximum
is countable. Therefore the set of values ε at such points is countable. Denote by T3 the set of
all parameters ε ∈ T2 which are not strict local maximum values of ψ. Then the set R+ \ T3 is
countable. From now on, we will consider only ε ∈ T3. Thus, all arc-components of S(ε) will
be fastened. Moreover, in the situation described in Lemma 4.2 (2), W,V cannot be both white.
They also cannot be both black by Remark 4.3. Now we make the last step towards the proof of
Theorem 1.1.

Lemma 4.5. Assume that a point-component x of S(ε) does not belong to the closure of Sep(ε).
Then d attains a local maximum at x.
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Proof. Suppose that d does not attain a local maximum at x. Then there is a sequence of points
xn → x such that d(xn) > ε. By Lemma 4.1, each xn belongs to a black component of M \ S(ε).
Therefore a geodesic segment joining x with xn intersects the boundary of this component, so it
intersects Sep(ε). The points of intersection converge to x as n →∞. ¤

Since the space M is separable, the set of values of ε at which d attains a local maximum is
countable. Denote by T4 the set of all parameters ε ∈ T3 which are not local maximum values of d.
Then the set R+ \ T4 is countable and the proof of Theorem 1.1 is complete.

5. Map coloring

In this section we obtain additional information about the way that S(ε) (for ε ∈ T4) divides M .
We already know by Lemma 4.2 and Remark 4.3 that if two countries share a piece of border, they
are of opposite colors. However, our map may have infinitely many countries, which does not allow
us to get a clear picture.

Call a component Z of S(ε) which is not a point bounding or non-bounding, according to whether
(together with a piece of ∂M if Z is an arc) it bounds a Jordan disk or not. If M is not homeomorphic
to the 2-sphere or the closed unit disk, for each bounding component Z of S(ε) there is a unique
disk D(Z) bounded by it. If M is homeomorphic to the 2-sphere, we fix such a homeomorphism.
If Z is contained is a hemisphere, we take as D(Z) the disk contained in this hemisphere. For the
remaining finitely many bounding components Z, we choose a point p /∈ S(ε) and denote by D(Z)
the disk bounded by Z such that p /∈ D(Z). If M is homeomorphic to the closed unit disk, the
problem occurs only if Z is a fastened arc. Then we make a similar construction as for the 2-sphere.
In the disk model, we choose the component that is contained in a half-disk, and for the remaining
finitely many fastened arcs we fix a point p /∈ S(ε) and choose as D(Z) the disk bounded by Z and
a part of the boundary of the disk that does not contain p. Call a bounding component special if
D(Z) ∩X 6= ∅ and general otherwise.

Lemma 5.1. There are only finitely many non-bounding and special bounding components of S(ε).

Proof. Since the set S(ε) is compact, it can be covered by finitely many open sets homeomorphic to
a disk or a half-disk. This cover has a Lebesgue number. Therefore there exists δ > 0 such that any
component of S(ε) of diameter less than δ is bounding. Since S(ε) is finitely Suslinian, it follows
that there are only finitely many non-bounding components of S(ε).

It is easy to see that if we take a sufficiently small η > 0, then for any bounding component Z of
diameter less than η the diameter of D(Z) is smaller than ε. If Z is special, then diam(D(Z)) ≥ ε,
so diam(Z) ≥ η. Therefore there are only finitely many special bounding components. ¤

Consider non-bounding and special bounding components of S(ε); this gives us a new map with
finitely many countries. Since for a general bounding component Z the set D(Z) contains no points
of S(ε) (otherwise twigs of those points would lead to points of X in D(Z)), such D(Z) is a black
country. We will call such a country a black dot.

Theorem 5.2. Consider the map M on M given by the non-bounding and special bounding com-
ponents of S(ε) as boundaries. It can be colored by two colors in such a way that no two countries
with the same color are neighbors.

Proof. By Lemma 4.2 and Remark 4.3, across the border of a black dot there is a white country.
Thus, if we repaint each black dot (together with its boundary) white, we will diminish the number
of countries, but each new country will have a unique color and the property that two countries with
a common piece of border have opposite colors will be preserved. The map we get in this way is
M. ¤

It is clear that the countries that are non-compact are black. Therefore from Theorem 5.2 we
immediately get the following corollary.

Corollary 5.3. For every component of ∂M the number of endpoints of non-bounding fastened arcs
belonging to this component is even.
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6. Example

In this section we show that our main theorem (and the corollary to it) may not hold if we drop
the assumption that the metric is geodesic.

We need a real function with some special properties. While any function with a fractal graph
should have those properties, we define one for which the proof is especially simple.

Lemma 6.1. There exists a continuous function f : [0, 1] → [0, 1] and an uncountable set C ⊂
[0, 1] such that for every x ∈ C there is an uncountable set E(x) ⊂ f−1(x) such that for every
y ∈ E(x) and every δ > 0 there exist points y−, y+ ∈ [0, 1] with y − δ < y− < y < y+ < y + δ and
f(y−), f(y+) > f(y) = x.

Proof. Let K be the standard middle-thirds Cantor set. In other words, K consists of points that
have ternary expansion 0.x1x2x3x4 . . . with xi ∈ {0, 2} for all i. For such x define f(x) as the
number with ternary expansion 0.x2x4x6x8 . . . . Clearly, this function is continuous and therefore
can be extended to a continuous function f : [0, 1] → [0, 1], for instance linearly on each gap in
K (see Figure 3). Let C be the set of points of K which are not endpoints of the gaps in K, so
in their ternary expansions both 0 and 2 appear infinitely many times. The set C is uncountable.
Fix x ∈ C with the ternary expansion 0.x1x2x3x4 . . . . Let C(x) be the set of all numbers with
the ternary expansion 0.y1x1y2x2 . . . , where yi ∈ {0, 2} for all i and both 0 and 2 appear infinitely
many times among yi. Clearly, C(x) ⊂ f−1(x). For a given y ∈ C(x) (with the ternary expansion
0.y1x1y2x2 . . . ) and δ > 0, in order to get y− (respectively y+) with the properties described in the
statement of the lemma, find a sufficiently large n such that yn = 2 (respectively yn = 0) and m > n
such that xm = 0 and replace yn by 0 (respectively by 2) and xm by 2 in the ternary expansion of
y. ¤

Now set G = {(x, f(x)) : x ∈ [0, 1]} and define the curve L in R2:

L = G ∪ {(x, 1) : x ∈ [1,∞)} ∪ {(0, y) : y ∈ [−1, 0]} ∪ {(x,−1) : x ∈ [0,∞)}
(see Figure 3). Then the set M = L× R ⊂ R3 is homeomorphic to the plane R2. We use in R3 the
max norm and the metric d induced by it, so

d((x, y, z), (x′, y′, z′)) = max(|x− x′|, |y − y′|, |z − z′|).
With this metric restricted to M (we will denote it also d), M is a complete 2-manifold without
boundary. However, d is not a geodesic metric on M (although it is on R3).

Let us set X = {(1/2,−1, 0)} (the point (1/2,−1) is marked in Figure 3). Then the set S(ε) will
be the intersection of M with the sphere centered at (1/2,−1, 0) of radius ε in (R3, d). This sphere
is geometrically the cube centered at (1/2,−1, 0) with edges parallel to the coordinate axes and of
length 2ε. To visualize the whole picture, imagine the x-axis being horizontal and pointing to the
right, the y-axis vertical pointing up, and the z-axis horizontal pointing towards the visualizer.
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Lemma 6.2. For every c ∈ C and b ∈ E(c) the segment

A(c, b) = {(x, y, z) : x = b, y = c, z ∈ [−1− c, 1 + c]}
is a component of S(1 + c).

Proof. Fix c ∈ C and b ∈ E(c) and denote A = A(c, b). Clearly, A ⊂ S(1 + c). By Lemma 6.1, for
every δ > 0 there exist points b−, b+ ∈ [0, 1] with b − δ < b− < b < b+ < b + δ and f(b−), f(b+) >
f(b) = c. Let c′ = min(f(b−), f(b+)) and set

a− = sup{x < b : f(b) = c′}, a+ = inf{x > b : f(b) = c′}.
Then b− δ < a− < b < a+ < b + δ, f(a−) = f(a+) = c′ > f(b) and f(x) < c′ for every x ∈ (a−, a+).
The two segments

{(x, y, z) : x = a±, y = c′, z ∈ [−1− c′, 1 + c′]}
are contained in S(1 + c′), and so are the two arcs

{(x, y, z) : x ∈ [a−, a+], y = f(x), z = ±(1 + c′)}.
Their union is a simple closed curve whose projection to the xz-plane (the horizontal one) is the
boundary of the rectangle R(δ) with the vertices at the points (a±,±(1 + c′)). The projection π(A)
of A is the segment with the endpoints (b,±(1 + c)). Thus, π(A) is contained in R(δ), and since the
sets S(1 + c) and S(1 + c′) are disjoint, the projection of the component of S(1 + c) containing A is
contained in R(δ). Moreover, the intersection of the rectangles R(δ) over all δ > 0 is equal to π(A).
Taking into account that this projection on the set {(x, f(x)) : x ∈ [0, 1]} × R is a homeomorphism
onto the image, this proves that A is a component of S(1 + c). ¤

As an immediate consequence of Lemmas 6.1 and 6.2 we get the following theorem, which is the
main result of this section.

Theorem 6.3. There exists a 2-manifold M with a complete metric d, homeomorphic to R2, such
that for an uncountable set of values of ε the set S(ε) has uncountably many arc-components.

References

1. G. A. Brouwer, Green’s functions from a metric point of view, Ph.D. dissertation, University of Alabama at
Birmingham, 2005.

2. A. Blokh, M. Misiurewicz and L. Oversteegen, Planar finitely Suslinian compacta, Proc. Amer. Math. Soc., to
appear

3. M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer Verlag, Berlin, 2000.
4. M. Brown, Sets of constant distance from a planar set, Michigan Math. J. 19 (1972), 321–323.
5. K. Kuratowski, Topology II, Academic Press, New York, 1968.
6. R. L. Moore, Concerning triods in the plane and junction points of plane continua, Proc. Nat. Acad. Sci. U.S.A,

14 (1928), 85–88.
7. S. B. Nadler, Jr., Continuum theory. An introduction Monographs and Textbooks in Pure and Applied Mathe-

matics 158, Marcel Dekker, Inc., New York (1992).

Department of Mathematics, University of Alabama in Birmingham, University Station, Birmingham,
AL 35294-2060

E-mail address: ablokh@math.uab.edu

Department of Mathematical Sciences, IUPUI, 402 N. Blackford Street, Indianapolis, IN 46202-3216
E-mail address: mmisiure@math.iupui.edu

Department of Mathematics, University of Alabama in Birmingham, University Station, Birmingham,
AL 35294-2060

E-mail address: overstee@math.uab.edu


