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Abstract. In this paper we use a result by J. Krasinkiewicz to present
a description of the topological behavior of an open map defined between
dendrites. It is shown that, for every such map f : X → Y, there exist n
subcontinua X1, X2,. . ., Xn of X such that X = X1∪X2∪· · ·∪Xn, each
set Xi∩Xj consists of at most one element which is a critical point of f ,
and each map f|Xi

: Xi → Y is open, onto and can be lifted, in a natural
way, to a product space Zi × Y for some compact and zero-dimensional
space Zi. We also study the ω-limit sets ω(x) of a self-homeomorphism
f : X → X defined on a dendrite X. It is shown that ω(x) is either a
periodic orbit or a Cantor set (and if this is the case, then f|ω(x) is an
adding machine).

1. Introduction

It is well known that each open map from the interval [0, 1] to itself is
an n-fold branched covering map (i.e., there exist n ∈ N and n subcontinua
X1, X2,. . ., Xn of [0, 1] such that [0, 1] = X1 ∪X2 ∪ · · · ∪Xn, each set Xi ∩
Xj contains at most one element, for i, j ∈ { 1, 2,. . ., n } with i 6= j, and
each map fi = f|Xi

: Xi → [0, 1] is a homeomorphism). Based on this
fact, the dynamics of such maps have been extensively investigated (see for
example [MT88]). Since every open map of a finite tree, with at least one
branch-point, onto itself is a homeomorphism (Theorem 3.1), it is natural
to investigate open maps on dendrites. Easy examples show that a straight
forward generalization of the above result for the interval is false. In this
paper we formulate a correct generalization for the class of dendrites (see
Theorem 4.4).

Dendrites appear naturally as the Julia set of a complex polynomial. If,
for example, p : C→ C is the map defined by p(z) = z2 + c, then for certain
values of c, the Julia set J of p is a dendrite and the map p|J : J → J is a
branched covering [Mil00]. In particular, p|J is open. The dynamics of such
maps is still not well understood (cf. [BL02] and [Thu85]) and serves as a
motivation for this paper.
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The paper is divided in 5 sections. After the introduction, we write in
Section 2 some notions and auxiliary results. Then in Section 3 we present
some conditions under which an open map defined between dendrites must
be a homeomorphism. In this section we also study the ω-limits sets of a
self-homeomorphism f : X → X defined on a dendrite X. Later in Section 4
we present a consequence of a theorem by Krasinkiewicz that will allow us
to prove the main theorem of the paper (Theorem 4.3). Finally, in Section 5
we collect some other results involving open maps between dendrites.

2. Notions and auxiliary results

All spaces considered in this paper are assumed to be metric. If X is
a space, p ∈ X and ε > 0, then BX(p, ε) denotes the open ball around
p of radius ε. If A ⊂ X, then the symbols clX(A) , intX(A) and bdX(A)
stands for the closure, the interior and the boundary of A in X, respectively.
Moreover, the symbol |A| represents the cardinality of A.

A continuum is a nonempty, compact and connected metric space. The
topological limit, with respect to the Hausdorff metric, of a sequence of
closed nonempty sets (Yn)n in a metric space is denoted by Lim Yn.

A dendrite is a locally connected continuum that contains no simple closed
curves. For a dendrite X it is known that any subcontinuum of X is a den-
drite [Nad92, Corollary 10.6], every connected subset of X is arcwise con-
nected [Nad92, Proposition 10.9], and the intersection of any two connected
subsets of X is connected [Nad92, Theorem 10.10]. Given points p and q in
a dendrite X, there is only one arc from p to q in X. We denote such an arc
by pq.

A map is a continuous function. A map f from a continuum X onto a
continuum Y is said to be

• open if the image of any open subset of X is an open subset of Y ;
• interior at x ∈ X if for every open set U of X such that x ∈ U, we

have f(x) ∈ intY (f(U));
• confluent provided that for any subcontinuum Q of Y and any com-

ponent C of f−1(Q), we have f(C) = Q;
• monotone if for any y ∈ Y, the set f−1(y) is connected;
• light if for any y ∈ Y, the set f−1(y) is zero-dimensional.

It is well known that a map is open if and only if it is interior at each
point of its domain. Moreover, any open map is confluent [Nad92, Theorem
13.14]. It is also known that confluent light maps onto a locally connected
continuum are open.

For a dendrite X and a point p ∈ X we denote the order of p at X by
ordpX. Points of order 1 in X are called end-points of X. The set of all such
points is denoted by E(X). It is known that E(X) is zero-dimensional. It
is easy to see that if C is a connected subset of X, then the set C \ E(X)



OPEN MAPPINGS 3

is arcwise connected. Points of order 2 in X are called ordinary points of
X. The set of all such points is denoted by O(X). It is known that O(X) is
dense in X [Nad92, 10.42]. Points of order greater than 2 are called branch
points of X. The set of all such points is denoted by B(X). It is known that
B(X) is countable [Nad92, Theorem 10.23]. Moreover ordpX ≤ ℵ0 for any
p ∈ X. Note that X = E(X) ∪O(X) ∪B(X).

For a dendrite X and subcontinua A and B of X such that A ∩ B 6= ∅
we define a map r : A ∪ B → A as follows. If x ∈ A we put r(x) = x and
if x ∈ (A ∪ B) \ A then r(x) is the unique point of A ∩ C where C is any
irreducible arc in A ∪ B from x to a point of A. It is known that r is a
monotone retraction from A∪B onto A [Nad92, Lemma 10.25]. The map r
is called the first point map from A ∪B to A.

If f : X → Y is a map then a point p ∈ X is said to be
• a fixed point of f if f(p) = p;
• a periodic point of f if there exists n ∈ N such that fn(p) = p;
• a critical point of f if for any neighborhood U of p there exist x1, x2 ∈

U such that x1 6= x2 and f(x1) = f(x2).
We denote by Fix(f), P (f) and C the set of fixed, periodic and critical

points of f , respectively. It is known that if f : X → X is a map and X is
a dendrite, then Fix(f) 6= ∅ [Why, Corollary 3.21, p. 243].

If X is a space then an arc pq in X is called a free arc in X provided that
pq \ {p, q} is open in X. The following theorem collects some results from
Section 6 of [CCP94].

Theorem 2.1. Let f : X → Y be an open map from a dendrite X onto a
continuum Y. Then
(2.1.1) Y is a dendrite;
(2.1.2) f is light;
(2.1.3) ordf(p)Y ≤ ordpX for any p ∈ X;
(2.1.4) if ordpX = ℵ0, then ordf(p)Y = ℵ0;
(2.1.5) f(E(X)) ⊂ E(Y );
(2.1.6) f−1(B(Y )) ⊂ B(X);
(2.1.7) the set f−1(y) is finite for any y ∈ Y \ E(Y );
(2.1.8) the set f−1(E(Y )) \ E(X) is finite;
(2.1.9) the image under f of a free arc in X is a free arc in Y ;

(2.1.10) for each subcontinuum B of Y and for each p ∈ f−1(B), there is a
subcontinuum A of X containing p and such that the map f|A : A →
B is a homeomorphism.

The following basic result will be used in Section 4.

Theorem 2.2. Let X be a dendrite and let M be a subset of X such that
E(X) ⊂ M and M \E(X) is closed in X. Let C be a component of X \M .
Then C is open and closed in X \M .
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Proof. Note that X \E(X) is connected and locally connected. Hence X \M
is locally connected and the required result follows easily. �

3. Homeomorphisms and ω-limit sets

In this section we provide sufficient conditions which imply that an open
map, defined between dendrites, must be a homeomorphism. Later we will
study the ω-limit sets of a self-homeomorphism f : X → X defined on a
dendrite X. We start with a self-open map defined on a non-trivial tree, in
which case no additional assumptions are needed, i.e. such a map must be
a homeomorphism.

Theorem 3.1. Let f : X → X be an open map from a finite tree X onto
itself. If B(X) 6= ∅, then f is a homeomorphism.

Proof. Put n = |B(X)| and let B(X) = {b1, b2, . . . , bn}. For any given i ∈
{1, 2, . . . , n}, let ai ∈ X be such that f(ai) = bi. Put B = {a1, a2, . . . , an}.
By (2.1.6), B ⊂ B(X) and since |B| = n, it follows that B(X) = B. This
shows that f(B(X)) = B(X) and f−1(B(X)) = B(X). Hence the map
f|B(X) : B(X) → B(X) is one-to-one and onto. To finish the proof it suffices
to show, by (2.1.5), that f−1(E(X)) ⊂ E(X).

To see this, suppose there exists v ∈ X\E(X) such that w = f(v) ∈ E(X).
Since B(X) is finite and f(B(X)) = B(X) it follows that v ∈ O(X) and
there is a connected open subset U of X such that v ∈ U ⊂ O(X). Since f
is light U can be chosen so that X \ f−1(f(U)) has at least two components
C and D. By (2.1.3) and the inclusion U ⊂ O(X) we have f(U)∩B(X) = ∅
and f(U) ∩ E(X) = {w}. Thus X \ f(U) is a subcontinuum of X that
contains B(X). Note that f−1(X \ f(U)) = X \ f−1(f(U)), so both C
and D are components of f−1(X \ f(U)). By the confluence of f we have
f(C) = f(D) = X \ f(U). The latter contradicts the fact that f|B(X) is
one-to-one and completes the proof. �

In the following theorem we give some conditions under which a confluent
map between dendroids must be a homeomorphism. Recall that a dendroid
is an arcwise connected continuum such that the intersection of any two
of its subcontinua is connected. Note that dendrites are locally connected
dendroids. We extend the definition of an end-point in a dendrite as follows.
Suppose X is a dendroid. Then a point e ∈ X is called an end-point of X
if e is an end-point of every arc in X which contains e. Note that if X is
locally connected (and hence if X is a dendrite), this implies that the order
of X at e is one. As before we denote the set of all end-points of a dendroid
X by E(X).

Theorem 3.2. Let f : X → Y be a map from a dendroid X onto a dendroid
Y . Let us assume that:
(3.2.1) f is confluent and light,
(3.2.2) f−1(E(Y )) = E(X) and the map f|E(X) : E(X) → E(Y ) is one-to-

one.
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Then f is a homeomorphism.

Proof. Let us assume, on the contrary, that there exist x, y ∈ X with x 6= y
and f(x) = f(y). By (3.2.2) f(x) /∈ E(Y ) and, by (3.2.1), the set f−1(f(x))
is zero-dimensional. Then we can assume, without loss of generality, that
xy ∩ f−1(f(x)) = {x, y}. Since f(x) /∈ E(Y ), and f(z) 6= f(x) for all z ∈
xy \ {x, y}, there is e ∈ E(Y ) such that ef(x) ∩ f(xy) = {f(x)}. Let Cx

and Cy be the components of f−1(ef(x)) such that x ∈ Cx and y ∈ Cy.
Since f is confluent, we have f(Cx) = f(Cy) = ef(x). Take points a ∈ Cx

and b ∈ Cy such that f(a) = f(b) = e. By (3.2.2) we have a, b ∈ E(X) and
a = b. Then the continuum Cx ∪ xy ∪ Cy contains a simple closed curve, a
contradiction. �

The following easy corollary will be used in the proof of Theorem 4.4.
Another proof can be obtained using the corollary that appears at the end
of page 199 of [Why].

Corollary 3.3. Let f : X → Y be an open map from a dendrite X onto a
dendrite Y . If f has no critical points, then f is a homeomorphism.

Proof. Let f be as assumed. Since f has no critical points, f−1(E(Y )) ⊂
E(X), and since f is onto and f(E(X)) ⊂ E(Y ) we have f−1(E(Y )) =
E(X). This implies that f|E(X) is one-to-one. To see this consider two
distinct points e1, e2 ∈ E(X) such that f(e1) = f(e2). Then, since f is
light, f(e1e2) = Z is a (non-degenerate) continuum. Let y ∈ E(Z) \ {f(e1)}
and x ∈ e1e2 \ {e1, e2} such that f(x) = y. Then x is a critical point of f , a
contradiction. By Theorem 3.2, f is a homeomorphism. �

Now we turn our attention to self-homeomorphisms defined on a dendrite.
The next two results involves the set of fixed points of any such map.

Lemma 3.4. Let X be a dendrite and g : X → X a homeomorphism from
X onto itself. Let a, b ∈ X be such that a 6= b and g(b) ∈ X \ ab. Let D be
the component of X \ {b} that contains g(b). Then Fix(g) ∩ clX(D) 6= ∅.

Proof. By a standard construction of a maximal Borsuk ray (see [Hag86]),
there is a map ϕ : [0,∞) → clX(D) such that ϕ(0) = b, ϕ(t) ∈ bg(ϕ(t)) \
{g(ϕ(t))} for every t ∈ [0,∞), clX(ϕ([0,∞)))\ϕ([0,∞)) = {y} and g(y) = y.
Then y ∈ Fix(g) ∩ clX(D). �

Lemma 3.5. Let X be a dendrite and g : X → X a homeomorphism from
X onto itself. If E(X) ∩ Fix(g) 6= ∅, then |Fix(g)| ≥ 2.

Proof. Let e ∈ E(X)∩Fix(g) and assume that Fix(g) = {e}. Let p ∈ X\{e}.
Note that C = ep ∩ eg(p) is an arc that contains e as one end-point. Let
v be the other end-point of C. Since g(e) = e and g is a homeomorphism,
we have g(ep) = eg(p), so g(v) ∈ eg(p). Thus either v ∈ eg(v) \ {g(v)} or
g(v) ∈ ev \ {v}. Let us assume first that v ∈ eg(v) \ {g(v)}. Let D be the
component of X \{v} that contains g(v). By Lemma 3.4, Fix(g)∩clX(D) 6=
∅. Let us assume now that g(v) ∈ ev \ {v} and let E be the component
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of X \ {g(v)} that contains v. By Lemma 3.4, applied to g−1, we have
Fix(g−1) ∩ clX(E) 6= ∅. In any case we found a fixed point of g different
than e. �

From now on, in this section, f : X → X represents a homeomorphism
from a dendrite X onto itself. Given x ∈ X the set ω(x) of points y ∈ X such
that, for any neighborhood U of y and any N ∈ N, there is n > N such that
fn(x) ∈ U is called the ω-limit set of f . Note that ω(x) = lim sup fn(x). In
this section we will prove that either ω(x) is a periodic orbit or a Cantor set.
To this aim let us consider the collection C of all components of X \Fix(f).
Since Fix(f) is a closed subset of the locally connected continuum X, the
elements of C are open subsets of X. Moreover if C ∈ C, then C∩Fix(f) = ∅
so clX(C) ∩ Fix(f) ⊂ E(clX(C)). In the following lemma we present more
properties of C and its elements.

Lemma 3.6. The following properties are satisfied:
(3.6.1) C is countable;
(3.6.2) f(C) ∈ C for any C ∈ C;
(3.6.3) if C ∈ C, then |clX(C) ∩ Fix(f)| ≤ 2;
(3.6.4) if C ∈ C and |clX(C) ∩ Fix(f)| = 2, then f(C) = C and if we write

clX(C) ∩ Fix(f) = {a, b} then for any x ∈ C either ω(x) = {a} or
ω(x) = {b};

(3.6.5) if C ∈ C, |clX(C) ∩ Fix(f)| = 1 and fn(C) 6= C for all n ∈ N, then
ω(x) = clX(C) ∩ Fix(f) for any x ∈ C.

Proof. Let D be a countable dense subset of X and Ci ∈ C. Since Ci is open
it follows that Ci∩D 6= ∅ so we can pick a point di ∈ Ci∩D. Note that if Ci

and Cj are different elements of C, then di 6= dj . Thus since D is countable,
the collection C is countable as well. This shows (3.6.1).

To show (3.6.2) let C ∈ C. Note that f(Fix(f)) = Fix(f). Since f is a
homeomorphism f(C) is a component of f(X\Fix(f)) = f(X)\f(Fix(f)) =
X \ Fix(f), so f(C) ∈ C.

To show (3.6.3) let C ∈ C and assume that |clX(C) ∩ Fix(f)| ≥ 3. Let
a, b and c be three different elements of clX(C) ∩ Fix(f). Consider the arcs
ab, bc and ac in clX(C) and note that ab ∩ bc ∩ ac = {t} ⊂ C. Since f is a
homeomorphism that fixes a, b and c we have t ∈ C∩Fix(f), a contradiction.
This shows (3.6.3).

Now assume that C ∈ C is such that |clX(C)∩Fix(f)| = 2. Put clX(C)∩
Fix(f) = {a, b} and take x ∈ C. Let r be the first point map from X to
ab ⊂ clX(C). It is easy to see that

1) r(z) = az ∩ ab ∩ bz, for any z ∈ X.
In particular r(x) = ax ∩ ab ∩ bx. Since a, b ∈ Fix(f), f(ab) = ab, f(ax) =
af(x), f(bx) = bf(x), and f is a homeomorphism

f(r(x)) = f(ax ∩ ab ∩ bx) = af(x) ∩ ab ∩ bf(x).
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Applying 1) to z = f(x) we have af(x) ∩ ab ∩ bf(x) = r(f(x)). Hence
f(r(x)) = r(f(x)), so fn(r(x)) = r(fn(x)) for any n ∈ N. Note that
r(x) ∈ ab \ {a, b}, so f(r(x)) 6= r(x). This implies that the arcs xr(x)
and f(x)r(f(x)) are disjoint. Now, since r(x), f(r(x)) ∈ ab \ {a, b} and
r(x) 6= f(r(x)) either f(r(x)) ∈ br(x) or f(r(x)) ∈ ar(x). Let us assume,
without loss of generality, that f(r(x)) ∈ r(x)b. Then f|ab is a homeomor-
phism whose graph lays above the diagonal (except at points a and b), so
fn(z) → b for any z ∈ ab \ {a, b}. In particular fn(r(x)) → b and since
the arcs in the sequence (fn(x)r(fn(x)))n are mutually disjoint, it follows
that fn(x) → b. Thus ω(x) = {b}. To complete the proof of (3.6.4) we
have to see that f(C) = C. Let us assume that there is y ∈ C such that
f(y) /∈ C. Then r(f(y)) ∈ {a, b}, so r(y) is an element of X such that
f(r(y)) = r(f(y)) ∈ {a, b}, and this contradicts the fact that f is one-to-
one. Thus f(C) ⊂ C. By (3.6.2), C ⊂ f(C), so f(C) = C. The proof of
(3.6.4) is complete.

To show (3.6.5) let C ∈ C be such that |clX(C)∩Fix(f)| = 1 and fn(C) 6=
C, for all n ∈ N. Put clX(C) ∩ Fix(f) = {a} and let x ∈ C. By (3.6.2) and
(3.6.4), (fn(C))n is a sequence of mutually disjoint elements of C such that,
for any n ∈ N, fn(clX(C)) ∩ Fix(f) = {a}. Since X is locally connected
fn(clX(C)) → {a}, so ω(x) = {a} for any x ∈ C. �

Let C ∈ C be such that |clX(C)∩Fix(f)| = 1 and fn(C) = C for some n ∈
N. Put clX(C) ∩ Fix(f) = {a}. If n = 1 then f|clX(C) is a homeomorphism
from the dendrite clX(C) onto itself such that a ∈ Fix(f|clX(C) )∩E(clX(C)).
Then, by Lemma 3.5, |clX(C)∩Fix(f)| = |Fix(f|clX(C) )| ≥ 2. Since this is a
contradiction, we have n > 1.

We say that an element C ∈ C is an end-periodic component of X \Fix(f)
(or simply, that C is end-periodic) if |clX(C) ∩ Fix(f)| = 1 and fn(C) = C
for some n > 1. By (3.6.2), (3.6.4) and (3.6.5) the image under f of an end-
periodic component of X\Fix(f) is an end-periodic component of X\Fix(f).
We say that, for an element x ∈ X, ω(x) is a periodic orbit if there exists
y ∈ P (f) such that ω(x) = {fn(y) : n ∈ N ∪ {0}}. We understand that
f0(y) = y for any y ∈ X.

Let us assume that x ∈ X is such that ω(x) is not a periodic orbit. Then
if j ∈ N we have x ∈ X \Fix(f j). Since f j is a homeomorphism from X onto
itself, the family Cj of components of X \Fix(f j) satisfies properties (3.6.1)-
(3.6.5) where C is replaced by Cj and f by f j . Let C(j−1) ∈ Cj be such that
x ∈ C(j − 1). If C(j − 1) is not end-periodic then, by (3.6.4) and (3.6.5),
ω(x) ∈ Fix(f j). Since this contradicts the fact that ω(x) is not a periodic
orbit, C(j−1) is end-periodic. Put clX(C(j − 1))∩Fix(f j) = {d(j−1)} and
note that d(j−1) is an end-point of clX(C(j − 1)). Moreover, since C(j−1)
is end-periodic, there exists nj−1 > 1 such that f jnj−1(C(j−1)) = C(j−1).
We have shown the following result.
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Lemma 3.7. If x ∈ X is such that ω(x) is not a periodic orbit then, for any
j ∈ N, we have x ∈ C(j−1) where C(j−1) is an end-periodic component of
X \Fix(f j). Moreover if clX(C(j − 1))∩Fix(f j) = {d(j−1)}, then d(j−1)
is an endpoint of clX(C(j − 1)) and f jnj−1(C(j − 1)) = C(j − 1) for some
integer nj−1 > 1.

Let N = {n0, n1, n2, . . . } be a sequence of positive integers and let Z/ni

denote the cyclic group of integers mod (ni), with the discrete topology.
Then CN =

∏∞
i=0 Z/ni is a Cantor set. Define a homeomorphism hN :

CN → CN by hN (x0, x1, . . . ) = (y0, y1, . . . ), where yi is defined as follows.
If x0 < n0 − 1, then y0 = x0 + 1 and yi = xi for all i > 0. If there is j > 0
such that xi = ni − 1 for all i < j and xj < nj − 1, then yi = 0 for all i < j,
yj = xj +1 and yl = xl for all l > j. If xi = ni−1 for all i, then yi = 0 for all
i (one can think of hN (x0, x1, . . . ) informally as (x0, x1, . . . ) + (1, 0, 0, . . . )
by adding in each coordinate modulo ni and carrying). It is not difficult to
see that hN is a minimal homeomorphism. Any homeomorphism f : C → C
on a Cantor set C for which there exists a sequence of positive integers
N = {n0, n1, . . . } and a homeomorphism ϕ : C → CN such that f =
ϕ−1 ◦ hN ◦ ϕ will be called an adding machine (or a generalized odometer)
[BKP97, D86]. Similarly, given a finite sequence N(k) = {n0, . . . , nk} of
positive integers, we can define a periodic homeomorphism hk :

∏k
i=0 Z/ni →∏k

i=0 Z/ni by restricting hN to the first k+1 coordinates, where N(k) ⊂ N .
Hence, informally, hk(x0, . . . , xk) is defined as (x0, x1, . . . , xk) + (1, 0, . . . , 0)
by adding modulo ni in each coordinate and carrying.

We are ready to prove the above mentioned result about the ω-limit sets
of a self homeomorphism defined on a dendrite.

Theorem 3.8. Let X be a dendrite and f : X → X be a homeomorphism
from X onto itself. If x ∈ X then ω(x) is either a periodic orbit or a Cantor
set. Moreover if ω(x) is a Cantor set, then f|ω(x) is an adding machine.

Proof. Let 0m and 0∞ denote the m-tuple of zeros and the infinite sequence
of zeros, respectively. Take x ∈ X and assume that ω(x) is not a periodic
orbit. We will construct a decreasing sequence of subcontinua of X which
contain x, as follows. First, by Lemma 3.7, x ∈ C(0) where C(0) is an
end-periodic component of X \ Fix(f). Put clX(C(0)) ∩ Fix(f) = {d} and
let n0 > 1 be minimal such that fn0(C(0)) = C(0). Put D(0) = clX(C(0))
and note that D(0) = C(0) ∪ {d} and fn0(D(0)) = D(0). Put C(i) =
f i(C(0)) and D(i) = f i(D(0)) for 1 ≤ i < n0. Let N(0) = {n0}. Since
h0 : Z/n0 → Z/n0 is defined as h0(m) = m + 1 mod (n0), we can also
write D(i) = D(hi

0(0)) = f i(D(0)) for any 0 ≤ i < n0. Then C(i) is an
end-periodic component of X \ Fix(f) and D(i) ∩ Fix(f) = {d}.

Now define f0 = (fn0)|D(0) and note that f0 : D(0) → D(0) is a homeo-
morphism from the dendrite D(0) onto itself. Moreover Fix(f0) 6= ∅ and, by
Lemma 3.7, x ∈ C(0, 0) = C(02), where C(02) is an end-periodic component
of D(0)\Fix(f0). Put D(02) = clX(C(02)), D(02)∩Fix(f0) = {d(0)} and let
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n1 > 1 be minimal such that fn1
0 (D(02)) = D(02). Note that D(02)  D(0)

since d ∈ D(0) \ D(02). Let N(1) = {n0, n1}. Put D(hi
1(02)) = f i(D(02))

for 1 ≤ i < n0 · n1 − 1, and d(i) = d(hi
0(0)) = f i(d(0)) for 1 ≤ i < n0 − 1.

Let f1 = (fn1
0 )|D(02) and note that f1 : D(02) → D(02) is a homeomorphism

from the dendrite D(02) onto itself.

Now we proceed by induction for constructing the subcontinuum D(0j+1)
from the subcontinuum D(0j) that contains x. Put fj−1 = (fnj−1

j−2 )|D(0j) and
note that fj−1 : D(0j) → D(0j) is a homeomorphism. Hence Fix(fj−1) 6= ∅
and, since ω(x) is not a periodic orbit, x ∈ D(0j) \ Fix(fj−1). Thus, by
Lemma 3.7, x belongs to an end-periodic component C(0j+1) of D(0j) \
Fix(fj−1). Put D(0j+1) = clX(C(0j+1)), D(0j+1)∩Fix(fj−1) = {d(0j)} and
let nj > 1 be minimal such that f

nj

j−1(D(0j+1)) = D(0j+1). Let N(j) =
{n0, n1, . . . , nj}. Put D(hi

j(0j+1)) = f i(D(0j+1)) for 1 ≤ i < n0n1 · · ·nj −1,
and d(hi

j−1(0j)) = f i(d(0j)) for 1 ≤ i < n0n1 · · ·nj−1 − 1.
In this way, for ki ∈ {0, 1, . . . , ni − 1} and i ∈ {0, 1, . . . ,m}, we have

constructed a subcontinuum D(k0, k1, . . . , km) of X, such that

D(k0, k1, . . . , km, km+1) ( D(k0, k1, . . . , km)

for every km+1 ∈ {0, 1, . . . , nm+1 − 1}. Define

D(k0, k1, k2, . . .) =
∞⋂

m=0

D(k0, k1, . . . , km)

and note that D(k0, k1, k2, . . .) is the intersection of a decreasing sequence
of subcontinua of X, thus is a subcontinuum of X as well. Also define

d(k0, k1, k2, . . .) = lim
m→∞

d(k0, k1, . . . , km).

The limit exists because the sequence of points (d(k0, k1, . . . , km))m forms
a monotone sequence contained in an arc in X.

Define

K = {d(k0, k1, k2, . . .) : ki ∈ {0, 1, . . . , ni − 1} for all i}

and note that K ⊂ X. Put N = {n0, n1, n2, . . .} and CN =
∏

i Z/ni. Let
ϕ : K → CN be defined by ϕ(d(k0, k1, . . . )) = (k0, k1, . . . ). We claim that
ϕ is a homeomorphism. To see this, let τ be the topology on X and τs the
topology on K as a subspace of X. If τp is the product topology on CN ,
then we must show that τs = τp. Assume first that U is a basic open set in
τp. Let d(k0, k1, k2, . . .) ∈ U . Then there is m such that

U = {k0} × {k1} × · · · × {km} ×
∏
i>m

Z/ni

Let V = D(k0, k1, . . . , km)\{d(k0, k1, . . . , km−1)}. Note that d(k0, k1, k2, . . .) ∈
V ∩K and that V is a component of

V ′ = X \ {d, d(k0), d(k0, k1), . . . , d(k0, k1, . . . , km−1)}.
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Since V ′ ∈ τ and X is locally connected, it follows that V ∈ τ , so V ∩K ∈ τs.
Since V ∩K ⊂ U it follows that U ∈ τs. This shows that τp ⊂ τs.

To prove the other inclusion let U ∈ τs. Then U = V ∩K, for some V ∈ τ .
Let y = d(k0, k1, . . .) ∈ U . For simplicity put D∞ = D(k0, k1, . . .) and, for
each i, Di = D(k0, k1, . . . , ki), di = d(k0, k1, . . . , ki) and Ii = Di \D∞. Then
Ii is arcwise connected. To see this we will show that every point z ∈ Ii can
be joined to di−1 ∈ Ii by an arc lying entirely in Ii. Let zdi−1 be the arc
in Di joining z to di−1. Since y separates di−1 from D∞ \ {y}, it suffices to
show that y does not lie on zdi−1. Note that dj ∈ di−1y for all j > i − 1.
If y ∈ zdi−1, then dj ∈ zdi−1 for all j > i − 1. This implies that z ∈ D∞,
a contradiction. Hence Ii is arcwise connected for all i. Since (Di)i is a
decreasing sequence it follows that (Ii)i is a decreasing sequence as well,
and since

⋂
i Ii = ∅, it follows that diam(Ii) → 0. Then there is n such that

In ⊂ V .

Note that

Dn ∩K = {k0} × {k1} × · · · × {kn} ×
∏
i>n

Z/ni

so Dn ∩K ∈ τp. Moreover y ∈ Dn ∩K and

Dn ∩K = (In ∩K) ∪ (D∞ ∩K) ⊂ (V ∩K) ∪ {y} = U ∪ {y} = U.

This implies that U ∈ τp and then τs ⊂ τp. Thus τs = τp and since CN

is a Cantor set in the product topology, K is a Cantor set as well in the
subspace topology τs.

Since d(hi
j(0j+1)) = f i(d(0j+1)) and

d(k0, k1, k2, . . . ) = lim
m→∞

d(k0, k1, k2, . . . , km),

it follows that f(d(k0, k1, . . . )) = d(hN (k0, k1, . . . )). In other words, f|K =
ϕ−1◦hN◦ϕ and f|K is an adding machine. In particular the orbit of any point
in K is dense in K. Now, by [Nad92, Theorem 10.4], diam(fn(D(0∞)) → 0
and since x, d(0∞) ∈ D(0∞) it follows that fn(x) → fn(d(0∞)). There-
fore ω(x) = ω(d(0∞)) and since the orbit of d(0∞) is dense in K, we have
ω(d(0∞)) = K. This shows that ω(x) is a Cantor set and f|ω(x) is an adding
machine. �

Corollary 3.9. If f : X → X is a homeomorphism from a dendrite X onto
itself, then the entropy of f is zero.

Proof. Let hN : CN → CN be an adding machine. Then hN is an isometry
in the natural metric on CN and, hence, the entropy of hN is zero. Moreover,
if the entropy of f is positive, then there exists x ∈ X such that the entropy
of f|ω(x) is positive. Hence the result follows from Theorem 3.8. �
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4. Open maps between dendrites

Consider spaces X, Y,M and maps f : X → Y and u : M → Y . Then a
map v : M → X is said to be a lifting of u with respect to f provided that
u = f ◦ v. Denote by C(X, Y ) the space of all maps from X into Y . In
Section 1 of [K00] the following result is proved.

Theorem 4.1. Let f : X → Y be a confluent and light map from a compact
space X onto Y . Let w : D → Y be a map from a dendrite D and let x0 ∈ X
and θ ∈ D be such that f(x0) = w(θ). Then
(4.1.1) there is a lifting v : D → X of w with respect to f such that v(θ) = x0;
(4.1.2) all liftings of w with respect to f constitute a zero-dimensional com-

pact subset of C(D,X).

For proving Corollary 4.3 we will use the following reformulation of the
conclusion of Theorem 4.1.

Corollary 4.2. Let f : X → Y be a confluent and light map from a compact
space X onto Y . Let w : D → Y be a map from a dendrite D and let
x0 ∈ X and θ ∈ D be such that f(x0) = w(θ). Then there exist a compact
zero-dimensional space Z, a point z0 ∈ Z, and a map q : Z ×D → X such
that
(4.2.1) q(z0, θ) = x0,
(4.2.2) f(q(z, t)) = w(t) for each (z, t) ∈ Z ×D,
(4.2.3) for each lifting λ : D → X of w with respect to f , there is a uniquely

determined element z ∈ Z such that λ(t) = q(z, t) for each t ∈ D.

Proof. Let Z be the set of all z ∈ C(D,X) such that z is a lifting of w
with respect to f . By (4.1.2) Z is compact and zero-dimensional. Let z0

be the lifting v guaranteed in (4.1.1) and define q : Z ×D → X as q(z, t) =
z(t). Then it is easy to show that properties (4.2.1), (4.2.2) and (4.2.3) are
satisfied. �

Corollary 4.3. Suppose that f : X → Y is an open and onto map between
dendrites X and Y . Then there is a compact and zero-dimensional set Z
and an onto map q : Z × Y → X such that if π2 : Z × Y → Y is the map
given by π2(z, y) = y for any (z, y) ∈ Z × Y, then f ◦ q = π2. Additionally
we have the following properties
(4.3.1) if q(z1, y1) = q(z2, y2), then y1 = y2.
(4.3.2) if z ∈ Z and R = q({z} × Y ), then the maps q|{z}×Y : {z} × Y → R

and f|R : R → Y are homeomorphisms.

Proof. Open maps between dendrites are confluent and light, so we can use
Corollary 4.2 with the map f as given in the hypothesis, D = Y and w
as the identity map on Y . To show that the map q : Z × Y → X is onto
let x ∈ X. By (4.1.1) there is a lifting λ : Y → X of w with respect to
f such that λ(f(x)) = x. By (4.2.3) there is an element z ∈ Z such that
λ(y) = q(z, y) for any y ∈ Y . In particular q(z, f(x)) = λ(f(x)) = x, so f is
onto. Properties (4.3.1) and (4.3.2) are easy to prove. �
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For a natural number n we write In = { 1, 2,. . ., n }.

Theorem 4.4. Let f : X → Y be an open map from a dendrite X onto a
dendrite Y, and let C be the set of critical points of f. Then there exist n ∈ N
and n subcontinua X1, X2,. . ., Xn of X with the following properties
(4.4.1) X = X1 ∪X2 ∪ · · · ∪Xn;
(4.4.2) for any i, j ∈ In with i 6= j the set Xi ∩ Xj contains at most one

element. Moreover if x ∈ Xi ∩ Xj then x ∈ C \ E(X) and f(x) ∈
E(Y );

(4.4.3) for each i ∈ In, the map fi = f|Xi
: Xi → Y is open and onto;

(4.4.4) for each i ∈ In, if f(C∩Xi) ⊂ E(Y ), then the map fi = f|Xi
: Xi → Y

is a homeomorphism;
(4.4.5) for each i ∈ In, if f(C ∩Xi) \ E(Y ) 6= ∅, it follows that

(4.4.5.1) if c is a critical point of fi and c /∈ E(Xi) then fi(c) /∈ E(Y );
(4.4.5.2) there is a compact and zero-dimensional set Zi and an onto map

qi : Zi×Y → X such that if π2 : Zi×Y → Y is the map given by
π2(z, y) = y for any (z, y) ∈ Zi×Y, then fi◦qi = π2. Additionally
we have properties (4.3.1) and (4.3.2) of Corollary 4.3 when Z,
X, q and f are replaced by Zi, Xi, qi and fi, respectively.

Proof. Put M = f−1(E(Y )) and consider the sets OM = O(X) ∩ M and
BM = B(X) ∩ M. Then M = E(X) ∪ OM ∪ BM by (2.1.5). Moreover,
the sets E(X), OM and BM are pairwise disjoint and, by (2.1.8), the set
M \E(X) is finite. Clearly M \E(X) = OM ∪BM . Now consider the family

C = {C ⊂ X : C is a component of X \M }.

In the following lines we establish some properties of the family C.

1) If C ∈ C then f(C) = Y \ E(Y ) and f(clX(C)) = Y.

To show this let C ∈ C and c ∈ C. If f(c) ∈ E(Y ), then c ∈ M, a
contradiction to the fact that C ∩M = ∅. Hence f(C) ⊂ Y \E(Y ). To show
the other inclusion fix a point x ∈ C and let y ∈ Y \ E(Y ). Put z = f(x).
Note that the set Y \ E(Y ) is arcwise connected and that yz ∩ E(Y ) = ∅.
Then for the component K of f−1(yz) that contains x, we have K ∩M = ∅.
Hence K ⊂ C. Since f is confluent we have f(K) = yz, so there is c ∈ K
such that f(c) = y. This shows that Y \ E(Y ) ⊂ f(C) and the first part of
1) holds. Since f is closed we have

f(clX(C)) = clY (f(C)) = clY (Y \ E(Y )) = Y.

Hence 1) holds. Now we claim that
2) If C,D ∈ C and C 6= D, then clX(C) ∩D = ∅.

To show this let C,D ∈ C be such that C 6= D. Note that M is a subset
of X such that E(X) ⊂ M and M \ E(X) is finite. Then, by Theorem 2.2,
C is open and closed in X \M . Thus clX\M (C) ∩D = C ∩D = ∅, so

∅ = clX\M (C) ∩D = clX(C) ∩ (X \M) ∩D = clX(C) ∩D.
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This shows 2).

3) If C ∈ C, then clX(C) \ C ⊂ M.

To see this let C ∈ C and take a point x ∈ clX(C) \ C. If x /∈ M, then
x ∈ D for some D ∈ C. Note that clX(C) ∩ D 6= ∅ and D 6= C. This
contradicts 2), so 3) holds.

4) If C,D ∈ C, C 6= D and B = clX(C)∩ clX(D) , then either B = ∅ or
B is a one-point set and B ⊂ OM ∪BM .

To show this let C,D and B be as assumed. Consider that B is nonempty.
Then B is a subcontinuum of X, so f(B) is a subcontinuum of Y. Let us
assume that there is a point b ∈ B \M. Then, by 3), b ∈ clX(C) \M ⊂ C
and b ∈ clX(D)\M ⊂ D. This implies that C = D, which is a contradiction.
Hence B ⊂ M. Thus f(B) ⊂ f(M) ⊂ E(Y ). Since E(Y ) is zero-dimensional
and f(B) is connected, it follows that f(B) is a one-point set. Hence, by
(2.1.2), B is a one-point set too.

Put B = {x} and note that x ∈ M. Then x ∈ E(X) ∪ OM ∪ BM . Let us
assume that x ∈ E(X). Fix points c ∈ C and d ∈ D and consider the arcs
cx ⊂ clX(C) and dx ⊂ clX(D) . Then cx∩ dx ⊂ B = {x}, so the set cx∪ dx
is an arc in X with end-points c and d. Since x ∈ E(X) either x = c or
x = d. Hence either clX(C)∩D 6= ∅ or clX(D)∩C 6= ∅. In any situation we
contradict assertion 2), so 4) holds.

5) If C ∈ C, then E(clX(C)) = clX(C) ∩M.

To show this note first that clX(C) ∩M ⊂ clX(C) \ C ⊂ E(clX(C)). On
the other hand suppose x ∈ E(clX(C)) and x /∈ M . Then x /∈ E(X) so
X \ {x} has at least two components A and B. Assume, without loss of
generality, that clX(C) \ {x} ⊂ A. Choose a ∈ A \E(X) and b ∈ B \E(X),
then x ∈ ab and ab∩E(X) = ∅. By (2.1.8), ab∩M is finite and there exists
an open sub-arc pq of ab which contains x such that pq ∩ M = ∅. Then
pq ⊂ C which contradicts the assumption that x ∈ E(clX(C)), and 5) holds.

6) The family C is finite.

To see this fix a point y ∈ Y \ E(Y ). By 1), f−1(y) ∩ C 6= ∅ for each
C ∈ C. By (2.1.7), f−1(y) is finite. Hence C is finite and 6) holds.

By 6) there exists n ∈ N such that C = {C1, C2,. . ., Cn} and Ci 6= Cj for
every i, j ∈ In with i 6= j. Given i ∈ In put Xi = clX(Ci) . Clearly Xi is
a subcontinuum of X. Moreover if i, j ∈ In and i 6= j then, by 4), the set
Xi ∩Xj is either empty or it is a one-point set whose only element belongs
to OM ∪BM . By 5) we have E(Xi) = Xi ∩M for any i ∈ In. We claim that

7) X = X1 ∪X2 ∪ · · · ∪Xn.

To see this put X0 = X1 ∪ X2 ∪ · · · ∪ Xn and note that X \ M ⊂ X0.
Suppose that there is a point x ∈ M \X0. Then X \X0 is an open subset
of X that contains x. Then f(X \X0) is an open subset of Y that contains
f(x) ∈ E(Y ). Hence there exists y ∈ f(X \ X0) such that y /∈ E(Y ). Let
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a ∈ X \ X0 be such that f(a) = y. Note that a ∈ X \ M so a ∈ X0. This
contradiction shows that M ⊂ X0, so 7) holds.

By 7) assertion (4.4.1) holds. Assertion (4.4.2) follows from 1), 3) and 4).
To show (4.4.3) let i and fi be as assumed. By 1) fi(Xi) = f(clX(Ci)) = Y
so fi is onto. Since f is open, fi is interior at any point of Xi \

⋃
j 6=i Xj .

Hence to show that fi is open it suffices to show that
8) fi is interior at any point of Xi ∩Xj for j 6= i.

To show this let j 6= i and take a point x ∈ Xi∩Xj . By 4) x ∈ OM ∪BM .
Since OM ∪BM is finite, there exists an open and connected subset V of Xi

such that V ∩ (OM ∪ BM ) = {x}. Note that fi is interior at any point of
V \{x}. We claim that y = f(x) ∈ intY (f(V )) . For suppose that there exists
yn ∈ Y \f(V ) such that yn → y. Then Lim yny = {y}. Since dim f−1(y) = 0,
there exists a ∈ V \f−1(y). Then ax ⊂ V and f(ax) ⊂ f(V ). Since y ∈ E(Y )
and f(ax) ⊂ f(V ) is a subcontinuum of Y containing y, there exist a first
point wn of yny (from yn) such that wn ∈ f(clX(V )) and a first point
zn of wny (from wn) such that zn ∈ f(ax). Choose vn ∈ ax such that
f(vn) = zn and let Kn be the component of f−1(wnzn) containing vn. Then
f(Kn) = wnzn and since dim f−1(y) = 0 we have Lim Kn = {x}. Hence
Kn ⊂ V for sufficiently large n. Choose n such that Kn ⊂ V and let un ∈ Kn

be such that f(un) = wn. Since wn is the first point of yny ∩ f(clX(V )) we
have wn /∈ intY (f(V )) , contradicting the fact that f is interior at un. This
completes the proof of 8) and, hence, (4.4.3) holds.

To show assertion (4.4.4) let i ∈ In and assume that f(C ∩Xi) ⊂ E(Y ).
Then fi is an open and onto map with no critical points. By Corollary 3.3,
fi is a homeomorphism.

To show assertion (4.4.5) of the theorem, let i ∈ In and assume that
f(C ∩Xi) \E(Y ) 6= ∅. Let c be a critical point of fi such that c /∈ E(Xi). If
fi(c) ∈ E(Y ), then c ∈ Xi∩M = E(Xi) according to 5). This contradiction
shows that fi(c) /∈ E(Y ), so (4.4.5.1) holds. Finally (4.4.5.2) follows from
Corollary 4.3. �

Corollary 4.5. Suppose that f : X → Y is an open map from the dendrite
X onto the dendrite Y such that f(C) ⊂ E(Y ), where C is the set of critical
points of f . Then there exist n ∈ N and n subcontinua X1, . . . , Xn such that
X =

⋃n
i=1 Xi, Xi∩Xj is at most one critical point of f and for each i ∈ In,

f|Xi
: Xi → Y is a homeomorphism.

5. Open maps on dendrites

It is easy to see that the set of critical points C of an open map f : X → Y
between two dendrites can be uncountable. In this section we will show that
for an arc A ⊂ X, the critical set of the restricted map f|A is finite. We
always assume that f : X → Y is an open map from a dendrite X onto a
dendrite Y.
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Theorem 5.1. Let A be a subcontinuum of X such that f|A is one-to-one.
Then there is a subcontinuum B of X such that A ⊂ B and f|B : B → Y is
a homeomorphism.

Proof. Let C be a component of Y \f(A). By [Nad92, Theorem 5.6] clY (C)∩
f(A) 6= ∅. Let aC ∈ A be such that f(aC) ∈ clY (C) . Since X contains
no simple closed curves, we have clY (C) ∩ f(A) = {f(aC)}. Moreover,
by (2.1.10) there is a subcontinuum AC of X such that aC ∈ AC and
f|AC

: AC → clY (C) is a homeomorphism. Then

B = A ∪
(⋃

{AC : C is a component of Y \ f(A)}
)

satisfies the required conditions. �

In the next theorem we show that on a given arc A ⊂ X, the map f|A
has only finitely many critical points.

Theorem 5.2. Let A be an arc in X from a point a ∈ X to a point b ∈ X.
Order A by ≤ in such a way that a ≤ b. Then there are a = a0 < a1 < · · · <
ak = b such that f|aiai+1

is one-to-one, for any i ∈ { 0, 1, . . . , k− 1 } and the
set of critical points of f|A is { a1, a2,. . ., ak−1}

Proof. First assume that A \ {a, b} contains infinitely many critical points
ai of the map f|A . Given i ∈ N note that f is not one-to-one in any
neighborhood of ai in A. By compactness of A it follows that there is a
subarc B of A such that B contains infinitely many an and f(B) 6= Y.

Since we can replace A by B we may assume that f(A) 6= Y. Fix an ordi-
nary point y ∈ Y \ f(A). Given i ∈ N, by (2.1.10), there is a subcontinuum
Ai of X such that ai ∈ Ai and f|Ai

: Ai → Y is a homeomorphism. Consider
the first point map r : X → A from X to A and note that f is one to one
in the arc xai, for any x ∈ f−1(y) ∩ Ai. By (2.1.7) the set f−1(y) is finite.
Moreover f−1(y) ∩ A = ∅. Put f−1(y) = {x1, x2, . . . , xn} and note that
f−1(y) ∩ Ai 6= ∅ for every i ∈ N. Since A contains infinitely many ai there
exist s ∈ { 1, 2,. . ., n } and N ⊂ N infinite such that xs ∈ Ai for any i ∈ N.
Put c = r(xs). Since X is uniquely arcwise connected and N is infinite,
there must exist i, j ∈ N such that either ai < aj < c or c < aj < ai. Hence
aj ∈ cai ⊂ Ai, contradicting that f|Ai

is a homeomorphism. This contradic-
tion shows that f|A has finitely many critical points a1, a2, . . . , ak−1.

Put a0 = a, ak = b and assume, without loss of generality, that a0 ≤ a1 ≤
· · · ≤ ak−1 ≤ ak and that the set A \ {a0, a1, . . . , ak} contains no critical
points of f|A . Given i ∈ { 0, 1, . . . , k−1 } suppose that f|aiai+1

is not one-to-
one. Then there exist p, q ∈ aiai+1 such that f(p) = f(q). We can assume
that ai ≤ p < q ≤ ai+1. By (2.1.2) f(pq) is a non degenerate subcontinuum
of Y, so we can take an end-point y0 of f(pq) different than f(p). Let x0 ∈ pq
be such that f(x0) = y0. Note that x0 ∈ A \ {a0, a1, . . . , ak+1}. Moreover,
it is not difficult to see that x0 is a critical point of f|A . This contradiction
shows that f|aiai+1

is one-to-one. �
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Remark 5.3. Note that Theorem 5.2 does not state that C ∩ A is finite,
where C denotes the set of critical points of f . Indeed, easy examples show
that this may not be true.
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