
EXTENDING ISOTOPIES OF PLANAR CONTINUA

LEX G. OVERSTEEGEN AND E. D. TYMCHATYN

Abstract. In this paper we solve the following problem in the
affirmative: Let Z be a continuum in the plane C and suppose
that h : Z × [0, 1] → C is an isotopy starting at the identity. Can
h be extended to an isotopy of the plane? We will provide a new
characterization of an accessible point in a planar continuum Z
and use it to show that an accessible point is preserved during
the isotopy. We show next that the isotopy can be extended over
hyperbolic crosscuts. The proof makes use of the notion of a metric
external ray, which mimics the notion of a conformal external ray,
but is easier to control during an isotopy.

1. Introduction

Denote the complex plane by C, the origin by O, the open unit
disk by D and the complex sphere by C∗ = C ∪ {∞}. Suppose that
h : Z×[0, 1] → C is an isotopy of a continuum Z ⊂ C such that if we de-
note ht = h|Z×{t}, then h0 = idZ . We consider the old problem whether
the isotopy h can be extended to an isotopy of the plane.1 Under the
much more restrictive assumption of a holomorphic motion (where the
parameter t belongs to the open unit disk and h is holomorphic in
t) the λ-Lemma shows that ht can be extended to a quasi-conformal
homeomorphism of the entire plane (in this case the assumption that
h is continuous can be relaxed, while the continuity of the extension
still follows, see [MSS83, Lyu83, ST86] and [Slo91] for further details).
Although the λ-Lemma also holds for arbitrary (in particular not con-
nected) sets Z, easy examples show that an isotopy of a convergent
sequence cannot necessarily be extended over the plane (see [Fab05,
p. 991]). It follows from Rado’s Theorem [Wen91, Theorem 4.2] that
the isotopy ht can be extended to an isotopy of C if Z is a simple
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closed curve (see [Bea27, Bea28] for related results and [Eps66] for a
generalization). Analytic techniques, in particular, boundary values of
conformal maps have been powerful tools for studying plane continua.
However, they appear insufficient to answer the general question.

One of the main complications addressed in this paper is that Carathéodory
kernel convergence is insufficient to allow us control of the behavior of
conformal external rays under an isotopy. To this end we introduce
metric external rays which depend only on distance and, hence, be-
have well under an isotopy. The existence of metric external rays was
alluded to in [Bel67] and more fully developed in [Ili70, Bel76]. For our
purpose it will be easier to define them as the equidistant set between
two disjoint and closed sets in the covering space of C \ {O} by the ex-
ponential map. Equidistant sets and metric external rays were studied
in detail by G. Brouwer in [Bro05]. We will use metric external rays to
show that the isotopy can be extended over conformal external rays.
Even though the entire proof could have been carried out using metric
external rays, it suffices for this paper to rely for the final extension
over C∗ on the existing analytic theory.

We will always denote by Z a proper subcontinuum in the sphere C∗
(or equivalently in the plane C), by h : Z × [0, 1] → C an isotopy such
that h0 = idZ and by U a component of C∗ \Z (or equivalently C \Z).
Given a fixed component U of C∗ \ Z we may assume, without loss of
generality, that U contains the point at infinity (or is the unbounded
component of Z) and ∞ ∈ C∗ \ ht(Z) for all t ∈ [0, 1]. Denote by
U t the component of C∗ \ ht(Z) containing the point at infinity (or
the unbounded component of C \ ht(Z)), then U t ∪ {∞} is simply
connected. We always denote by ϕt : D → U t ∪ {∞} the conformal
map such that ϕt(O) = ∞ and (ϕt)′(O) > 0. Then the maps ϕt are
unique and, by Carathéodory kernel convergence, uniformly convergent
in t on compact subsets of D. By slightly abusing the language we will
identify points in the boundary S1 of the disk D with their arguments
and call them angles.

We say that x ∈ Z is accessible from U if there exists an angle θ ∈
[0, 2π) such that the (conformal) external ray Rθ = ϕ({reiθ | r < 1})
lands on x (i.e., Rθ \Rθ = {x}). It is well-known that a point x ∈ Z is
accessible from U if and only if there exists a continuum Y ⊂ U such
that Y ∩Z = {x}. Moreover, in this case ϕ−1(Y \ {x})∩S1 = {θ} is a
single point and Rθ lands on x in Z [Mil00]. It is clearly necessary that
the corresponding point xt = ht(x) remains accessible in ht(Z) from
U t. However, Carathéodory kernel convergence is insufficient to show
this and one of the first steps of the proof is to show that this is indeed
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the case. If we assume in addition that x is not a cut point of Z, then
there exists for each t a unique angle θt such that the external ray Rt

θt

of Zt lands on xt.
The next step of the proof is to show that this correspondence of

angles is continuous in t and there exists an isotopy αt : S1 → S1 of
the unit circle such that if R0

θ lands on x0 in Z0, then Rt
αt(θ) lands on

xt in Zt for each t. Extending αt to an isotopy f t : D → D, defined
by f t(reiθ) = reiαt(θ) does not, however, provide a proper extension

over U0 since simple examples show that in general the isotopy H :
U0 × [0, 1] → C∗ defined by H(w, t) = ϕt ◦ f t ◦ (ϕ0)−1(w) does not
have a continuous extension over Bd(U0). In the final step of the proof
we use the Kulkarni-Pinkall [KP94] lamination of U0 in the sphere to
define the proper extension.

We denote by exp the covering map exp : C → C \ {O} defined by

exp(z) = ez. Given a set X ⊂ C we denote by X̂ = exp−1(X \ {O})
and we use bold face letters for subsets of X̂. However, for points
x ∈ C \ {O} we denote by x a point in the set exp−1(x). We also
denote by πj : C→ R, j = 1, 2, the projections onto the x-axis and y-
axis, respectively. The open ball with center x and radius r is denoted
by B(x, r) and its boundary by S(x, r). For a set A ⊂ C we denote
by B(A, ε) =

⋃{B(a, ε) | a ∈ A}. By a ray R we mean a subset of C
homeomorphic to the real line R so that |R \ R| ≤ 1 and R is not a
simple closed curve. If R \R = ∅, then we say that R is a closed ray.

We will use the following notation throughout: for any set A ⊂ Z we
denote by At the set ht(A). We are initially only interested in extending
the isotopy over the unbounded component U of C \ Z. Recall that
U t is the component of C∗ \ ht(Z) containing ∞ and denote by X t

the continuum C∗ \U t. Then X t is a non-separating plane continuum.
We may identify any particular point z ∈ Bd(U) with the origin O,
assume that it is fixed under the isotopy and that X t ⊂ B(O, 1) for
all t ∈ [0, 1]. We will denote the Euclidean metric on C by d and the
spherical metric on C∗ by ρ. Finally, given two points x, y ∈ C, we
denote by xy the straight line segment joining them.

2. Preliminaries

Crucial to our study is the notion of an equidistant set between
two disjoint closed sets in C. Since the reference [Bro05] is not easily
accessible and our results require a slightly different setting, we will
sketch proofs for some of these results in this section. We start with
the following definition from [Bro05]. Suppose that A and B are two
disjoint closed subsets of the plane. For z ∈ C \ [A ∪ B], let r(z) =
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d(z, A ∪ B). Then we say that A and B are non-interlaced if for each
z ∈ C \ [A ∪ B], A ∩ S(z, r(z)) and B ∩ S(z, r(z)) are contained in
two disjoint closed and connected subsets of S(z, r(z)) (one may be
empty). Let E(A,B) = {z ∈ C | d(z, A) = d(z, B)} be the equidistant
set between A and B.

Let A and B be two disjoint, closed and non-interlaced sets. By Gas-
ton Brouwer [Bro05][Theorem 3.4.4], E(A,B) is a 1-manifold. More-
over, if A and B are connected, then E(A,B) is connected and, hence,
it is either a closed ray in the plane or a simple closed curve. In par-
ticular if A and B are also both unbounded, then E(A,B) is a closed
ray which separates C into two disjoint open and connected sets one
containing A and the other containing B. We will slightly general-
ize this case by replacing the condition that A and B are connected
by the weaker condition that A lies above B (see Definition 2.1 and
Theorem 2.8).

Since O ∈ X t ⊂ B(O, 1) for all t, max{π1(X̂
t)} < 0. It follows from

this and the fact that X is a continuum that for any component C

of X̂, π1(C) = (−∞,mC] with mC < 0. Moreover, since X is non-

separating, X̂ is also non-separating and, hence, each component C

of X̂ is also non-separating. To see this note that X̂ has a unique
complementary domain W such that π−1

1 ([0,∞)) ⊂ W . If V is any

complementary domain of X̂, then V must contain a point v ∈ V \ X̂
and exp(v) = v ∈ C \X. Hence there exists a ray R ⊂ C \X joining v

to infinity. Then the lift R of R with initial point v is a ray in C \ X̂
which intersects W and V = W as required. These facts will allow us

to define what it means for one component of X̂ to lie above another
component.

Definition 2.1. Let C and D be two distinct components of X̂. We say
that C lies above D if there is a path s : [0, 1] → π−1

1 ((−∞, 0])\C such
that the initial point s(0) is in D, s(1) = O and if R = s([0, 1])∪[0,∞)×
{0}, then C lies in the unique unbounded component of C \ [D ∪ R]
which contains the point 1 + 2πi.

Moreover, if X̂ = A ∪ B, where A and B are disjoint closed sets,
such that every component of A lies above every component of B, then
we say that A lies above B.

Lemma 2.2. The notion of C lying above D is well-defined and for

any two components C and D of X̂, one must lie above the other.

Proof. Let s1 and s2 be two paths satisfying the conditions in defini-
tion 2.1. Put R1 = s1([0, 1])∪[0,∞)×{0}, R2 = s2([0, 1])∪[0,∞)×{0}
and suppose that C lies in the unbounded component of D∪R1 which
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contains the point 1+2πi. Suppose first that R1 and R2 have the same
initial point s1(0) = s2(0). Since π−1

1 ((−∞, 0])\C is simply connected,
there exists a homotopy j : [0, 1] × [0, 1] → π−1

1 ((−∞, 0]) \ C, with
endpoints fixed, between s1 and s2. Since jt misses the connected set
C for each t, it follows that C lies in the component of C \ [R2 ∪D]
containing 1 + 2πi.

Next suppose that R1 and R2 have initial points z1 and z2, respec-
tively. Let U = {B(y, ε) | y ∈ D and ε = (1/3) d(y, [C∪π−1

1 ([0,∞))])}.
Then U is an open cover of D. Since D is connected, there exists a
chain {B1, . . . , Bn} of balls in U such that z1 ∈ B1, z2 ∈ Bn and
Bj ∩ Bj+1 6= ∅ for j = 1, . . . , n − 1. Let J be a piecewise linear
arc in ∪Bj from z1 to z2. Then there exists a path s3 such that
s3([0, 1])) = J ∪ s2([0, 1]) is a path with initial point z1 and termi-
nal point O. Put R3 = s3([0, 1]) ∪ [0,∞) × {0}. Then C lies in the
unbounded component of C\ [D∪R3] which contains the point 1+2πi.
Hence, C lies in the unbounded component of C \ [D∪R2] which con-
tains the point 1 + 2πi.

Suppose that C and D are any two components of X̂. Then UC =
C \ C and UD = C \ D are open and connected sets homeomorphic
to C. Hence there exist two arcs JC ⊂ UD ∩ π−1

1 ((−∞, 0]) and JD ⊂
UC ∩ π−1

1 ((−∞, 0]) joining points c ∈ C and d ∈ D to O, respectively.
In addition we may assume that JC ∩JD = {O}. If D is not contained
in the component of C\JC∪ [0,∞)×{0} containing 1+2πi, then C is
contained in the component of C\JD∪ [0,∞)×{0} containing 1+2πi
and C lies above D. ¤

Our goal is to show that the condition that A lies above B is pre-
served under the lift of the isotopy ht.

Lemma 2.3. Suppose ht : Bd(X) → C is an isotopy such that h0 =
idBd(X), O ∈ Bd(X) and ht(O) = O for all t. Then there exist an

isotopy ht : Bd(X̂) → C which lifts ht such that h0 = idBd(bX).

Proof. For each x ∈ Bd(X) \ {O} and each x ∈ exp−1(x) the path
h|{x}×[0,1] has a unique lift to a path hx : [0, 1] → C with initial point
x. Define ht(x) = hx(t). By uniqueness of lifts, ht is one-to-one.

It now follows easily that ht is an isotopy of Bd(X̂) lifting ht with
h0 = idBd(bX). ¤

The following easy Lemma follows immediately from the fact that
ht(O) = O for all t and that ht is uniformly continuous.

Lemma 2.4. Suppose that ht(O) = O for all t and let ht : Bd(X̂) → C
be the isotopy which is the lift of ht to Bd(X̂) = exp−1(Bd(X) \ {O})
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such that h0 = idBd(bX). Denote ht(x) by xt. For all ε > 0 there exists

δ ∈ R such that if there exists t0 ∈ [0, 1] such that xt0 ∈ X̂t0 and
π1(x

t0) ≤ δ, then π1(x
t) < ε for all t ∈ [0, 1]. In otherwords, if there

exists t0 such that π1(x
t0) ≥ ε, then π1(x

t) > δ for all t ∈ [0, 1].

Given the existence of the lifted isotopy ht we will use similar no-

tation as for ht: for any set A ⊂ Bd(X̂) we denote by At the set
ht(A). Recall that U t is the unbounded component of C \ ht(Bd(X)),

X t = C \ U t and X̂t = exp−1(X t \ {O}). Also, if C0 is a compo-

nent of X̂0 choose a point x0 ∈ Bd(X̂0) ∩ C. Then we denote by Ct

the component of X̂t containing the point xt = ht(x). Next we show

that the notion of the component C being above D in X̂ is preserved
throughout the isotopy h.

Lemma 2.5. Let C = C0 and D = D0 be components of X̂0 such that
C lies above D. Then Ct lies above Dt for each t ∈ [0, 1].

Proof. It suffices to show that there exists 0 < t0 such that for all t ≤ t0
Ct lies above Dt. Let R = s([0, 1])∪ [0,∞)×{0} be a piecewise linear
ray landing on d0 ∈ D0 which satisfies the conditions of Definition 2.1
and such that R∩C0 = ∅ and R∩D0 = {d0}. Then R∪D0 has exactly
two complementary domains and each is homeomorphic to C. Hence
there exists an arc A ⊂ C \ [D0 ∪ R] joining a point c0 ∈ C0 to the
point 1 + 2πi. Choose a < 0 such that A ∪ R ⊂ π−1([a,∞)). Choose
ε < (1/3) d(A∪[π−1

1 ([2a,∞))∩C0], R∪[π−1
1 ([2a,∞))∩D0]). Let 0 < t0

such that for each x ∈ Bd(X̂)∩π−1
1 ([2a,∞)), |ht(x)−h0(x)| < ε/2 and

π1(h
t(x)) < a for all x ∈ π−1

1 ((−∞, 2a])∩Bd(X̂) for all t. Then for all
t ≤ t0, C

t∪c0ct∪A is connected, closed and disjoint from Dt∪d0dt∪R.
The first set contains an arc A∗ from ct to the point 1 + 2πi and the
latter set contains a half ray R∗ satisfying the conditions in 2.1 from the
point dt ∈ Dt to ∞. Since 1 + 2πi is above R∗ and A∗ ∩ [Dt ∪R∗] = ∅,
Ct is above Dt for all t ∈ [0, t0]. ¤

Lemma 2.6. Suppose that X̂0 = A0 ∪B0 are disjoint closed sets such

that A0 lies above B0. Then for each t, X̂t = At ∪Bt and At and Bt

are disjoint, closed and non-interlaced sets.

Proof. By Lemma 2.5, every component of At lies above every com-
ponent of Bt for all t. Since ht is an isotopy it only remains to show
that At and Bt are non-interlaced. To see this fix t, let w ∈ E(At,Bt)
and let K ⊂ C \ At ∪ Bt be the minimal open ball with center w
whose boundary S meets both At and Bt. Suppose that there exist
x,x′ ∈ S ∩At and y,y′ ∈ S ∩Bt such that {y,y′} separates x and x′
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in S. For z ∈ X̂t, let Cz denote the component of X̂t which contains
the point z. Suppose, without loss of generality, that Cy lies above
Cy′ . We may suppose that Cy ∪ Cy′ ∪ yy′ separates x from 1 + 2πi
in C. Since Cy ∪ Cy′ does not separate C by unicoherence, we can
choose an arc D in C \ [Cy ∪Cy′ ] irreducible from O to yy′ such that
π1(D) ⊂ (−∞, 0]. Let {d} = D∩yy′. Then Cy∪yd∪D∪ [0,∞)×{0}
separates y′, and hence also x, from 1 + 2πi and Cx is below Cy. This
contradicts Lemma 2.5 and completes the proof. ¤

Lemma 2.7. Suppose X̂ = A∪B, where A and B are disjoint closed
subsets of C such that A lies above B. Let E be a component of
E(A,B). Then E is a closed ray. If e ∈ E and r = d(e,A ∪ B),
then there exist disjoint irreducible arcs or points JA and JB in S(e, r)
such that A ∩ S(e, r) ⊂ JA and B ∩ S(e, r) ⊂ JB, and E separates JA

from JB in C.

Proof. By Lemma 2.6, A and B are non-interlaced. By [Bro05][Theorem
3.4.4], E is a 1-manifold. Let E be a component of E(A,B), e ∈ E
and d(e,A ∪ B) = r. Since A and B are non-interlaced, there ex-
ist disjoint irreducible arcs or points JA and JB in S(e, r) such that
A∩S(e, r) ⊂ JA and B∩S(e, r) ⊂ JB. Let a1 and a2 be the endpoints

of JA. For z ∈ X̂, let Cz be the component of z in X̂. Let V be the
component of C \ [Ca1 ∪ JA ∪Ca2 ] containing e and let W = C \ V . It
follows from the proof of Lemma 2.6 that W ∩B = ∅.

Choose z ∈ JA\A and w ∈ B. If zw∩A 6= ∅, then d(z,A) < d(z,w).
If zw∩A = ∅, then it follows easily that d(z,w) > min{d(z, a1), d(z, a2)}.
Hence for all w ∈ B, d(z,A) < d(z,w) and E(A,B)∩JA = ∅. Choose
b ∈ JB ∩B. Note that E(A,B)∩ a1e \ {e} = ∅ = E(A,B)∩ eb \ {e}.
Now E(A,B) separates a1 and b. By unicoherence of C a component
of E(A,B) separates a1 and b. Since this component must contain e,
E separates a1 and b in C. Hence E separates Ca1 ∪ JA and Cb ∪ JB

which both are unbounded sets. Hence, E is an unbounded closed
1-manifold, i.e., E is a closed ray. ¤

Theorem 2.8. Suppose that X̂ = A∪B, where A and B are disjoint,
closed, non-empty sets such that A lies above B. Then E(A,B) is a
closed ray such that π1(E(A,B)) = (−∞,∞) and for x > 0, |π−1

1 (x)∩
E(A,B)| = 1.

Proof. By Lemma 2.7, each component of E(A,B) is a closed ray which

stretches to −∞. For z ∈ X̂, let Cz be the component of z in X̂.

Let a ∈ X̂ such that π1(a) = max(π1(X̂)) < 0. Without loss of
generality, a ∈ A. Let R = aO ∪ [0,∞) × {0}, then R \ {a} is a ray
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disjoint from X̂ which lands on a. Note that C \ [R ∪ Ca] = W ∪ V ,
where W and V are disjoint, connected, open and non-empty sets.
Without loss of generality, 1 + 2πi ∈ W . Then every component of

X̂ ∩ W is above Ca ⊂ A. Hence B ⊂ V . Since B 6= ∅, there exists
b ∈ B such that π1(b) = π1(a). By compactness of X ∩ S(O, eπ1(a)),
we may assume that

π2(a) = min(π2(A ∩ π−1
1 (π1(a)))) and

π2(b) = max(π2(B ∩ π−1
1 (π1(a)))).

Then 0 < π2(a) − π2(b) ≤ 2π and we may assume that 0 < π2(a) ≤
π. For z ∈ [π1(a),∞) × [π2(a),∞), d(z,A) < d(z,B) and for z ∈
[π1(a),∞) × (−∞, π2(b)], d(z,B) < d(z,A). By unicoherence there
exists a component E of E(A,B) which separates a and b. Then E
separates Ca ∪ [π1(a),∞) × π2(a) from Cb ∪ [π1(a),∞) × π2(b). So
π1(E) = (−∞,∞) and E(A,B) ∩ [π1(a),∞) × R] ⊂ [π1(a),∞) ×
[π2(b), π2(a)]. In particular, E(A,B) ∩ π−1

1 (x) is compact for x > 0.
It remains to be shown that E(A,B) is connected. We prove first

that E separates A and B. Suppose that C\E = W ′∪V ′, where W ′ and
V ′ are disjoint, non-empty, open and connected sets, and 1+2πi ∈ W ′.
Just suppose there exist y ∈ A∩V ′. Since neither of the disjoint closed
sets E nor B separates y from 1 − 2πi, neither does their union. Let
D ⊂ C \ [E ∪B] be an arc from y to 1− 2πi ∈ V ′. Choose e ∈ E such

that if r = d(e, X̂), then π1(e)+ r < min{π1(D)}. Let w ∈ S(e, r)∩B.
Then Cw ∪ we ∪ E ′, where E ′ is the component of E \ {e} which
projects under π1 over [π1(y),∞), does not separate y from 1− 2πi. It
now follows easily that Cy lies below Cw, a contradiction.

Hence, we can conclude that A ⊂ W ′, B ⊂ V ′ and E(A,B)∩ [W ′ ∪
V ′] = ∅. It follows that for all z ∈ W ′, d(z,A) < d(z,B) and for all
z ∈ V ′, d(z,B) < d(z,A), and E(A,B) = E.

Suppose that e1 6= e2 ∈ E and d(ei,A ∪ B) = ri. Then for all
zi ∈ S(ei, ri) ∩ [A ∪ B], [e1z1 \ {z1}] ∩ [e2z2 \ {z2}] = ∅. Since A
lies above B, for e ∈ E with π1(e) > 0 and r = d(e,A ∪ B), for all
z ∈ A ∩ S(e, r) and w ∈ B ∩ S(e, r), π2(z) > π2(w). It now follows
easily that for such e, π−1

1 (π1(e)) ∩ E(A,B) = {e}.
¤

3. Characterizing accessibility

In this section we provide a characterization of accessibility for points
in X and show that accessibility is preserved under the isotopy h. In
this section we will always assume that O ∈ Bd(X) is fixed under the
isotopy h. Easy examples (e.g., a half ray spiralling around the closed
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interval [−1, 1]×{0}) show that accessibility of O in X is not equivalent

to X̂ being not connected. Nevertheless the spirit of this idea is correct:

Lemma 3.1. Suppose that O ∈ Bd(X). Then the following are equiv-
alent:

(1) O is accessible,

(2) X̂ = A∪B, where A and B are non-empty, disjoint and closed
such that:

A lies above B

and for all x ∈ R there exists y1 < y2 in R such that

π−1
1 ([x,∞)) ∩ π−1

2 ([y2,∞)) ∩B = ∅ and(2a)

π−1
1 ([x,∞)) ∩ π−1

2 ((−∞, y1]) ∩A = ∅.(2b)

Proof. Suppose first that O is accessible, let R be a conformal external
ray landing on O and let J be a component of exp−1(R). Then J is a

closed ray in C \ X̂ such that π1(J) = (−∞,∞) and for every vertical
line `, J ∩ ` is compact. Note that C \ J = U ∪ V , where U and V
are disjoint open and connected sets. We may assume that for some

vertical line `, π2(` ∩ U) has no upper bound and, since X̂ is invariant

under vertical translations by 2π, that {1+2πi} ⊂ U . Put A = X̂∩U

and B = X̂∩V then condition (2) holds. The fact every component of
A lies above every component of B follows from the fact that U and V
are open and connected, and U is “above”V . To see that (2a) and (2b)
hold note that close to infinity R behaves like a radial line segment
in the plane and, hence, J behaves like a horizontal line segment near
+∞ so π2(J ∩ π−1

1 ([a,∞))) is bounded for each a ∈ R.
Suppose next that conditions (2), (2a) and (2b) hold. By Theo-

rem 2.8, E = E(A,B) is a closed ray which runs from −∞ to ∞ and
separates A from B.

Claim: For every compact arc C ⊂ x-axis, π−1
1 (C) ∩ E is compact.

Proof of Claim. Let C ⊂ x-axis be a compact interval. Suppose
without loss of generality that π−1

1 (C) ∩ E contains points ei with
lim π2(ei) = +∞. Note that there exists K > 0 such that for each

z ∈ π−1
1 (C), d(z, X̂) ≤ K. Hence for each i there exists bi ∈ B such

that d(ei,bi) ≤ K and lim π2(bi) = +∞. This contradicts (2a) and
completes the proof of the claim.

Now let MR = exp(E). Then MR is a closed and connected set
in C and it suffices to show that MR ∩ X = {O}. Since π1(E) =
(−∞,∞), O ∈ MR. Suppose that x ∈ X \ {O} is also a limit point of
MR. Choose zi ∈ exp(E) such that lim zi = x and zi ∈ E such that
exp(zi) = zi. Then d(zi, exp−1(x)) → 0. Since E is closed and disjoint
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from X̂, the sequence zi cannot be convergent and so lim |π2(zi)| = ∞.
By choosing a compact arc C in R which contains π1(exp−1(x)) in its
interior, we see that E ∩ π−1

1 (C) is not compact. This contradiction
completes the proof. ¤

The characterization Lemma 3.1 allows us to show that an accessible
point remains accessible throughout the isotopy.

Theorem 3.2. If x is accessible from U = C \X, then ht(x) is acces-
sible from U t, where U t is the unbounded component of C \ ht(Bd(X)),
for each t ∈ [0, 1].

Proof. Suppose that x0 is an accessible point of X0. We may assume
that x0 = O, ht(O) = O and X t ⊂ B(O, 1) for all t.

By Lemma 3.1 X̂0 = A0∪B0 such that conditions (2), (2a) and (2b)
of Lemma 3.1 hold. By Lemma 2.3 we can lift the isotopy ht to an

isotopy ht : Bd(X̂0) → C such that h0 = idBd(bX0). By Lemma 2.5, At

lies above Bt for all t. It remains to be shown that conditions (2a) and
(2b) are satisfied for all t. By symmetry it suffices to show that (2a)
holds. Suppose x ∈ R. By Lemma 2.4 there exists x′ ∈ R such that

for all t, max(π1(h
t(π−1

1 ((−∞, x′])∩ X̂0)) < x. By (2a) for t = 0, there
exists y2 such that π−1

1 ([x′,∞)) ∩ π−1
2 ([y2,∞)) ∩ B0 = ∅. Choose y3

such that for all t, max(π2(h
t(π−1

1 ([x′,∞))∩π−1
2 ((−∞, y2]))∩X̂))) < y3.

Then π−1
1 ([x,∞))∩π−1

2 ([y3,∞))∩Bt = ∅ and (2a) holds for all t. Hence
by Lemma 3.1, O is accessible for all t. ¤

4. Continuity of external angles

Given a non-separating continuum X, an isotopy ht : Bd(X) →
C such that h0 = idBd(X), let U t be the unbounded component of
C \ ht(Bd(X)). We construct an isotopy αt : S1 → S1 such that if the
conformal ray Rθ ⊂ U0 lands on x, then Rαt(θ) ⊂ U t lands on xt in X t

for each t. This is accomplished in two steps. We first construct for
each t a continuously (in the sense of Hausdorff metric) varying arc Lt

landing on xt. This arc is contained in the image under the exponential
map of the equidistant set in Section 2.

Lemma 4.1. Let O be an accessible point of X. Then there exists for
each t an arc Lt such that X t ∩ Lt = {Ot} is an endpoint of Lt and
the function β : [0, 1] → C(C) defined by β(t) = Lt is a continuous
function to the space C(C) of compact subsets of C with the Hausdorff
metric.

Proof. We assume as usual that ht(O) = O and X t ⊂ B(O, 1) for all
t. Since every half ray in the plane is tame, we may assume that the
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positive x-axis is contained in C \ X0. Then X̂ ⊂ C \ π−1
2 ({0}). Let

A0 = X̂ ∩ π−1
2 ((0,∞)) and B0 = X̂ ∩ π−1

2 ((−∞, 0)). Then X̂ is the

union of these two disjoint closed sets and A0 lies above B0. Since X̂ is
invariant under vertical translation by 2π, it follows that E(A0,B0) is
contained in π−1

2 ([−2π, 2π]). By Lemma 2.5, At lies above Bt for each
t. By Theorem 2.8, E(At,Bt) is a ray which separates At and Bt in C
and π1(E(At,Bt)) = (−∞,∞).

Let ti → t0 ∈ [0, 1]. Then Ati → At0 and Bti → Bt0 on compact sets
(i.e., K compact in A0 implies Kti → Kt0). It is easy to check that if
ei ∈ E(Ati ,Bti) and ei → e, then e ∈ E(At0 ,Bt0).

By Theorem 2.8 |E(At,Bt) ∩ π−1
1 (1)| = 1. For each t, let M t =

E(At,Bt) ∩ π−1
1 ((−∞, 1]). Then M t is connected and lim M ti = M t0 .

Hence Lt = exp(M t) is the required arc. ¤
By a crosscut C of a non-separating continuum X ⊂ C we mean

an open arc C ⊂ C \ X whose closure is a closed arc with distinct
endpoints a and b which are in X. In this case we say that the crosscut
C joins the points a and b of X. By the shadow of C, denoted by
Sh(C), we mean the closure of the bounded complementary domain of
C \ [X ∪ C].

Theorem 4.2. Suppose that O ∈ Bd(X), ht : Bd(X) → C is an isotopy
such that h0 = idBd(X), ht(O) = O and diam(X t) < 1 for all t. Let U t

be the component of C∗ \ ht(Bd(X)) containing ∞, let ϕt : D→ U t be
the normalized Riemann map and let Lt be an arc with one endpoint
at O such that Lt varies continuously with t in the Hausdorff metric
and Lt ∩ X t = {O} for all t. Then the function α : [0, 1] → S1

defined by α(t) = S1 ∩ (ϕt)−1(Lt) is continuous and the external ray
ϕt({re2πiα(t) | r < 1}) = Rt

α(t) lands on O in X t for each t.

We shall refer to the function α : [0, 1] → S1 in Theorem 4.2 as the
continuous angle function.

Proof. By [Mil00], α as defined in the statement of the Lemma is a
function. It remains to be shown that α is continuous. We will first
present an outline of the proof. Fix ε > 0. Let a(t0) and b(t0) be
endpoints of a crosscut C(t0) of X t0 in B(O, 1/2) such that Lt0 lands
in the shadow of the crosscut C(t0) and diam((ϕt0)−1(C(t0))) < 2ε/3.
Choose β < 1/5 min(d(a(t0), b(t0)), d(Lt0 , {at0 , bt0}), d(O, C(t0))). We
shall choose K, a large compact subarc of C(t0), such that B(Lt0 , β)∩
C(t0) ⊂ K and such that Lt ⊂ B(Lt0 , β) and K ∩X t = ∅ whenever t is
close to t0. We shall define Kt, a crosscut of X t, which contains a large
sub-arc of K together with two small arcs J(a, t) and J(b, t) which join
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points close to the endpoints of K to X t such that (ϕt)−1(Kt) is a small
crosscut of D whose shadow contains α(t0) and α(t) for t sufficiently
close to t0.

Let C(t0), a(t0), b(t0) and β be defined as above and let â(0) and

b̂(0) be the endpoints of (ϕt0)−1(C(t0)). We may assume that α(t0) is

contained in the interval (â(0), b̂(0)) in the boundary circle S1 contained

in the shadow of (ϕt0)−1(C(t0)). Then |b̂(0) − â(0)| < 2ε/3. Choose

δ1 > 0 such that δ1 < (1/5) min(|b̂(0) − α(t0)|, |α(t0) − â(0)|, ε/4, β).
Let ρ <

√
ρ < min{δ1, 1} such that 2π√

ln(1/ρ)
< δ1 and

(ϕt0)−1(B(a(t0), 2
√

ρ) ∩ C(t0)) ⊂ B(ât0 , δ1),(4.1)

(ϕt0)−1(B(b(t0), 2
√

ρ) ∩ C(t0)) ⊂ B(b̂t0 , δ1),(4.2)

and there is just one component K of C(t0)\[B(a(t0), ρ/2)∪B(b(t0), ρ/2)]
which meets both S(a(t0), ρ/2) and S(b(t0), ρ/2).

Next choose δ2 > 0 such that for all |t− t0| < δ2:

(1) Lt ⊂ B(Lt0 , ρ/2),
(2) d(ht, ht0) < ρ/2,
(3) X t ∩K = ∅ and
(4) d((ϕt)−1|K , (ϕt0)−1|K) < δ1.

By [Pom92, Prop. 2.2] there exist ρ ≤ r, s ≤ √
ρ such that if J(a, t)

is a component of S(a(t0), r) \X t which meets K and and J(b, t) is a
component of S(b(t0), s) \X t which meets K, then

(4.3) diam(ϕt)−1(J(z, t)) ≤ 2π√
ln(1/ρ)

< δ1 for z ∈ {a, b}.

Then K ∪ J(a, t) ∪ J(b, t) contains a crosscut C(t) of X t and Lt

lands in the shadow of C(t). Since the endpoints of C(t) are joined by
a subarc of J(z, t) ⊂ B(z,

√
ρ) to K it follows from (4.1), (4.2), (4.3)

and (4) that the endpoints of (ϕt)−1(C(t)) are within 3δ1 < (3/20)ε

of the endpoints ât0 and b̂t0 of (ϕt0)−1(C(t0)). Then for |t − t0| < δ2,
α(t0) is in the shadow of (ϕt)−1(C(t)), ϕt(Lt) lands in this shadow
and the distance between the endpoints of (ϕt)−1(C(t)) is less than
6δ1 + 2ε/3 < (6/20 + 2/3)ε < ε as desired. ¤
Theorem 4.3. Suppose ht is an isotopy of the boundary of a non-
separating continuum X ⊂ C such that h0 = idBd(X). Let U t be the
component of C∗ \ht(Bd(X)) containing ∞ and let ϕt : D→ U t denote
the normalized Riemann map. Then there exists an isotopy αt : S1 →
S1 such that α0 = idS1 and if R0

θ lands on x0 ∈ X0, then Rt
αt(θ) lands

on xt for each t.
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Proof. Suppose that R0
θ lands on x0 ∈ X0. By Theorem 4.2, there

exists a continuous function αθ : [0, 1] → S1 such that αθ(0) = θ and
Rt

αθ(t) lands on xt for each t. Let A be the set of angles in S1 such that

for each θ ∈ A, R0
θ lands on a point x(θ) ∈ X0. Define αt : A → S1

by αt(θ) = αθ(t). Then αt is a circular order preserving isotopy of A
such that α0 = idA. Since A is dense in S1, αt can be extended to an
isotopy of S1. ¤

We will refer to the isotopy αt as the continuous angle isotopy.

5. Extension over hyperbolic crosscuts

Suppose U is a component of C \ Z and ht : Z → C is an isotopy
such that h0 = idZ . Then there exists a path γ : [0, 1] → C such
that γ(0) ∈ U and γ(t) ∈ C \ Zt for all t. Then we denote by U t the
component of C \ Zt which contains the point γ(t). Note that U t is
independent of the choice of the path γ. We have shown in the previous
section that if there exists a crosscut in U0 joining the points a0 and b0,
then for each t there exists a crosscut in U t joining the points at and
bt. We will show next that we can choose for each t a natural crosscut
Ct joining these points such that the isotopy h can be extended over
X0 ∪ C0. For this purpose we will use hyperbolic geodesics defined by
the Poincaré metric on D.

Suppose that a0 and b0 are the landing points of the external rays
R0

θ(a) and R0
θ(b) in C \ X0. By Theorem 4.2, there exist continuous

angle functions α : [0, 1] → S1 and β : [0, 1] → S1 such that for
each t, Rt

α(t) and Rt
β(t) land on at and bt, respectively. Let Gt be the

hyperbolic geodesic joining the points α(t) and β(t) in D (i.e., Gt is
the intersection of the round circle through the points α(t) and β(t)
with D which crosses S1 perpendicularly at both of these points). Let
Ct = ϕt(Gt). We will call Ct the hyperbolic crosscut of X t joining the
points at and bt. In the final part of this section we will consider Z as
a subset of the sphere and show that the isotopy h : X0 × [0, 1] → C∗
can be extended to an isotopy H : X0 ∪ C0 × [0, 1] → C∗ such that
H t(C0) = Ct, where Ct is the hyperbolic crosscut of X t joining at to
bt. We will make use of the following well-known Theorem [Pom92,
Theorem 4.20]2.

Theorem 5.1 (Gehring-Hayman Theorem). There exists a universal
constant K such that for for any conformal map ϕ : D→ C, if z1, z2 ∈
D, γ is an arc in D from z1 to z2, and S is the hyperbolic geodesic from
z1 to z2, then diam(ϕ(S)) ≤ K diam(ϕ(γ)).

2We are indebted to Paul Fabel for this reference.
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Recall that X is a non-separating plane continuum. Each angle
θ ∈ S1 corresponds to a prime end of C∗ \ X. By a fundamental
chain Cj of crosscuts we mean a sequence of crosscuts of X such that
lim diam(Cj) = 0, Ci ⊂ Sh(Cj) for i > j and the arcs {Ci} are all
pairwise disjoint. A naturally defined equivalence class of fundamental
chains is called a prime end of C∗ \X (see [Mil00] for further details).

Lemma 5.2. Let h be an isotopy of Bd(X), O ∈ Bd(X) and ht(O) = O
for all t. Suppose that R0

θ is a conformal external ray of X0 landing on
O. Then the isotopy h can be extended to an isotopy H : [X ∪ R0

θ] ×
[0, 1] → C such that H t(R0

θ) is an external ray of X t landing on O.

Proof. By Lemma 4.2, there exists a continuous angle function α :
[0, 1] → S1 such that α(0) = θ and the (conformal) external ray Rt

α(t)

lands on O for each t. Extend the isotopy h over R0
α(0) by

(5.1) H(z, t) = ϕt ◦ ρt ◦ (ϕ0)−1(z)

for z ∈ R0
α(0), where ρt is the rotation of D by the angle α(t) − α(0).

By Carathéodory kernel convergence, H is an isotopy of every compact
subset of R0

α(0). Hence it suffices to show that if zi → O in R0
α(0) and

ti → t∞, then H(zi, ti) → O = H(O, t∞).
To see this fix ε > 0. It suffices to show that there exists an open

disk B containing O with simple closed curve boundary S and δ > 0
such that for all t with |t− t∞| < δ, if zt is the first point of Rt

α(t) (from

∞) on S and if CRt
zt is the component of Rt

α(t) \ zt from zt to O, then

CRt
zt ⊂ B(O, ε).

Let K be the universal constant from Theorem 5.1. By Lemma 4.1
there exists a continuously varying arc Lt ⊂ C \ X t landing on O in

X t for each t such that (ϕ0)−1(L0) ∩ S1 = {θ}. Choose a fundamental
chain of crosscuts Ct∞

n of X t∞ for the prime-end α(t∞). Then both
Lt∞ and Rt∞

α(t∞) cross Ct∞
n essentially (that is X ∪ Ct∞

n separates the

endpoints of Lt∞ and also the ends of the ray Rt∞
α(t∞)). Hence we can

choose n sufficiently large and a simple closed curve S containing O
in its bounded complementary domain B such that Ct∞

n ⊂ S, [Lt∞ ∪
Rt∞

α(t∞)] ∩ [S \ Ct∞
n ] = ∅ and diam(S) < ε/K. From now on fix this n

and let a and b be the endpoints of Ct∞
n .

For t close to t∞, let wt be the first point (from O) of Lt on S.
Let Ct be the component of S \X t containing the point wt∞ . Choose
ρ < (1/3)d({a, b}, [Lt∞ ∪ Rt∞

α(t∞)]) and let Ct
− be the component of

Ct \ [B(a, ρ) ∪ B(b, ρ)] which contains wt∞ . Choose δ > 0 such that if
|t− t∞| < δ, then
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(1) wt∞ ∈ C \ [X t ∪B(a, ρ) ∪B(b, ρ)],
(2) Ct

− = Ct∞− ,
(3) Lt ⊂ B(Lt∞ , ρ),
(4) if zt is the first point of Rt

α(t) (from infinity) on S, then zt ∈ Ct
−.

The first and second conditions follow from the continuity of h and
the third from the continuity of Lt. The last condition follows from
Carathéodory kernel convergence: recall that d(Rt∞

α(t∞), S \Ct∞) = η >

0. Let v ∈ Rt∞
α(t∞)∩B such that the component of Rt

αt(θ)\{v} from v to O

is contained in B and let (ϕt∞)−1(v) = r0 exp(α(t∞)). By Carathéodory
kernel convergence, I t = ϕt({r exp(α(t)) | 0 ≤ r ≤ r0}) converges to
the segment from v to ∞ in Rt∞

α(t∞). Hence d(I t, S \ Ct∞) > η/2 and

d(I t, v) < (1/2)d(v, S) for t close to t∞, and (4) hold for δ sufficiently
small.

By (2), (3) and (4), the sub-arc At of Ct joining the points wt and zt,
is contained in C\X t. Hence the union of the arcs At and [wt, O] ⊂ Lt

is an arc in [C \X t]∪ {O}, joining zt to O, of diameter less than ε/K.
By Theorem 5.1, the terminal segment CRt

zt ⊂ B(O, ε) as required.
¤

In the remaining part of the paper we will consider Z as a subset of
the unit sphere C∗ ⊂ R3 with spherical metric ρ. Hence the distance
between two points z, w ∈ C∗ is the length of the shortest arc in the
great circle which is the intersection of C∗ and the plane through z, w
and the origin in R3.

Since every hyperbolic crosscut is conformally equivalent to a di-
ameter of D it follows that we can extend the isotopy ht over any
hyperbolic crosscut C0 ⊂ U0 joining two points a0 and b0 in Z0 to an
isotopy H : Z0 ∪ C0 → C∗ (since in this case the point at infinity is
not fixed, the range of the isotopy must be the sphere). Note that if
Ci is a convergent sequence of hyperbolic crosscuts whose limit con-
tains a non-degenerate subcontinuum Y ⊂ Z, then this extension of
the isotopy over ∪Ci is not necessarily continuous at Y . However, we
can extend over a suitable compact set of hyperbolic crosscuts in U as
follows. At this point it will be convenient to change to the Cayley-
Klein model3 of the hyperbolic disk. There exists a homeomorphism
g : D → D, which is the identity on the boundary S1 of D, such that
g preserves radial line segments and for any two points θ1, θ2 ∈ S1 the
hyperbolic geodesic G joining θ1 to θ2 is mapped to the straight line
segment θ1θ2, which is a chord of the unit disk with endpoints θ1 and
θ2.

3We are indebted to Nandor Simanyi for suggesting the Cayley-Klein model.
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Suppose that H is a collection of disjoint hyperbolic crosscuts in U
such that the set

⋃
c∈H C is compact, then we call H a compact set

of disjoint hyperbolic crosscuts in U . The compactness implies that
there exists ε > 0 such that for each C ∈ H, diam(C) ≥ ε. Let
aC and bC denote the endpoints of C ∈ H, let αC and βC be the
corresponding endpoints of (ϕ0)−1(C) and let A0 denote the union of
all the angles {αC , βC} for C ∈ H. Let αt be the continuous angle
isotopy and let At = αt(A0). Then for each t ∈ [0, 1], the collection
of chords αt(αC)αt(βC) is a compact lamination in the unit disk in
the sense of Thurston [Thu85]. We will denote the family of all such
chords by Lt. We will say that L0 is the pullback of the lamination H
to the unit disk. Let Lt∗ =

⋃Lt. Note that any two distinct chords
in Lt meet at most in a common endpoint and there exists δ > 0 such
that for each t and each chord in Lt, diam(αt(αC)αt(βC)) > δ. Let
Lt : L0 → Lt be the linear isotopy on L which extends αt and maps
each chord α0(αC)α0(βC) linearly onto the chord αt(αC)αt(βC). Then
the following theorem follows.

Theorem 5.3. Suppose that H = H0 is a compact set of disjoint
hyperbolic crosscuts in U0. Then the isotopy h : Z0 × [0, 1] → C∗
can be extended to an isotopy H : [Z ∪ H∗] × [0, 1] → C∗ such that
H t(H∗) = Ht∗ = ϕt(g−1(Lt∗)) and H is defined by:

H t(z) =

{
ht(z), if z ∈ Z0;

ϕt ◦ g−1 ◦ Lt ◦ g ◦ (ϕ0)−1(z) if z ∈ H∗,

where Lt is the linear isotopy on the pullback L of H
We will say that the extended isotopy H defined in Theorem 5.3 is

the linear extended isotopy which preserves the hyperbolic crosscuts in
H.

6. Existence of short crosscuts

It follows from the results of the previous section that if C is the
hyperbolic crosscut of Z which joins the points a and b in a comple-
mentary domain U of Z in C∗, then we can extend the isotopy to an
isotopy H of Z ∪ C such that H t(C) = Ct is the hyperbolic crosscut
joining the points at and bt. We need to show that if the crosscut C
has small diameter, then the crosscut Ct also has small diameter. If C
is contained in the component U of C∗ \ Z, then we denote by U t the
component of C∗ \ Zt which contains Ct.
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Given a hyperbolic crosscut C of a continuum Z ⊂ C∗, we say that
C is a δ-hyperbolic crosscut if the diameter of C is less than δ. Note
that we see Z as a subset of the sphere C∗ with the spherical metric ρ.

Theorem 6.1. For each ε > 0 there exists δ > 0 such that if x, y ∈ Z
can be joined by a δ-hyperbolic crosscut C ⊂ U , where U is a component
of C∗ \ Z, then for each t, xt and yt are joined by an ε-hyperbolic
crosscut in U t.

Proof. Suppose that the Theorem fails for some ε > 0. Then there
exist xn, yn ∈ Z0 = Z and a sequence of 1/n-hyperbolic crosscuts Cn

in complementary domains Un joining them and tn ∈ [0, 1] such that
the points xtn

n and ytn
n are not joined by an ε-hyperbolic crosscut in

U tn
n . Then there exists 0 < ε′ < ε and wn ∈ Bd(Un), accessible from

Un, such that ρ(wt
n, O) > ε′ for all n and all t ∈ [0, 1]. Without loss of

generality, the origin O ∈ Z, lim Cn = {O} and ht(O) = O for all t.
Let K be the universal constant from Theorem 5.1. Choose 0 <

δ < ε′/3 such that if ht(z) ∈ B(O, δ) for some t ∈ [0, 1], then hs(z) ∈
B(O, ε/3K) for all s ∈ [0, 1]. Choose n0 such that Cn0 ⊂ B(O, δ)
and {xs

n0
, ys

n0
} ⊂ B(O, δ) for all s ∈ [0, 1]. From now on we fix this

n = n0 and, hence, we can omit n from the notation. In particular
we have a fixed component U of C∗ \ Z, three points x, y, w ∈ Bd(U)
with x and y joined by the hyperbolic crosscut C ⊂ U ∩ B(O, δ),

with xs, ys ∈ B(O, δ) and ws ∈ C \ B(O, δ) for all s ∈ [0, 1]. By
Theorem 5.3 we can extend the isotopy h to an isotopy H of Z ∪ C
such that H t(C) = Ct is the hyperbolic crosscut joining xt to yt in
U t ⊂ C∗ \ Zt for each t.

Let D be the closed δ-ball centered at O. For each t ∈ [0, 1], let
P t = D ∪ Ct. Since Bd(P t) is contained in S(O, δ) ∪ Ct, which is
a finite union of arcs, Bd(P t) contains no continuum of convergence
and each sub-continuum of Bd(P t) is locally connected and arcwise
connected [Why42].

Since Ct is an arc, the components {Ti} of Ct\D form a null sequence.
For each i, Ti is an arc and Ti∩D consists of the endpoints of Ti. Each
point of C∗ \ P t can be joined to wt by an arc in C∗ \D which meets
P t in a finite set.

Suppose that V is a component of C∗ \ P t. We say that V is an
odd domain (respectively even domain) of C∗ \ P t if there is a closed
arc A ⊂ C∗ \ D from wt to a point in V such that |A ∩ Ct| is odd
(respectively, even) and A is transverse to Ct at each point of A ∩ Ct.
This definition is independent of the choice of the arc and the point in
V .
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Let Qt = P t∪⋃{V | V is an odd domain of C∗\P t}. The boundary
of each odd domain V of C∗ \ P t is a simple closed curve which meets
D and there exists a Ti such that Ti is contained in Bd(V ) and Ti ∪D
separates V from wt in C\D. Also each Ti is contained in the boundary
of exactly one odd domain of C∗ \ P t. Since the odd domains form a
null family, Qt is a locally connected continuum.

Let ti converge to t ∈ [0, 1]. We prove that lim Qti = Qt. Note that
lim P ti = P t. Let z ∈ C∗ \ P t. It suffices to prove that z ∈ Qt if and
only if z ∈ Qti for all sufficiently large i. Let A ⊂ C∗\B(O, ρ(O, z)) be a
piecewise linear arc from z to wt which witnesses whether or not z ∈ Qt.
Then A meets only finitely many, without loss of generality T1, . . . , Tn,
of the open arcs Tj. Let H : Z∪C → C∗ be the extended linear isotopy
of Theorem 5.3 such that Ht(C) = Ct. Let δ < δ′ < min(ρ(z, O), 2ε′/3)

then for all i sufficiently large B(O, δ′) ∪ Tj separates z from wt if

and only if B(O, δ′) ∪ H ti((H t)−1(Tj)) does for each j = 1, . . . , n and
Tj ∩ A 6= ∅ if and only if H ti((H t)−1(Tj)) ∩ A 6= ∅ for all j.

Note that |Tj ∩ A| is odd if and only if B(O, δ′) ∪ Tj separates z
from wt. Fix any large i and choose an arc M very close to A which
witnesses whether z is in Qti . Then |M ∩ H ti((H t)−1(Tj))| = |A ∩ Tj|
mod 2 for j = 1, . . . , n and M ∩ H ti((H t)−1(Tj)) = ∅ for all j > n.
Hence z ∈ Qti if and only if z ∈ Qt as desired.

Let zt ∈ Qt ∩ Zt. We prove that ρ(zt, O) < ε/3K. We may assume
that zt 6∈ {xt, yt} ∪ D. Let s0 = inf{s ∈ [0, 1] | zs ∈ Qs \ D}. Since
Q0 = D and Zs ∩ Cs = ∅ for all s, zs0 ∈ D. Hence, by the choice of δ,
ρ(O, zt) < ε/3K.

It remains to prove the following:
Claim. Qt ∩ B(O, ε/2K) contains an arc A such that A ∩ Zt =

{xt, yt}.
Proof of Claim. Fix t ∈ [0, 1]. Then Ct is an arc such that Ct ∩

Zt = {xt, yt}. After a small perturbation of Ct we may assume that
Ct ∩ S(O, ε/2K) is finite and all intersections are transverse. Note
that the definition of an odd domain of C∗ \ P t was with respect to
P t = D ∪ Ct. In what follows we will use the same definition but now
with respect to P t

M = D ∪M , where M ⊂ U t ∪ {xt, yt} is an arc such
that:

(1) M ∩ Zt = {xt, yt} and xt and yt are endpoints of M ,
(2) M ∩ S(O, ε/2K) is finite and all intersections are transverse,
(3) for each odd domain V of C∗ \ P t

M and each zt ∈ Zt ∩ V ,
ρ(zt, O) < ε/3K,

(4) n = |M ∩ S(O, ε/2K)| is minimal.
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If n = 0 we are done. Note that n = 1 is impossible since all
intersections of S(O, ε/2K) and M are transverse and both endpoints
of M are in B(O, ε/2K). Hence, assume n > 1. Let Qt

M = P t
M ∪⋃{V | V is an odd domain of C∗ \ P t

M}. Let Si be all components of
S(O, ε/2K) \M . Since each component Mj of M \D is an arc which
locally separates the plane, points on one side of Mj are in an even
domain and points on the other side are in an odd domain. Hence,
each arc Si is contained in a complementary domain Vi of C∗ \P t

M and
these domains are alternately even and odd moving around the circle
S(O, ε/2K). In particular, n is even. We may order M so that xt < yt

and we write intervals in M as in R.
LetM = {Mi} be the collection of all components of M\B(O, ε/2K).

We can define a partial order ≺ on M by M1 ≺ M2 if M2 separates M1

from wt in C \B(O, ε/2K). Assume that M1 = (a1, b1) (with a1 < b1)

is a minimal element of M. Then M1 ∪ B(O, ε/2K) bounds a disk

V1 whose closure meets B(O, ε/2K) in an arc S1 ⊂ S(O, ε/2K) and
S1∩M = {a1, b1}. Then S1 is either contained in an an even or an odd
domain of C∗ \ P t

M .
Subcase 0. Suppose that Zt ∩ S1 = ∅ (this must be the case if S1 is

contained in an odd domain). In this case choose a′1 < a1 < b1 < b′1,
with a′1 in B(O, ε/2K) very close to a1 and b′1 in B(O, ε/2K) very
close to b1, and an arc S ′1 ⊂ B(O, ε/2K) very close to S1 from a′1
to b′1 such that S ′1 ∩ Zt = ∅. Then Zt is disjoint from the bounded
complementary domain B of the simple closed curve F = S ′1 ∪ (a′1, b

′
1).

Hence there exists a homotopy of the plane which is the identity on
Zt∪S ′1∪[xt, a′1]∪[b′1, y

t] and shrinks B to S ′1. Let M ′ = S ′1∪[M\(a1, b1)].
Then z ∈ Zt lies in an odd domain of C∗ \ P t

M if and only if z lies in
an odd domain of C∗ \ [D ∪ M ′]. Thus M ′ satisfies (3). Clearly M ′

satisfies (1-2) and since |M ′ ∩ S(O, ε/2K| < n we have a contradiction
with the minimality of n.

Hence we may assume that S1 ∪ V1 is contained in an even domain
and Zt ∩ S1 6= ∅. Then there exists M2 = (a2, b2) ∈ M (with a2 < b2)
such that M2 is the immediate successor of M1 in M. Let V2 be the
component of C∗ \ [V1 ∪B(O, ε/2K) ∪M2] whose closure contains the
arc (a1, b1). Since M2 is the immediate successor of M1 in M, there
exists an arc J ⊂ [V2\M ]∪{j1, j2} with one endpoint of J , j1 ∈ (a1, b1)
and the other endpoint of J , j2 ∈ (a2, b2). Moreover, since V1 was even,
J is contained in an odd domain and J ∩ Zt = ∅. We will examine
the circular (counter clockwise) order <C of the four points a1, b1, a2, b2

around the circle S(O, ε/2K).
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Figure 1. Subcase 1 in the proof of Theorem 6.1

Subcase 1. a2 <C a1 <C b1 <C b2. We have either a1 < a2 < b1 < b2

(see figure 1) or a2 < b2 < a1 < b1. Since wt ∈ Zt∩Bd(U t), Zt∩S1 6= ∅
and M ∩Zt = {xt, yt}, in either case (see the gate theorems in [Bec74,
page 36]), the simple closed curve F = J ∪ [j1, j2] separates xt from yt.
Since Zt ∩ F = ∅, this contradicts the connectedness of Zt.

Subcase 2. b2 <C a1 <C b1 <C a2. Then either a1 < b1 < a2 < b2

or a2 < b2 < a1 < b1. Since M ∩ Zt = {xt, yt}, wt ∈ Zt ∩ Bd(U t) and
Zt ∩ S1 6= ∅, xt and yt are contained in the unbounded component of
F = J ∪ [j1, j2] and the proof proceeds as in Subcase 0, where F is now
J ∪ [j1, j2].

Other cases are similar. This completes the proof of the Claim.
Hence for each t there exists a crosscut M(t) joining xt to yt in

U t such that diam(M(t)) < ε/K. By Theorem 5.1, the diameter of
the hyperbolic crosscut Ct is less than ε for all t. This contradiction
completes the proof.

¤

7. Extending the isotopy over C

Now that we know how to extend the isotopy over hyperbolic cross-
cuts, it remains to define the extension over all complementary domains
U of Z. Easy examples show that if we choose the hyperbolic crosscuts
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without care the extension may not be continuous. Fortunately a suit-
able set of hyperbolic crosscuts exists. Fix a component U of C∗ \ Z
and let B be the collection of all maximal open balls B(z, r) ⊂ U (that
is open balls in the spherical metric and such that |S(z, r) ∩ Z| ≥ 2).
Let C be the collection of all centers of such balls and for c ∈ C let
r(c) be the corresponding radius. Note that for each c ∈ C, B(c, r(c))
is conformally equivalent with the unit disk D and, hence, can be en-
dowed with the hyperbolic metric. Let F (c) be the convex hull of the
set S(c, r(c)) ∩X in B(c, r(c)) using the hyperbolic metric on the ball
B(c, r(c)). The following Theorem is due to Kulkarni and Pinkall:

Theorem 7.1 ([KP94]). For each z ∈ U there exists a unique c ∈ C
such that z ∈ F (c).

Note that the collection of chords in the boundaries of all F (c) form
a lamination of U in the sense of Thurston [Thu85]. As in [Thu85] we
will call the chords in this lamination leaves. Then two such leaves do
not cross each other (i.e., if ` 6= `′ are leaves, then ` ∩ `′ ∩ U = ∅) and
any convergent sequence of leaves is either a leaf, or a point in Z. In
particular, the subcollection of leaves of diameter greater or equal to
ε is compact for each ε > 0. This collection of leaves will naturally
provide us with the required collection of hyperbolic crosscuts by sim-
ply replacing each leaf in the lamination by the hyperbolic crosscut
joining its endpoints. The collection H of such hyperbolic crosscuts
will be called the hyperbolic KP-lamination of U0. The union of all the
hyperbolic crosscuts in H will be denoted by H∗. A gap G of H is the
closure of a component of U \ H∗. By Theorems 5.3 and 6.1 we can
extend the isotopy h over H∗. To finish the proof we must extend the
isotopy over all gaps.

Theorem 7.2. Suppose that ht is an isotopy of a plane continuum
Z, which we consider as a subset of the sphere C∗, with h0 = id|Z.
Then there exists an extension to an isotopy H t : C∗ → C∗ such that
H0 = idC∗.

Proof. Let {Un} be all the components of C∗ \Z. For each n let Hn be
the hyperbolic KP-lamination of Un. Since the diameter of maximal
balls contained in distinct components Un converges to 0, it follows
from Theorems 6.1 and 5.1 that for any sequence Cn ∈ Hn, such that
Un 6= Um when n 6= m,

(7.1) lim diam(Cn) = 0.

By Theorems 6.1 and 5.3 we can extend the isotopy h of Z to an
isotopy Hn of Z ∪H∗

n such that Hn preserves the hyperbolic crosscuts
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in H0
n (i.e., H t

n(H0
n) = Ht

n). Each gap Gt in U t
n is a hyperbolic convex

set with barycenter bt
G using the Cayley-Klein model of U t

n. For each t
define Ht

n(b0
G) = bt

G and extend Hn over G by taking the “cone”of Hn

over the boundary of G and its barycenter b0
G (using the Cayley-Klein

model). Note that if Gi is a convergent sequence of gaps in Un, then
either lim Gi is a point in the boundary of Un, or a leaf C in Hn. In
the latter case the barycenters bi of Gi converge to the barycenter of
C. It follows that the isotopy h can be extended to an isotopy Hn of
Z ∪ Un for each n.

Let H = ∪Hn. Then H : C∗ × [0, 1] → C∗ is continuous by (7.1).
Hence H is the required extension of h. ¤

Theorem 7.2 shows that we can extend an isotopy h of a planar
continuum Z, starting at the identity, to an isotopy H : C∗×[0, 1] → C∗
of the sphere. Let U denote the component of C∗ \ Z containing the
point at infinity. By composing the isotopy H by an isotopy K of the
sphere such that K0 = idC∗ and Kt|C∗\U = idC∗\U , and Kt(H t(∞)) =
∞ for all t ∈ [0, 1] we obtain an isotopy which extends h and fixes the
point at infinity. Hence the following theorem follows.

Theorem 7.3. Suppose that ht is an isotopy of a plane continuum
Z ⊂ C with h0 = id|Z. Then there exists an extension to an isotopy
H t : C→ C such that H0 = id.
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