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Abstract. Cartwright and Littlewood showed that each non-separating invariant contin-
uum, under an orientation preserving homeomorphism of the plane, contains a fixed point.
Bell announced in 1984 an extension of this result to holomorphic mappings of the plane.

In this paper we introduce the class of oriented maps of the plane. We show that
among perfect,onto maps of the plane the oriented maps are exactly the compositions of
open maps and monotone maps. We extend the above fixed point theorems to the class of
positively oriented, perfect,continuous surjections of the plane.

Introduction

The classical fixed point problem asks whether each map of a non separating plane
continuum must have a fixed point. Cartwright and Littlewood [CL51] showed that the
answer is yes if the map can be extended to an orientation preserving homeomorphism
of the plane. It took over 20 years until Bell [Bel78] extended this to the class of all
homeomorphisms of the plane. Our ultimate goal is to extend these results to a natural
but larger class of plane maps. Bell announced in 1984 (see also Akis [Aki99]) that the
Cartwright -Littlewood Theorem can be extended to the class of all holomorphic maps of
the plane. These maps behave like orientation preserving homeomorphisms in the sense
that they preserve local orientation. We will show that the class consisting of compositions
of open and of monotone maps of the plane are oriented and naturally decomposes into two
classes, one of which preserves and the other of which reverses local orientation. Moreover,
any map in either of these classes is itself a composition of a monotone and a light open map.
We will also show that such maps induce a continuous extension to the circle of prime ends
of a saturated invariant subcontinuum to the circle of prime ends of its image. Finally we
will show that each invariant non-separating plane continuum, under a positively oriented
map of the plane, must contain a fixed point.

Bell’s above mentioned extension to holomorphic maps made use of several unpublished
results which he obtained in the 1970’s. These results are also critical in our arguments.
The necessary tools are established and proved in [BMOT02b].
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1. Oriented maps

In this paper all maps are perfect (i.e., closed mappings with compact fibers). It is well
know that each homeomorphism of the plane is either orientation preserving or orienta-
tion reversing. In this section we will establish an appropriate extension of this result for
confluent and onto mappings of the plane (Theorem 1.6) by showing that such maps either
preserve or reverse local orientation. We will call such maps positively or negatively oriented
maps, respectively. A mapping f : X → Y is called confluent provided for each continuum
K ⊂ Y and each component C of f−1(K), f(C) = K. For perfect mappings of the plane,
confluent is equivalent to the composition of open and monotone maps [LR74]. Holomor-
phic maps are prototypes of positively oriented maps but positively oriented maps, unlike
holomorphic maps, do not have to be light (i.e., they don’t necessarily have 0-dimensional
point inverses).

We will denote the complex plane by C and for a continuum X ⊂ C we will denote by
T (X) the union of X and all of its bounded complementary domains. Clearly T (X) is
always a non-separating plane continuum.

Definition 1.1 (Bell). A map f : U → C from a simply connected domain U is positively
(negatively, respectively) oriented provided for each simple closed curve S in U and each
point p ∈ U \ f−1(f(S)), the degree of fp, degree(fp) ≥ 0 (degree(fp) ≤ 0, respectively)
where

fp(x) =
f(x)− f(p)
|f(x)− f(p)| : S → S1.

If for each p ∈ T (S) \ f−1(f(S)), the degree of fp, degree(fp) > 0 (degree(fp) < 0, respec-
tively), we say that f is strictly positively (strictly negatively, respectively) oriented.

Note that degree(fp) is also the winding number, denoted by Win(f ,f |S ,f(p)), of f |S
about f(p). Below we only consider perfect and onto mappings of the plane.

Definition 1.2. A perfect surjection f : C→ C is oriented provided for each simple closed
curve S and each x ∈ T (S), f(x) ∈ T (f(S)).

Clearly every strictly positively or strictly negatively oriented map is oriented.
It is well known that both open and monotone maps (and hence compositions of such

maps) of continua are confluent. It will follow (Lemma 1.5) from a result of Lelek and Read
[LR74] that each perfect, onto and confluent mapping of the plane is the composition of a
monotone map and a light open map (i.e., point inverses are 0-dimensional). The following
Lemmas are in preparation of Theorem 1.6:

Lemma 1.3. Let f : C→ C be a perfect and onto map. Then f is confluent if and only if
f is oriented.

Proof. Suppose that f is oriented. Let A be an arc in C and let C be a component of
f−1(A). Suppose that f(C) 6= A. Let a ∈ A \ f(C). Since f(C) does not separate a from
infinity, we can choose a simple closed curve S with C ⊂ T (S), S ∩ f−1(A) = ∅ and f(S) is
so close to f(C) that f(S) does not separate a from ∞. This contradicts the fact that f is
oriented.
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Now suppose that K is an arbitrary continuum in C and let L be a component of f−1(K).
Let x ∈ L and let Ai be a sequence of arcs in C such that limAi = K and f(x) ∈ Ai for each
i. Let Mi be the component of f−1(Ai) containing the point x. By the previous paragraph
f(Mi) = Ai. Since f is perfect, M = lim supMi ⊂ L is a continuum and f(M) = K. Hence
f is confluent.

Suppose next that f : C → C is a perfect confluent surjection which is not oriented.
Then there exists a a simple closed curve S in C and p ∈ T (S) \ f−1(f(S)) such that
f(p) 6∈ T (f(S)). Let L be a half-line with end-point f(p) running to infinity in C \ f(S).
Let L∗ be an arc in L with endpoint f(p) and diameter greater than the diameter of the
continuum f(T (S)). Let K be the component of f−1(L∗) which contains p. Then K ⊂ T (S)
since p ∈ T (S) and L∩ f(S) = ∅. Hence f(K) 6= L∗ contradicting the assumption that f is
confluent. Thus, f is oriented.

¤
Lemma 1.4. Let f : C → C be a light, open and perfect surjection. Then there exists an
integer k and a finite subset B ⊂ C such that f is a local homeomorphism at each point of
C \B and for each point y ∈ C \ f(B), |f−1(y)| = k.

Proof. Let S2 be the one point compactification of C and extend f to a map of S2 onto S2

so that f−1(∞) = ∞. By abuse of notation we also denote the extended map by f . Then f
is a continuous and open surjection of S2. The result now follows from Whyburn [Why42,
X.6.3]. ¤
Lemma 1.5. Let f : C → C be a confluent and perfect surjection. Then f = g ◦ h, where
h : C→ C is a monotone and perfect surjection with acyclic fibers and g : C→ C is a light,
open and perfect surjection.

Proof. By the monotone and light factorization theorem, f = g ◦ h, where h : C → X is
monotone, g : X → C is light, and X is the quotient space obtained from C by identifying
each component of f−1(y) to a point for each y ∈ C. Let y ∈ C and let C be a component
of f−1(y). If C were to separate C, then f(C) = y would be a point while f(T (C)) would
be a non-degenerate continuum. Choose an arc A ⊂ C\{y} which meets both f(T (C)) and
its complement and let x ∈ T (C) \C such that f(x) ∈ A. If K is the component of f−1(A)
which contains x, then K ⊂ f(T (C)). Hence f(K) cannot map onto A contradicting the
fact that f is confluent. Thus for each y ∈ C, each component of f−1(y) is acyclic.

By Moore’s Theorem X is homeomorphic to C. Since f is confluent, it is easy to see that
g is confluent. By a theorem of Lelek and Read [LR74] g is open since it is confluent and
light, f extends to a confluent map of the sphere S2 and S2 is locally connected. The fact
that both h and g are perfect is proved in Engelking [Eng89, 3.7.5] ¤
Theorem 1.6. Suppose that f : C→ C is a perfect and onto map. Then the following are
equivalent:

(1) f is either strictly positively or strictly negatively oriented.
(2) f is oriented,
(3) f is confluent,

Proof. It is clear that (1) implies (2). By Lemma 1.3 every oriented map is confluent. Hence
suppose that f : C→ C is a perfect, confluent surjection. By Lemma 1.5, f = g ◦ h, where
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h : C→ C is a monotone and perfect surjection with acyclic fibers and g : C→ C is a light,
open and perfect surjection. By Stoilow’s Theorem [Why64] there exists a homeomorphism
j : C→ C such that g ◦ j is an analytic map. Then f = g ◦h = (g ◦ j) ◦ (j−1 ◦h). Since k =
j−1◦h is a monotone surjection of C with acyclic fibers, it is a near homeomorphism. Hence
there exists a sequence ki of homeomorphisms of C such that lim ki = k. We may assume
that all of the ki have the same orientation. Let fi = (g ◦j)◦ki, S a simple closed curve and
p ∈ T (S) \ f−1(f(S)). Note that lim f−1

i (fi(S)) ⊂ f−1(f(S)). Hence p ∈ T (S) \ f−1
i (fi(S))

for i sufficiently large. Moreover, since fi converges to f , fi|S is homotopic to f |S in the
complement of f(p) for i large. Thus for large i, degree((fi)p) = degree(fp), where

(fi)p(x) =
fi(x)− fi(p)
|fi(x)− fi(p)| and fp(x) =

f(x)− f(p)
|f(x)− f(p)| .

Since g ◦ j is an analytic map, it is positively oriented and degree((fi)p) = degree(fp) > 0 if
ki is orientation preserving and degree((fi)p) = degree(fp) < 0 if ki is orientation reversing.
Thus, f is positively oriented if each ki is orientation preserving and f is negatively oriented
if each ki is orientation reversing. ¤

We shall need the following three results in the next section.

Lemma 1.7. Let X and Y be non-degenerate acyclic plane continua and f : C → C
a perfect and onto map such that f−1(Y ) = X and f |C\X is confluent. Then for each
y ∈ C \ Y , each component of f−1(y) is acyclic.

Proof. Suppose there exists y ∈ C\Y such that some component C of f−1(y) is not acyclic.
Then there exists z ∈ T (C) \ f−1(y)∪X. By unicoherence of C, Y ∪ {y} does not separate
f(z) from infinity in C. Let L be a ray in C\ [Y ∪{y}] from f(z) to infinity. Then L = ∪Li,
where each Li ⊂ L is an arc with end-point f(z). For each i the component Mi of f−1(Li)
containing z maps onto Li. Then M = ∪Mi is a connected closed subset in C\ f−1(y) from
z to infinity. This is a contradiction since z ∈ T (f−1(y)). ¤
Theorem 1.8. Let X and Y be non-degenerate acyclic plane continua and f : C → C a
perfect and onto map such that f−1(Y ) = X and f |C\X is confluent. If A and B are cross
cuts of X such that B ∪X separates A \ f−1 ◦ f(B) form ∞ in C then f(B) ∪ Y separates
f(A) \ f(B) from ∞.

Proof. Suppose not. Then there exists a half-line L joining f(A) to infinity in C\f(B)∪Y .
As in the proof of Lemma 1.7, there exists a closed and connected set M ⊂ C \ B ∪ X
joining A to infinity, a contradiction. ¤
Corollary 1.9. Under the conditions of Theorem 1.8, if L is a ray irreducible from Y to
infinity, then each component of f−1(L) which meets C \ X is a closed and connected set
from X to infinity.

2. Induced maps of prime ends

Suppose that f : C→ C is an oriented, perfect and onto map and f−1(Y ) = X, where X
and Y are acyclic continua. We will show that in this case the map f induces a confluent
map F of the prime end circle of X to the prime end circle of Y . This result was announced
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by Mayer in the early 1980’s but never appeared in print. It was also used by Cartwright
and Littlewood in [CL51]. There are easy counter examples that show if f is not confluent
then it may not induce a continuous function between the circles of prime ends. We will
denote by Ĉ the complex 2-sphere and by D the closed unit ball in C. Then D ⊂ C ⊂ Ĉ.

Theorem 2.1. Let X and Y be non-degenerate acyclic plane continua and f : C → C a
perfect and onto map such that:

(1) Y has no cut point,
(2) f−1(Y ) = X and
(3) f |C\X is confluent.

Let ϕ : Ĉ\X → Ĉ\D and ψ : Ĉ\Y → Ĉ\D be conformal mappings. Define f̂ : Ĉ\D→ Ĉ\D
by f̂ = ψ ◦ f ◦ ϕ−1.

Then f̂ extends to a map f̄ : Ĉ \ D → Ĉ \ D. Moreover, f̄−1(S1) = S1 and F = f̄ |S1 is
a confluent map.

Proof. Note that f takes accessible points of X to accessible points of Y . For if P is a path
in [C \X]∪ {p} with end point p ∈ X, then by (2), f(P ) is a path in [C \ Y ]∪ {f(p)} with
endpoint f(p) ∈ Y .

Let A be a cross cut of X such that the diameter of f(A) is less than half of the diameter
of Y and let U be the bounded component of C \ (X ∪ A). Let the endpoints of A be
x, y ∈ X and suppose that f(x) = f(y). If x and y lie in the same component of f−1(f(x))
then each cross cut B ⊂ U of X is mapped to a generalized return cut of Y based at
f(x) (i.e., the endpoints of B map to f(x)). Note that in this case by Theorem 1.8,
Bd(f(U)) ⊂ f(A) ∪ {f(x)}.

Now suppose that f(x) = f(y) and x and y lie in distinct components of f−1(f(x)).
Then by unicoherence of C, Bd(U) ⊂ A∪X is a connected set and Bd(U) 6⊂ Ā∪f−1(f(x)).
Now Bd(U)\ (Ā∪f−1(f(x))) = Bd(U)\f−1(f(Ā)) is an open set in Bd(U). Thus there is a
cross cut B ⊂ U \f−1(f(Ā)) of X with B̄ \B ⊂ Bd(U)\f−1(f(Ā)). Now f(B) is contained
in a bounded component of C \ (Y ∪ f(A)) = C \ (Y ∪ f(Ā)) by Theorem refconfeq. Since
Y ∩f(Ā) = {f(x)} is connected and Y does not separate C , it follows by unicoherence that
f(B) lies in a bounded component of C\f(Ā). Since Y \{f(x)} meets f(B̄) and misses f(Ā)
and Y \f(x) is connected, Y \{f(x)} lies in a bounded complementary component of f(Ā).
This is impossible as the diameter of f(A) is smaller than the diameter of Y . It follows that
there exists a δ > 0 such that if the diameter of A is less than δ and f(x) = f(y), then x
and y must lie in the same component of f−1(f(x)).

In order to define the extension f̄ of f over the boundary S1 of Ĉ \ D, let Ci be a chain
of cross cuts of Ĉ \ D which converge to a point p ∈ S1 such that Ai = ϕ−1(Ci) is a null
chain of cross cuts of X with end points ai and bi which converge to a point x ∈ X. There
are three cases to consider:

Case 1. f identifies the end points of Ai for some Ai with diameter less than δ. In this
case the chain of cross cuts is mapped by f to a chain of generalized return cuts based at
f(ai) = f(bi). Hence f(ai) is an accessible point of Y which corresponds (under ψ) to a
unique point q ∈ S1. Define f̄(p) = q.



6 BELL, FOKKINK, MAYER, OVERSTEEGEN, AND TYMCHATYN

Case 2. Case 1 does not apply and there exists an infinite subsequence Aij of cross cuts
such that f(Āij ) ∩ f(Āik) = ∅ for j 6= k. In this case f(Aij ) is a chain of generalized cross
cuts which converges to a point f(x) ∈ Y . This chain corresponds to a unique point q ∈ S1

since Y has no cut points. Define f̄(p) = q.
Case 3. Cases 1 and 2 do not apply. Without loss of generality suppose there exists an i

such that for j > i f(Āi)∩f(Āj) contains f(ai). In this case f(Aj) is a chain of generalized
cross cuts based at the accessible point f(ai) which corresponds to a unique point q on S1

as above. Define f̄(p) = q.
It remains to be shown that f̄ is a continuous extension of f̂ and F is confluent. For

continuity it suffices to show continuity at S1. Let p ∈ S1 and let C be a small cross cut
whose endpoints are on opposite sides of p such that A = ϕ−1(C) has diameter less than
δ and such that the endpoints of A are two accessible points of X. Since f is uniformly
continuous near X, the diameter of f(A) is small and since ψ is uniformly continuous
with respect to connected sets in the complement of Y ([UY51]), the diameter of B =
ψ ◦ f ◦ ϕ−1(C) is small. Also B is either a generalized cross cut or generalized return
cut. Since f̂ preserves separation of cross cuts, it follows that the image of the domain U
bounded by C which does not contain ∞ is small. This implies continuity of f̄ at p.

To see that F is confluent let K ⊂ S1 be a subcontinuum and let H be a component of
f̄−1(K). Choose a chain of cross cuts Ci such that ϕ−1(Ci) = Ai is a cross cut of X meeting
X in two accessible points ai and bi, Ci ∩ f̄−1(K) = ∅ and limCi = H. It follows from the
preservation of cross cuts (see Theorem 1.8) that f̂(Ci) separates K from ∞. Hence f̂(Ci)
must meet S1 on both sides of K and lim f̄(Ci) = K. Hence F (H) = lim f̄(Ci) = K as
required. ¤
Corollary 2.2. Suppose that f : C → C is a perfect, confluent and onto mapping of the
plane, X ⊂ C is a subcontinuum without cut points and f(X) = X. Let X̂ be the component
of f−1(f(X)) containing X. Let ϕ : Ĉ \ T (X̂) → Ĉ \ D and ψ : Ĉ \ T (f(X)) → Ĉ \ D be
conformal mappings. Define f̂ : Ĉ \ [D ∪ ϕ(f−1(X))] → Ĉ \ D by f̂ = ψ ◦ f ◦ ϕ−1. Put
S1 = Ĉ \ D \ [Ĉ \ D].

Then f̂ extends over S1 to a map f̄ : Cl(Ĉ \ D) → Cl(Ĉ \ D). Moreover f̄−1(S1) = S1

and F = f̄ |S1 is a confluent map.

Proof. By Lemma 1.5 f = g ◦m where m is a monotone perfect and onto mapping of the
plane with acyclic point inverses, and g is an open and perfect surjection of the plane to
itself. By Lemma 1.4, f−1(X) has finitely many components. Let S in C \ f−1(f(X)) be
a simple closed curve separating X̂ from infinity and all other components of f−1(X) and
let U be the component of C \S which contains X̂. Then U is simply connected and hence
homeomorphic to C. By [Lel66] f(U) is also simply connected. Then f |U : U → f(U)
is a locally confluent map. By [LR74], f |U\X̂ is confluent. The result now follows from
Theorem 2.1 applied to f restricted to U . ¤

3. Fixed points for positively oriented maps

In this section we will consider a positively oriented map of the plane. As we shall see
below, a straight forward application of the tools developed in [BMOT02b] will give us
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the desired fixed point result. The more difficult case of negatively oriented maps will be
considered in a subsequent paper [BMOT02a].

In this section we will assume by way of contradiction that f : C → C is a positively
oriented map, X is a non-separating plane continuum such that f(X) ⊂ X and X contains
no fixed points of f .

Let S be a simple closed curve in C and suppose g : S → C has no fixed points on S.
Since g has no fixed points on S, the point z − g(z) is never 0. Hence the unit vector
v(z) = z−g(z)

|z−g(z)| always exists. Let z(t) be a convenient counterclockwise parameterization of
S by t ∈ S1 = R mod Z and define the map v = v ◦ z : S1 → S1 by

v(t) = v(z(t)) =
z(t)− g(z(t))
|z(t)− g(z(t))| .

Then Ind(g,S) the index of g on S is the degree of v. It is well known that if Ind(g,S) 6= 0
and f : T (S) → C is a continuous extension of g, then f has a fixed point in T (S). In order
to compute the index of f on a simple closed curve S approximating X we will introduce
Bell’s notion of variation.

The standard junction J0 is the union of the three rays Ri = {z ∈ C | z = reiπ/2, r ∈
[0,∞)}, R+ = {z ∈ C | z = re0, r ∈ [0,∞)}, R− = {z ∈ C | z = reiπ, r ∈ [0,∞)}, having
the origin 0 in common. By U we denote the lower half-plane {z ∈ C | z = x+ iy, y < 0}. A
junction Jv is the image of J0 under any orientation-preserving homeomorphism h : C→ C
where v = h(0). We will often suppress h and refer to h(Ri) as Ri, and similarly for the
remaining rays and the region h(U).

Suppose S is a simple closed curve and A ⊂ S is a subarc of S with endpoints a and b,
with a < b in the counter-clockwise orientation on S. We will usually denote such a subarc
by A = [a, b].

Definition 3.1 (Variation on an arc). Let S be a simple closed curve such that X ⊂ T (S)
and A = [a, b] a subarc of S such that X ∩A = {a, b}, f(a), f(b) ∈ T (S) and f(A)∩A = ∅.
We define the variation of f on A with respect to S, denoted Var(f,A), by the following
algorithm:

(1) Choose an orientation preserving homeomorphism h of C such that h(0) = v ∈ A
and T (S) ⊂ h(U) ∪ {v}.

(2) Choose a convenient parameterization of [a, b] with a < b.
(3) Crossings: Consider the set K = [a, b]∩f−1(Jv). Each time a point of [a, b]∩f−1(R+)

is followed immediately by a point of [a, b] ∩ f−1(Ri) in K, count +1. Each time a
point of [a, b]∩ f−1(Ri) is followed immediately by a point of [a, b]∩ f−1(R+) in K,
count −1. Count no other crossings.

(4) The sum of the crossings found above is the variation, denoted Var(f,A). It is shown
in [BMOT02b] that the variation of a cross cut is well-defined. Moreover, it follows
from that paper (see Theorem 2.12 and Remark 2.19) that if S is simple closed
curve such that X ⊂ T (S) and each component Qi of S \X is sufficiently small,

Ind(f,S) =
∑

Qi

Var(f,Qi) + 1.
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Lemma 3.2. Let f : C→ C be a map and X a nonseparating continuum such that f(X) ⊂
X. Suppose C = (a, b) is a cross cut of the continuum X. Let v ∈ (a, b) be a point and Jv

be a junction such that Jv ∩ (X ∪C) = {v}. Then there exists an arc I such that S = I ∪C
is a simple closed curve, X ⊂ T (S) and f(S) ∩ Jv = f(C) ∩ Jv.

Proof. Since f(X) ⊂ X and Jv ∩X = 0, it is clear that there exists an arc I with endpoints
a and b near X such that I ∪ C is a simple closed curve, X ⊂ T (I ∪ C) and f(I) ∩ Jv = ∅.
This completes the proof. ¤
Corollary 3.3. Suppose X is an invariant continuum for a positively oriented map f :
C→ C. Then for each cross cut C such that f(C) ∩ C = ∅, Var(f ,C) ≥ 0

Proof. Suppose that C = (a, b) is a cross cut of X such that f(C)∩C = ∅ and Var(f ,C) 6= 0.
Choose a junction Jv such that Jv ∩ (X ∪ C) = {v} and v ∈ C \X. By Lemma 3.2, there
exists an arc I such that S = I ∪ C is a simple closed curve and f(S) ∩ Jv = f(C) ∩ Jv.
Moreover, by choosing I sufficiently close to X, we may assume that v ∈ C \ f(S). Hence
Var(f ,C) = Win(f, S, v) ≥ 0 [BMOT02b]. ¤
Theorem 3.4. Suppose f : C→ C is a positively oriented map and X is a non-separating
continuum such that f(X) ⊂ X. Then there exists a point x0 ∈ X such that f(x0) = x0.

Proof. Suppose we are given a non-separating continuum X and f : C → C a positively
oriented map such that f(X) ⊂ X. Assume that f |X is fixed point free. Choose a simple
closed curve S such that X ⊂ T (S) and points a0 < a1 < . . . < an in S ∩X such that for
each i Ci = (ai, ai+1) is a sufficiently small cross cut of X, f(Ci)∩Ci = ∅ and f |T (S) is fixed
point free. By Corollary 3.3, Var(f,Ci) ≥ 0 for each i. Hence, Ind(f,S) =

∑
Var(f,Ci)+1 ≥ 1

(see [BMOT02b]). This contradiction completes the proof. ¤
Corollary 3.5. Suppose f : C → C is a perfect and onto confluent map, and X is a non-
separating continuum such that f(X) ⊂ X. Then there exists a point x0 ∈ X of period
2.

Proof. By Theorem 1.6, f is either positively or negatively oriented. In either case, the
second iterate f2 is positively oriented and must have a fixed point in X by Theorem 3.4. ¤
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