
THE JULIA SETS OF BASIC UNICREMER
POLYNOMIALS OF ARBITRARY DEGREE

ALEXANDER BLOKH AND LEX OVERSTEEGEN

Abstract. Call a polynomial P a basic uniCremer polynomial if
no two periodic rays land at one point and there exists a Cremer
periodic point. Using mostly topological tools we show that there
are only the following two types of basic uniCremer Julia sets.
The red dwarf Julia sets J are nowhere connected im kleinen and
such that the intersection of all impressions of external angles is a
continuum in J containing the Cremer point and the orbits of all
critical images. The solar Julia sets J are such that every angle
with dense orbit has a degenerate impression disjoint from other
impressions and J is connected im kleinen at the landing point of
its ray. We also show that any bi-accessible point is either pre-
critical or pre-Cremer. The quadratic case had been considered
before using different tools.

1. Introduction

Polynomial dynamics studies trajectories of points under a polyno-
mial map P : C → C of the complex plane C into itself. The most
interesting dynamics takes place on the Julia set J of P which can be
defined as the closure of the set of all repelling periodic points of P .
The set J can be either connected or disconnected, and in this paper
we concentrate upon the case when J is connected.

Let Ĉ be the complex sphere, P : Ĉ → Ĉ be a degree d polynomial
with a connected Julia set JP . Denote by KP the corresponding filled-
in Julia set. Let θ = zd : D→ D (D ⊂ C is the open unit disk). There

exists a conformal isomorphism Ψ : D → Ĉ \KP with Ψ ◦ θ = P ◦ Ψ
[DH85]. The Ψ-images of radii of D are called external rays (to the
Julia set J) and are denoted Rα where α is the corresponding angle.
If the Julia set is locally connected, the topology and dynamics of JP
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are well described. Indeed, if JP is locally connected, then Ψ extends

to a continuous function Ψ : D → Ĉ \KP and Ψ ◦ θ = P ◦ Ψ. Let
S1 = Bd(D), σd = θ|S1 , ψ = Ψ|S1 . Define an equivalence relation ∼P on
S1 by x ∼P y if and only if ψ(x) = ψ(y). The equivalence ∼P is called
the (d-invariant) lamination (generated by P ). The quotient space
S1/ ∼P = J∼P

is homeomorphic to JP and the map f∼P
: J∼P

→ J∼P

induced by σd is topologically conjugate to P . The set J∼P
(with the

map f∼P
) is a topological (combinatorial) model of P |JP

and is often
called the topological (combinatorial) Julia set.

Let us call irrational neutral periodic points CS-points. In his fun-
damental paper [K04] Kiwi extended the above construction to all
polynomials P with connected Julia set and no CS-points. For such
polynomials he obtained a d-invariant lamination ∼P on S1. Then
J∼P

= S1/ ∼P is a locally connected continuum and P |JP
is semi-

conjugate to the induced map f∼P
: J∼P

→ J∼P
by a monotone map

m : JP → J∼P
(by monotone we mean a map whose point preimages

are connected). The lamination ∼P generated by P provides a combi-
natorial description of the dynamics of P |JP

. In addition Kiwi proved
that at all periodic points p of P in JP the set JP is locally connected
at p and m−1 ◦m(p) = {p}.

Consider a quadratic polynomial P with a Cremer fixed point (i.e.
with a neutral non-linearizable fixed point p ∈ J such that P ′(p) = e2πiα

with α irrational); then P is said to be a basic Cremer polynomial, and
its Julia set is called a basic Cremer Julia set [BO06a]. By a result of
Schleicher and Zakeri [SZ99, Theorem 3] (see also [Zak00, Theorem 3])
if a basic Cremer Julia set contains a biaccessible point then this point
eventually maps to a Cremer point; hence a basic Cremer polynomial
has no repelling periodic points at which more than one ray lands.
The results of [K04] do not apply to P (in fact, in [BO06b] we show
that any monotone map of a basic Julia set J onto a locally connected
continuum must collapse J to a point). Thus to study the dynamics of
such polynomials one needs to develop different tools.

To an extent this is done in [BO06a] the dynamics of basic Cremer
polynomials is studied with the help of continuum theory techniques.
Observe that in the case of polynomials without CS-points the best
description of the dynamics (when the map on the Julia set is conju-
gate to the map induced by zd on the quotient space of S1 under the
appropriate lamination) is possible exactly when the Julia set has nice
topological properties (is locally connected). It turns out that in the
case of basic Cremer polynomials very similar facts take place: a basic
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Cremer Julia set J has nicer dynamics if and only if there are points
at which J is connected im kleinen (see definitions below).

Let us have an overview of known results on the dynamics of basic
Cremer polynomials and the topology of their Julia sets. By Sullivan
[Sul83], a basic Cremer Julia set J is not locally connected. Since rays
land at some points of J (e.g., repelling periodic points [DH85]), it
makes sense to study the pattern in which this can occur. In this re-
spect the following important question is due to C. McMullen [McM94]:
can a basic Cremer Julia set contain points at which at least two rays
land (so-called biaccessible points)? This question was partially an-
swered by Schleicher and Zakeri in the cited papers [SZ99] and [Zak00],
however it is still unknown if there exist basic Cremer Julia sets with
biaccessible points. Another related paper is that of Sørensen [Sor98]
where the author constructs Cremer polynomials with rays which ac-
cumulate on both the Cremer point and its preimage and thus gives
examples of Cremer polynomials whose Julia sets have very interesting
topological properties.

Fix a basic Cremer polynomial P with the Julia set J . Then J is
connected and the Cremer point p belongs to ω(c) ([Mn93] and [Per97],
see also [C05, Theorem 1.3]). If an angle α is such that its impression
Imp(α) is disjoint from all other impressions then we call α a K-separate
angle. A continuum X is connected im kleinen at a point x provided
for each open set U containing x there exists a connected set C ⊂ U
with x in the interior of C. The main result of [BO06a] is that there
are two types of basic Cremer Julia sets. The red dwarf Julia sets J
are nowhere connected im kleinen and such that the intersection of the
impressions of all external angles is a continuum in J containing the
Cremer point and the orbits of all critical images. The solar Julia sets J
are such that the set of K-separate angles with degenerate impressions
contains all angles with dense orbits and a dense set of periodic angles,
and the Julia set J is connected im kleinen at the landing points of
their rays.

The aim of this paper is to extend results of [BO06a] to the higher
degree case. To this end we need to define the class of polynomials
of degrees greater than 2 analogous to basic Cremer polynomials. By
[DH85] at every repelling periodic point at least one ray lands, and
all such rays are rational. The existence of repelling periodic points at
which two or more rays land plays an important role, e.g., in [K04]. On
the other hand, by [SZ99], [Zak00] no repelling periodic point of a basic
Cremer polynomial is biaccessible. The latter property is the defining
property for the class of polynomials we want to study: a polynomial P
is said to be a basic uniCremer polynomial if it has a Cremer periodic
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point and no repelling periodic point of P is biaccessible (by [K00] and
[GM93] then the Cremer point must be fixed). Then the analog of the
results of [BO06a] holds and following theorem can be proven.

Theorem 4.10. For a basic uniCremer polynomial P the following
facts are equivalent:

(1) there is an impression not containing the Cremer point;
(2) there is a degenerate impression;
(3) the set Y of all K-separate angles with degenerate impressions

contains all angles with dense orbits and a dense set of periodic
angles, and the Julia set J is connected im kleinen at landing
points of the corresponding rays;

(4) there is a point at which the Julia set is connected im kleinen.

Basic uniCremer Julia set with the properties from Theorem 4.10 are
said to be solar. The remaining basic uniCremer Julia sets are called
red dwarf Julia sets. They can be defined as basic uniCremer Julia sets
such that all impressions contain p. The following lemma describes red
dwarf Julia sets and complements Theorem 4.10.

Lemma 4.3. If J is a red dwarf Julia set then the (non-empty) in-
tersection of all impressions contains all forward images of all critical
points, there exists ε > 0 such that the diameter of any impression
is greater than ε, and there are no points at which J is connected im
kleinen. Moreover, in this case no point of J is biaccessible and p is
not accessible from C \ J .

2. Fixed points and impressions

In this section we will assume that f : C → C is a holomorphic
map and X is a non-separating plane continuum such that f(X) ⊂ X.
Given a planar continuum Z denote by T (Z), the topological hull of Z,
the union of Z and all of its bounded complementary domains. Denote
by B(x, r) the open ball of radius r centered at x ∈ C and by S(x, r)
is boundary.

2.1. Fixed points. Let S be a simple closed curve in C and suppose f :
S → C has no fixed points on S. Since f has no fixed points on S, the

point f(z)− z is never 0. Hence the unit vector v(z) = f(z)−z
|f(z)−z| always

exists. Let z(t) be a convenient counterclockwise parametrization of S
by t ∈ S1 = R mod Z and define the map v = v ◦ z : S1 → S1 by

v(t) = v(z(t)) =
f(z(t))− z(t)

|f(z(t))− z(t)| .
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Then Ind(f,S), the index of f on S, is the degree of v. By the Argu-
ment Principle (see, e.g., [CB84]) applied to f(z)− z it follows that if
Ind(f,S) = n then f has exactly n fixed points in T (S) (counted with
multiplicity). In order to compute the index of f on a simple closed
curve S approximating X we will introduce Bell’s notion of variation
(see [A99] and [MOT02] for a more complete description of Bell’s re-
sults).

The standard junction J0 is the union of the three rays Ri = {z ∈
C | z = reiπ/2, r ∈ [0,∞)}, R+ = {z ∈ C | z = re0, r ∈ [0,∞)}, R− =
{z ∈ C | z = reiπ, r ∈ [0,∞)}, having the origin 0 in common. By U
we denote the lower half-plane {z ∈ C | z = x + iy, y < 0}. A junction
Jv is the image of J0 under any orientation-preserving homeomorphism
h : C→ C where v = h(0). We will often suppress h and refer to h(Ri)
as Ri, and similarly for the remaining rays and the region h(U).

Suppose S is a simple closed curve and A ⊂ S is a subarc of S with
endpoints a and b, with a < b in the counter-clockwise orientation on
S. We will usually denote such a subarc by A = [a, b].

Definition 2.1 (Variation on an arc). Let S be a simple closed curve
such that X ⊂ T (S) and A = [a, b] a subarc of S such that X ∩ A =
{a, b}, f(a), f(b) ∈ T (S) and f(A)∩A = ∅. We define the variation of
f on A with respect to S, denoted Var(f,A), by the following algorithm:

(1) Choose an orientation preserving homeomorphism h of C such
that h(0) = v ∈ A and T (S) ⊂ h(U) ∪ {v}.

(2) Choose a convenient parametrization of [a, b] with a < b.
(3) Crossings: Consider the set K = [a, b] ∩ f−1(Jv). Each time a

point of [a, b] ∩ f−1(R+) is followed immediately by a point of
[a, b] ∩ f−1(Ri) in K, count +1. Each time a point of [a, b] ∩
f−1(Ri) is followed immediately by a point of [a, b] ∩ f−1(R+)
in K, count −1. Count no other crossings.

(4) The sum of the crossings found above is the variation, denoted
Var(f,A).

The following Theorem is due to Harold Bell. It first appeared in
print in [A99] (see also [MOT02] for more details).

Theorem 2.2 (Harold Bell). Suppose that g : C → C is a map, X is
a non-separating continuum and g(X) ⊂ X. Let S be a simple closed
curve such that X ⊂ T (S), X ∩ S is finite and if {Si} are the closures
of all components of S \X then for each i, g(Si) ∩ Si = ∅. Then

Ind(g,S) =
∑

i

Var(g,Si) + 1.
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In particular, if g is holomorphic then the number of fixed points of
g in T (S) counted with multiplicity is

∑
i Var(g,Si) + 1.

Let X be a non-separating plane continuum. Then a crosscut C of
X is a closed arc whose intersection with X consists of the endpoints
of C. The shadow of C, denoted by Sh(C), is the bounded component
of C \ [X ∪ C].

Lemma 2.3. Suppose C is a crosscut of the continuum X. Let v ∈ C
be a point which is not an endpoint of C, and Jv be a junction such that
Jv ∩ (X ∪C) = {v}. Then there exists an arc I such that S = I ∪C is
a simple closed curve, X ⊂ T (S) and f(I) ∩ Jv = ∅.
Proof. Left to the reader. ¤
Definition 2.4 (Winding number). Let f : U → C be a holomorphic
map from a simply connected domain U into the plane, S be a simple
closed curve in U , and v ∈ C \ f(S) be a point. Define fv : S → S1 by

fv(x) =
f(x)− v

|f(x)− v| .

Then the winding number of f |S about v, denoted Win(f, S, v), is de-
fined as the degree of fv. Since f is holomorphic, Win(f, S, v) ≥ 0.

Corollary 2.5. For each crosscut C of X with f(C) ∩C = ∅ we have
Var(f ,C) ≥ 0

Proof. Suppose that C is a crosscut of X such that f(C) ∩ C = ∅ and
Var(f ,C) 6= 0. Choose a junction Jv such that Jv ∩ (X ∪C) = {v} and
v ∈ C \X. By Lemma 2.3, there exists an arc I such that S = I ∪C is
a simple closed curve, X ⊂ T (S) and f(I)∩Jv = ∅. Hence Var(f ,C) =
Win(f, S, v) ≥ 0 [MOT02]. ¤

Suppose that Rθ is an external ray of the non-separating continuum
X. Choose an order < on Rθ such that points close to infinity are large,
and for x ∈ Rθ let (−∞, x) = {z ∈ Rθ | z < x}. Then we say that Rθ

crosses a crosscut C of X essentially if there exists x ∈ R such that C
separates (−∞, x) from infinity in C \X.

Lemma 2.6. Suppose that x ∈ X is a repelling fixed point and Rθ is a
fixed external ray of X landing on x. Then there exist arbitrary small
simple closed curves S with x ∈ T (S) \ S, S ⊂ Int(T (f(S)) and there
exists a component C of S \X, which crosses Rθ essentially, such that
Var(f ,C) ≥ 1.

Proof. Choose a neighborhood U of x and δ > 0 so that f |U is an
orientation preserving homeomorphism and if r < δ and S = S(0, r),
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then S ′ ⊂ Int(T (f(S)) (in particular, S ∩ f(S) = ∅). By Lemma 2.2
of [BO06a], there exists a component C of S \ X such that C crosses
Rθ essentially. Let z, b be the endpoints of C. Then Rθ separates
a, b in U \ X. Since f |U is a homeomorphism, f(Rθ) = Rθ separates
f(a) from f(b) in f(U) \ X. Hence Var(f ,C) 6= 0. By Corollary 2.5
Var(f ,C) ≥ 1. ¤

Theorem 2.7. Suppose f : C → C is a holomorphic map, X is a
non-separating continuum or a point such that f(X) ⊂ X, X contains
only repelling fixed points and for each fixed point xi ∈ X there exists
an external ray Ri of X, landing at xi, such that f(Ri) = Ri. Then X
is a single point.

Proof. By Theorem 2.2 (see [A99]), f has n ≥ 1 fixed point in X. Let
x1, . . . , xn be all fixed points of f in X (since they all are repelling
the multiplicity at each fixed point is 1). Choose a closed simply con-
nected neighborhood V of X so that the only fixed points of f in V are
x1, . . . , xn. By Lemma 2.6 we can find for each i arbitrary small simple
closed curves Si around xi so that f(Si) ⊂ V and Si is contained in the
interior of T (f(Si)). In particular Si∩f(Si) = ∅ and T (X∪f(Si)) ⊂ V .
By Lemma 2.6 there exists a component Ci of Si \X, which crosses Ri

essentially, such that Var(f ,Ci) ≥ 1. By choosing Si sufficiently small
we may assume that Sh(Ci) ∩ Sh(Cj) = ∅ = T (f(Si)) ∩ T (f(Sj)) for
all i 6= j. Choose for each i a junction Ji with vi ∈ Ci \ X such that
Ji ∩ Jj = ∅ for all i 6= j. Then there exists δ > 0 such that for each
x ∈ X \ ∪T (Si), d(x, f(x)) > δ, d(X,∪Ji) > δ, d(T (f(Si), T (f(Sj)) >
δ, for all i 6= j. Moreover, d(Si, f(Si)) > δ for all i.

Choose 0 < η < δ/5 such that for every crosscut D of X of diameter
less than η:

(1) D ∪ f(D) ⊂ V ,
(2) [D ∪ f(D)] ∩⋃

Ji = ∅,
(3) if D ∩ [∪iSi] 6= ∅, then d(D, f(D)) > δ/3,
(4) diam (f(D)) < δ/3.

Choose a simple closed curve Z such that X ⊂ T (Z), Z∩X is finite,
each component Zj of Z\X is a crosscut of diameter less than η, for each
Ci we have {Z∩Ci} = {li, ri}, Sh(Ci)∩Z 6= ∅ and the diameters of the
two components C l

i , C
r
i of Ci \{li, ri} non-disjoint from X are less than

η. Replace the subarc of Z contained in Sh(Ci) by the corresponding
subarc of Ci with the same endpoints li, ri. If we do this for all the
Ci’s we get a new simple closed curve Z ′ such that Z ′ ∩X is finite and
it is easy to check that, by the choice of constants, H ∩ f(H) = ∅ for
the closures H of every component of Z ′ \ X. Let Hi be the closure
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of the component of Z ′ \ X which contains vi. Observe that by (2)
and by the choice of η we have f(Z

⋃
j(C

l
j ∪Cr

j )) ∩ (
⋃

i Ji) = ∅. Hence

Var(f ,Hi) = Var(f ,Ci) ≥ 1. Let Gk denote all components of Z ′ \X.
Then by Theorem 2.2 and Corollary 2.5,

Ind(f ,Z ′) =
∑

k

Var(f ,Gk) + 1 ≥
n∑

i=1

Var(f ,Ci) + 1 ≥ n + 1.

Then f has at least n + 1 fixed points in T (Z ′). Since T (Z ′) ⊂ V , this
is a contradiction. ¤

2.2. Impressions and connectedness im kleinen. Now we prove
a few technical lemmas which can be of independent interest. Mostly
they deal with the topological properties of impressions. In this sub-
section X is a non-separating one-dimensional plane continuum. The
assumption that X is non-separating is not essential but simplifies the
arguments (e.g., in this case each subcontinuum of X is also a non-
separating, one-dimensional plane continuum and the intersection of
any two subcontinua of X is connected). Speaking of points we mean
points in the (dynamic) plane while angles mean arguments of external
rays. Given an external ray Rα and a family Cn of crosscuts Cn who
cross Rα essentially and are such that diam(Cn) → 0 we define the

impression Imp(α) by Imp(α) = ∩nSh(Cn). This is equivalent to the
standard definition; also, Imp(α) is independent of the choice of the
sequence of crosscuts [Pom92]. A continuum K is said to be decompos-
able if there exist two continua A $ K, B $ K such that A ∪ B = K
and indecomposable otherwise. Theorem 2.8 holds for all polynomials.

Theorem 2.8. [CMR05, Theorem 1.1] The Julia set of a polynomial P
is indecomposable if and only if there exists an angle γ whose impression
has non-empty interior in J(P ); in this case the impressions of all
angles coincide with J(P ).

From the topological standpoint, if the Julia set is indecomposable
then one cannot use impressions to further study its structure: repre-
senting J(P ) as the union of smaller more primitive continua is impos-
sible in this case. Besides, if J(P ) is indecomposable then the results
of the paper are immediate. Thus, in the lemmas below we assume
that no impression has interior in X.

Definition 2.9. A continuum (or a point) K ⊂ J is said to be a ray
continuum if there exists a non-empty set of angles A ⊂ S1 such that
for each α ∈ A the principal set Rα \ Rα ⊂ K; we say that the set of
angles A (and their rays) is connected to K and denote it by A ∨K.
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The union of K and a finite set of rays connected to K is a closed
connected set. Examples of ray continua are continua which are unions
of impressions (or principal sets). By Ch(A) we denote the convex hull
of a planar set A. Lemma 2.10 studies how ray continua intersect. If
A1, A2 ⊂ S1 are such that Ch(A1) ∩ Ch(A2) = ∅ then they are said to
be unlinked.

Lemma 2.10. Suppose that K1, K2 are disjoint ray continua connected
to finite sets of angles A1, A2 respectively. Then A1 and A2 are un-
linked.

Proof. Without loss of generality A1 ∩ A2 = ∅. If A1 and A2 are not
unlinked, then there exists α1, α2 ∈ A1 such that A2 separates α1 and
α2. This clearly implies that K1 ∩K2 6= ∅, a contradiction. ¤

We need a few topological notions. A continuum X is connected
im kleinen at x if for each open set U containing x there exists a
connected set C ⊂ U with x in the interior of C. A continuum X is
locally connected at x ∈ X provided for each neighborhood U of x there
exists a connected and open set V such that x ∈ V ⊂ U . Observe that
sometimes different terminology is used (see the discussion in [BO06a]).

Lemma 2.11 contains a sufficient condition for a continuum X to be
connected im kleinen at some point x. The idea is to establish “short
connections” among impressions which cut x off the rest of X and apply
it to prove that X is connected im kleinen at some points. If Imp(θ) is
disjoint from all other impressions then we call θ a K-separate angle.

Lemma 2.11. Suppose that θ is a K-separate angle and Imp(θ) = {x}
is a singleton. Then arbitrarily close to θ there are angles s < θ < t
such that Imp(s) ∩ Imp(t) 6= ∅. Also, J is connected im kleinen at x.

Proof. First of all, let us show that there must exist non-disjoint im-
pressions. Indeed, suppose that all impressions are pairwise disjoint.
Then by the Moore theorem ([M25]) the map φ which collapses all im-
pressions to points and leaves the rest of the plane untouched maps the
plane C onto a plane C while mapping X onto a circle. This means
that X is not a non-separating continuum, a contradiction.

Now, suppose that the first claim of the lemma fails. Consider all
angles s, t such that Imp(s) ∩ Imp(t) 6= ∅. Then there are angles l1 ≤
l2 < θ < r1 ≤ r2 such that the following holds:

(1) Imp(l1) ∩ Imp(r1) 6= ∅;
(2) Imp(l2) ∩ Imp(r2) 6= ∅;
(3) if l ∈ (l2, θ) and r ∈ (θ, r2) then Imp(l) ∩ Imp(r) = ∅;
(4) if l ∈ (l1, θ) and r ∈ (θ, r1) then Imp(l) ∩ Imp(r) = ∅.
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Set N = Imp(l1)∪ Imp(l2)∪ Imp(r1)∪ Imp(r2). By Lemma 2.10 N is
a continuum. Set A = N ∪ (∪z∈[l2,θ]Imp(z)), B = N ∪ (∪z∈[θ,r1]Imp(z)).
Then A and B are subcontinua of J , while A ∩ B = N ∪ {x} is not
connected because x 6∈ N by the assumptions, a contradiction.

Suppose now that U is an open set in J containing x. Since im-
pressions are upper semicontinuous, there exist s < θ < t such that
x 6∈ Imp(s) ∪ Imp(t), Imp(s) ∩ Imp(t) 6= ∅ and for all γ ∈ [s, t],
Imp(γ) ⊂ U . Let C = ∪a∈[s,t]Imp(a). Then C ⊂ U is connected.
We claim that x is in the interior of C.

Indeed, set E = Rs ∪ Imp(s) ∪ Rt ∪ Imp(t). Then C \ E consists of
two components. Denote the one containing x by W and the other one
V . Let d(x,E ∪ Bd(U)) = ε. Consider the ε/2-disk D centered at x.
Then D ⊂ W is disjoint from E ∪ V , and D ∩ J ⊂ C since points of
D ∩ J cannot belong to impressions of angles not from (s, t). Thus, x
belongs to the interior of C as desired. ¤

On the other hand, under some conditions X is nowhere connected
im kleinen, or connected im kleinen at very few points.

Lemma 2.12. The following holds.

(1) If X is connected im kleinen at x then for any ε there exists θ
such that Imp(θ) ⊂ B(x, ε) (in particular, there are angles with
impressions of arbitrarily small diameter).

(2) Suppose that there exists δ > 0 such that for each θ ∈ S1,
diam(Imp(θ)) > δ. Then X is nowhere connected im kleinen.

(3) Suppose that the intersection Z of all impressions is not empty.
Then the only case when X is connected im kleinen at a point
is (possibly) when Z = {z} is a singleton and X is connected
im kleinen at z.

Proof. (1) Choose ε > 0 and a continuum K containing x such that
diam(K) < ε and 0 < δ < ε such that B(x, δ) ∩ X ⊂ K. Choose a
crosscut C ⊂ B(x, δ/2), then C ∩ X ⊂ K. Hence, Sh(C) ⊂ B(x, ε)
and so there are angles whose impressions are contained in Sh(C) and
hence in B(x, ε). These angles have impressions of diameter less than
2ε.

(2) Immediately follows from (1).
(3) Suppose that X is connected im kleinen at z. Then by (1) there

is a sequence of impressions converging to {z} which implies that Z =
{z}. The example of a Cantor bouquet X with the vertex z shows that
X can even be locally connected at z. ¤
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3. Wandering continua for uniCremer polynomials

In Section 3 we use Thurston’s invariant geometric laminations de-
fined in [Thu85]. A geometric lamination is a compact set L of chords
in D and points in S1 such that any two distinct chords can meet, at
most, in an end-point (i.e., the intersection of any two distinct chords
is either empty or a point in S1). We refer to a non-degenerate chord
` ∈ L as a leaf and to a point in L as a degenerate leaf (by “leaves”
we mean non-degenerate leaves, and by “(degenerate) leaves” we mean
both types of leaves). A degenerate leaf may be an endpoint of a leaf.
If ` ∩ S1 = {a, b} for a leaf `, we write ` = ab. We denote by L∗ the
union of all leaves in L. Then L∗ ∪ S1 is a continuum. We can ex-
tend σd : S1 → S1 over L∗ by mapping ` = ab linearly onto the chord
σd(a)σd(b) and denoting this chord by σd(`). A gap G is the closure
of a complementary domain of D \ L∗. A geometric lamination L is
d-invariant if σd preserves gaps and leaves of L in the following sense:

(1) (Leaf invariance) For each leaf ` ∈ L, σd(`) is a (degenerate)
leaf in L and there exist d pairwise disjoint leaves `1, . . . , `d in
L such that for each i, σd(`i) = `.

(2) (Gap invariance) For each gap G of L, σd(Bd(G)) is a (degener-
ate) leaf or the boundary of a gap G′ of L. We denote by σd(G)
the (degenerate) leaf or the gap G′, respectively. If σd(G) = G′

is a gap then we also require that σd|Bd(G)
: Bd(G) → Bd(G′)

be the composition of a monotone map and a positively oriented
covering map.

We show that if a leaf of a d-invariant lamination L maps in some
“direction” then L contains an invariant leaf or gap located in the
same “direction”. From now on the following applies: 1) d ≥ 2 is fixed
and omitted from the notation; 2) we define non-trivial laminations as
laminations containing at least one leaf and consider only non-trivial
laminations; clearly, if L is non-trivial then the endpoints of leaves are
dense in S1 and every point of S1 belongs to a (degenerate) leaf.

Theorem 3.1. Let L be an invariant lamination with a leaf `0. Suppose
that D \ `0 = A ∪ B with A and B open, disjoint and connected, and
σ(`0) ⊂ A. Then A must contain either:

(1) a leaf ` such that σ(`) ⊂ `,
(2) a gap G such that σ(G) ⊂ G.

Proof. For leaves `, `′ ∈ A we say that ` ≤ `′ if ` separates `′ \ ` from
B in D (loosely, leaves in A grow in the sense of this ordering as they
move away from B). Since σ(`0) ⊂ A, `0 ≤ σ(`0). Let M be a maximal



12 ALEXANDER BLOKH AND LEX OVERSTEEGEN

linearly ordered collection of leaves in A containing `0 and such that
for all ` ∈M, ` ≤ σ(`) (by the Zorn Lemma such collections exist).

Since L, and hence M, has a countable basis, there exists `1 ≤ `2 ≤
. . . in M such that for each ` ∈ M one can find `i with `i ≥ `. Since
L is closed, there exists uv = `∞ ∈ L such that lim `i = `∞. Let us
consider several possibilities for `∞. By continuity `∞ ≤ σ(`∞). Below
we will need the following claim given here without proof.
Claim. Suppose that G ⊂ A is a gap, σ(G) 6⊂ G, and ` ≤ `′ are two
leaves in Bd(G). Then if σ(`) ≥ `′ then σ(`′) ≥ `′.

Consider now some cases. Suppose first that `∞ is a leaf. If σ(`∞) ⊂
`∞, then we are done. If there exists a sequence of leaves `′i separating
`∞ from σ(`∞) which converge to `∞, then lim σ(`′i) = σ(`∞) and hence
there exists a i0 such that `∞ < `′i0 and `′i0 ≤ σ(`′i0), contradicting the
maximality of M. Hence there exists a gap G, which contains `∞ and
is located “between” `∞ and σ(`∞). If σ(`∞) is not in Bd(G) then
there exists a leaf `′ ∈ Bd(G) separating `∞ \ `′ from σ(`∞) \ `′. If
σ(`′) ⊂ `′ then we are done. Otherwise by the Claim `∞ < `′ ≤ σ(`′)
contradicting the maximality ofM. Hence `∞ and σ(`∞) are contained
in Bd(G). We may assume that σ(G) 6⊂ G and σ(`∞) 6⊂ `∞. Then there
must exist a leaf `′ 6= `∞ in the boundary of G such that `′ separates
G \ `′ from σ(G) \ `′. By the Claim `∞ < `′ ≤ σ(`′) contradicting the
maximality of M.

Hence we may assume that `∞ is a degenerate leaf and there are
no invariant leaves or gaps in A. Since `∞ ≤ σ(`∞), `∞ is a σ-fixed
point. Since `∞ is repelling, it is not a limit of leaves in M. Hence
there exists a maximal leaf `′ of M \ `∞. Let us show that `∞ is an
endpoint of `′. Indeed, otherwise there exists a gap G′ which contains
`∞, `′ in its boundary. Since σ(G′) 6⊂ G′, there exists a boundary leaf
`′′ ∈ Bd(G′) containing `∞ and separating σ(G′) \ `′′ from G′ \ `′′.
Then `′ < `′′. Since σ(`′) ≥ `′, by the Claim σ(`′′) ≥ `′′. Hence `′′

can be added to M contradicting the maximality of M, and so `∞ is
an endpoint of `′. Since by the assumption `′ is not invariant, then
σ(`′) > `′. Suppose that G′′ is a gap containing `′ and separated by `′

from B. Since σ(G′′) 6⊂ G′′, there exists a boundary leaf `′′ ∈ Bd(G′′)
containing `∞ and separating σ(G′′) \ `′′ from G′′ \ `′′. Then `′ < `′′.
Since σ(`′) ≥ `′, by the Claim σ(`′′) ≥ `′′. Hence `′′ can be added to
M contradicting the maximality of M. Hence `′ is a limit of leaves
all containing `∞ and separated by `′ from B. By continuity some of
them can be added to M, a contradiction completing the proof. ¤

A set M ⊂ C is wandering if all its iterates are pairwise disjoint.
Ray continua are defined in Definition 2.9. One can iterate the set
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of angles connected to a wandering ray continuum by taking on each
step the convex hull of the current iteration of this set of angles; by
Lemma 2.10 these convex hulls are disjoint.

Observe that a set of angles connected to a wandering ray continuum
K is not well-defined. Also, it may happen that K is contained in a
larger wandering ray continuum K ′ such that A′∨K ′,A∨K and A′ ⊃
A. However the growth of the set of angles connected to wandering ray
continua is limited as the following theorem shows (the result is due to
Kiwi [K02], see also [BL02]).

Theorem 3.2. [K02] A set of angles such that all its images under σ
are unlinked consists of no more than 2d angles.

By Theorem 3.2 given a wandering ray continuum K connected to
the set of angles A there is always a maximal set of angles A′ connected
to K of cardinality at most 2d. Theorem 3.3 shows that wandering ray
continua connected to a non-trivial set of angles give rise to laminations.

Theorem 3.3. Suppose P is a polynomial of degree d with connected
Julia set J which contains a wandering ray continuum K ′ connected
to a set of angles A′ of cardinality more than 1. Then there exists a
d-invariant lamination L(K ′) such that A′ is contained in a leaf or a
gap of L(K ′).

Proof. First we show that any pullback A of any forward iterate of K ′

is tree-like. Indeed, A is wandering since so is K ′. On the other hand,
if A is not tree-like then it contains the boundary of a Fatou domain,
and by the Sullivan theorem [Sul85] cannot be wandering. Hence all
pullbacks of images of K ′ are tree-like. Then by a theorem of J. Heath
[Hea96] the map P on a pullback A can be not one-to-one only if A
contains a critical point of P .

Choose K = PN(K ′) so that the following holds. Since K ′ is wan-
dering then for each critical point c any image of K ′ may contain only
one iteration of c. Choose a forward image K of K ′ so that for each
critical point c either some forward image of c belongs to K, or the
orbit of c is disjoint from the orbit of K. In particular, K, P (K), . . .
do not contain critical points. Let us show that then there are dm

pairwise disjoint pullbacks of P n(K) of order m ≤ n none of which
contains a critical point. Indeed, suppose that a pullback A of P n(K)
of order m contains a critical point c. Since by the choice of K there
exists i > 0 such that P i(c) ∈ K we then get that P n(K) contains both
P n+i(c) and Pm(c), a contradiction. By [Hea96] this implies that all
powers of P restricted onto a pullback A of P n(K) of order m ≤ n are
one-to-one.
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This implies that the pullbacks of images of K are in fact well-defined
as sets: any two pullbacks A, B are either the same or disjoint. Indeed,
suppose that A is a pullback of P n(K) of order m and B is a pullback of
P r(K) of order s. Suppose that A∩B 6= ∅ and show that then A = B.
Choose a point x ∈ A ∩ B and consider several cases. For definiteness
suppose that m > s. First let us show that n − m = r − s. Indeed,
Pm(x) ∈ P n(K) and P s(x) ∈ P r(K). Then the latter implies that
Pm(x) = Pm−s(P s(x)) ∈ Pm−s+r(K). Hence P n(K) and Pm−s+r(K)
are not disjoint (both contain Pm(x)) and hence n = m−s+r because
K is wandering. Now, by the above there is only one pullback of Pm(K)
containing P s(x), namely P r(K). Hence P s(A) = P r(K) and A is the
pullback of P r(K) of order s along the orbit x, P (x), P s(x). Since the
same holds for B we conclude that A = B.

Choose a maximal set of angles A connected to K and containing
σN(A′) (clearly, all angles from σN(A′) are connected to PN(K)). De-
note a pullback of P n(K) by P of order m by K(m,n, i) where different
numbers i correspond to different pullbacks of the same order m of the
same image P n(K) of K. In other words, K(m, n, i) is the i-th com-
ponent of the set P−m(P n(K)). To K(m,n, i) we associate the set of
angles Θ(m,n, i) which are all the angles from σ−m(σn(A)) connected
to K(m,n, i). Let us show that the sets Θ(m,n, i) have the same prop-
erties as their “generating” sets K(m,n, i): two such sets of angles
either coincide or are disjoint.

First let us show that if m ≤ n then it is impossible to have two angles
α, β ∈ Θ(m,n, i) such that σ(α) = σ(β). Indeed, if we apply the result
of [Hea96] to the set K(m,n, i) united with the rays Rα, Rβ we will see
that K(m, n, i) must contain a critical point, a contradiction with the
above. This easily implies that the cardinality of the set Θ(m,n, i) is
the same as that of A; together with the fact that all pullbacks coincide
or are disjoint this implies that such sets of angles either coincide or are
disjoint too. The case when m > n can be proven analogously to the
proof of a similar claim dealing with pullbacks and is left to the reader.
If we denote K by K(0, 0, 0) then Θ(0, 0, 0) = A. Set G = Ch(A).

If G(m,n, i) = Ch(Θ(m,n, i)) then by Lemma 2.10 all the sets
G(m,n, i) are pairwise disjoint. By Theorem 3.2 all the sets Θ(m,n, i)
are finite. Hence all G(m,n, i) are pairwise disjoint finite gaps, leaves
and points mapped onto each other by σ and its powers. Moreover, σ
restricted on the sets G(m,n, i) satisfies all the properties described in
the definition of the lamination because this corresponds to the action
of the map P on the plane. Hence ∪m,n,iG(m,n, i) is a σ-invariant non
compact lamination L(G). It follows easily that the closure of this non-
compact lamination is a σ-invariant lamination L(K). Observe that by
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the construction A′ is contained in a leaf or a gap, and hence L(K) is
non-trivial (because the cardinality of A is more than 1). ¤

Theorem 3.4 describes properties of the lamination L(K). The con-
struction from Theorem 3.3 allows one to talk about the sets from the
grand orbit of A,A∨K, under σ. In Theorem 3.4 we use the notation
from the proof of Theorem 3.3.

Theorem 3.4. The lamination L(K) has the following properties.

(1) If θθ′ ∈ L(K) \ L(G) is a leaf, then Imp(θ) ∩ Imp(θ′) 6= ∅.
(2) For any gap H of L(K) and any θ ∈ H ∩ S1, let i(θ) =

K(n,m, i) ∪ Imp(θ) if θ ∈ Θ(n,m, i) and i(θ) = Imp(θ) oth-
erwise. Then

Imp+(H) =
⋃
{i(θ) | θ ∈ H ∩ S1} is connected.

Proof. Note first that (2) holds in case H = G(n,m, i), for some
(n,m, i) since in this case Imp+(H) = K(n,m, i) ∪ ⋃{Imp(θ) | θ ∈
H ∩ S1} is connected by construction. We show that (1) holds. By
assumption θθ′ is a limit of gaps or leaves G(nj,mj, ij) ∈ L(G). Sup-
pose that Imp(θ) ∩ Imp(θ′) = ∅. Assume, by taking a subsequence if
necessary, that L = lim(Imp+(G(nj,mj, ij))) is a sub-continuum of J .
Then L meets both Imp(θ) and Imp(θ′). Choose a crosscut C (C ′)
such that Rθ (Rθ′) crosses C (C ′, respectively) essentially and such
that Sh(C)∩Sh(C ′) = ∅. Choose a continuum I (I ′) in Bd(Sh(C))∩J
(Bd(Sh(C ′)) ∩ J) containing the endpoints of C (C ′, respectively).
Choose z ∈ L \ Sh(C) ∪ Sh(C ′) and zj ∈ Imp+(G(nj,mj, ij)) such
that z = lim zj. For j large, Imp+(G(nj, mj, ij)) \ [Sh(C) ∪ Sh(C ′)] ⊂
K(nj,mj, ij). Hence there exist three disjoint continua in J joining I
to I ′. By Kuratowski’s “θ-curve theorem” (Theorem 2 from [Kur68,
vol. 2, Chapter 10, §61, II, p. 511]), one of these continua contains
points which are not in the closure of the unbounded component of
C \ J . This contradiction shows that (1) must hold.

Suppose next that H is a gap in L(K) \ L(G). All leaves θθ′ in the
boundary of H are either leaves in L(K) \ L(G) or leaves in the inter-
section of some G(n,m, i) and H. In the former case, by (1), Imp(θ)∪
Imp(θ′) is connected. In the latter case, the continuum K(n,m, i) is a
continuum in Imp+(H) meeting both Imp(θ) and Imp(θ′). Hence for
all leaves θθ′ in the boundary of H, there exists a sub-continuum of
Imp+(H) meeting both Imp(θ) and Imp(θ′).

Suppose that Imp+(H) = A ∪ B, with A and B disjoint and closed
in Imp+(H). Let SA = {θ ∈ H | i(θ) ∩ A 6= ∅} and SB = {θ ∈
H | i(θ) ∩ B 6= ∅}, then SA and SB are disjoint. If θθ′ is a leaf in
the boundary of H, then θ ∈ SA if and only if θ′ ∈ SA. We claim
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that SA and SB are closed sets. To see this suppose that θj ∈ SA

and lim θj = θ∞. Then i(θj) ⊂ A and hence Imp(θj) ⊂ A. By upper
semi-continuity of impressions, lim sup Imp(θj) ⊂ Imp(θ∞). Since A is
closed, Imp(θ∞) ⊂ A, i(θ∞) ∩ A 6= ∅ and θ∞ ∈ SA as desired. If S+

A is
the union of SA and all leaves in the boundary of H which meet SA,
and if S+

B is defined similarly, then Bd(H) = S+
A ∪ S+

B , where S+
A and

S+
B are disjoint and closed. This contradicts the fact that Bd(H) is

connected and (2) holds. ¤

In Theorem 3.5 we use the notation from the proof of Theorem 3.3.

Theorem 3.5. Suppose that J is the Julia set of a basic uniCremer
polynomial P of degree d. Suppose that K ⊂ J is a wandering ray
continuum connected to a set of angles A′ which contains at least two
angles. Then there exists an n such that |σn(A′)| is a singleton and for
every θ ∈ A′, ∪n≥0σ

n(θ) is not dense in S1.
In particular, K is pre-critical and if a point x ∈ J is bi-accessible

then it is either pre-critical or pre-Cremer.

Proof. By Theorem 3.3, there exists a d-invariant lamination L(K)
such that A is contained in a gap or leaf of L(K). Let p be the fixed
Cremer point of P . Denote by A(p) the set of all angles whose im-
pressions contain p. Let us show that there is a gap or a (degenerate)
leaf containing A(p). Suppose otherwise. Then there exists a leaf
θθ′ ∈ L(K) and angles α, β such that α, β ∈ A(p), all four angles are
distinct, and the chord αβ crosses the leaf θθ′. If θθ′ is a leaf from
L(K) \ L(G) then it is a limit of leaves of elements of L(G). Hence
there exists a set G(m,n, i) and two angles γ, γ′ ∈ G(m, n, i) such that
Rγ ∪ Rγ′ ∪K(m,n, i) separates Rα from Rβ. Since p 6∈ K(m,n, i), at
least one of impressions Imp(α), Imp(β) does not contain p, a contra-
diction. Suppose θθ′ ∈ L(G). Then we set γ = θ, γ′ = θ′ and repeat
the same argument. Thus, there exists a gap or a (degenerate) leaf con-
taining A(p). Let H be a gap or a (degenerate) leaf containing A(p) of
maximal cardinality, and study possibilities for H.

If H is a gap then there is only one gap containing A(p). Indeed,
suppose two gaps H, H ′ contain A(p). Then A(p) consists of one or
two points. If it consists of one point then there is a leaf ` of H and
a leaf `′ of H ′ containing A(p). For geometric reasons these leaves
cannot be limit leaves of L(K), hence they are leaves from L(G), a
contradiction (all leaves of L(G) are wandering while σ(A(p)) ⊂ A(p)).
If A(p) consists of two points then these points must be the endpoints
of a common leaf of H and H ′. However in this case as before the leaf
in question cannot be a limit leaf of L(G), so it has to be a leaf from
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L(G), and since it is not wandering we get a contradiction. So, H is
the unique gap containing A(p).

Let us show that regardless of whether H is a gap or not, σ(H) ⊂ H.
Let us prove it by way of contradiction. First assume that H is a gap.
Since σ(A(p)) ⊂ A(p) then σ(H) ∩H ⊃ σ(A(p)) and σ(A(p)) consists
of one or two points none of which is wandering. Then for geometric
reasons there exist non-limit leaves of L(K) coming out of points of
σ(A(p)). As above, this is impossible since all non-limit leaves belong
to L(G), are wandering and hence disjoint from σ(A(p)). Now, if H is a
leaf then by the definition of H we see that H is not a boundary leaf of a
gap. Since by the assumption σ(H) 6⊂ H then H, σ(H) must be leaves
containing σ(A(p)). If A(p) consists of two points then they must be
the endpoints of H, and since σ(A(p)) ⊂ A(p) then σ(H) ⊂ H. If A(p)
consists of one point then σ(H) 6⊂ H implies that the leaves H, σ(H)
meet only at their common endpoint A(p) = σ(A(p)). Since L(G) is
dense in L(K), there exists a gap located between H and σ(H) with
the vertex coinciding with A(p), contradicting the choice of H. Finally,
if H is a degenerate leaf then it must be disjoint from other leaves or
gaps, and σ(H) = H.

Let us prove that the only possible dynamics in the described sit-
uation is that when H is a gap and there exists (m,n, i) such that
G(m,n, i) ∩ Bd(H) 6= ∅. Assume that this is not true and show that
then there exists a leaf ` ∈ L(G) such that ` separates σn(`) from H,
and then σn(`) separates σ2n(`) from ` (in other words, ` is repelled
from H by two iterations of σn). First suppose that H is a (degenerate)
leaf. Then H ∈ L(K)\L(G), and there exist n > 0 and a leaf ` ∈ L(G)
such that ` is repelled from H by two iterations of σn. Now let H be a
gap, but the grand orbit of A = Θ(0, 0, 0) is disjoint from Bd(H). Then
every leaf in Bd(H) is a limit of leaves from L(G). Suppose that `′ is a
boundary leaf of H. Since σ(H) ⊂ H then `′ cannot be pre-critical since
if σk(`′) is a point, with k minimal, then σk−1(`′) = lim G(nj,mj, ij)
and so for geometric reasons σ(G(nj,mj, ij))∩G 6= ∅, a contradiction.
Hence all boundary leaves of H are preperiodic. Suppose that `′ is a
boundary leaf of H with σn(`′) = `′. Since `′ is a limit of a sequence
of leaves from L(G) and σn repels leaves from `′, it follows that there
exists a leaf ` ∈ L(G) repelled from `′ by two iterations of σn.

Then by Theorem 3.1, there exists a σn-invariant leaf or gap H ′ such

that ` separates H ′ from H. Let Z = Imp+(H ′). Note that p 6∈ Z.
Since H ′ is σn-invariant then by Theorem 3.4, Z is a P n-invariant
continuum. By Theorem 2.7 and because of the properties of basic
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uniCremer polynomials, Z is a periodic point at which at least two
rays land (because H ′ is a leaf or a gap), a contradiction.

So, H is a gap and there exists (m,n, i) such that G(m,n, i) ∩
Bd(H) 6= ∅. If G(n, m, i) ∩ Bd(H) = {a} is a point, then a is an
endpoint of a leaf aa′ in the boundary of G. But then aa′ must be
a limit leaf of L(G) which is impossible for geometric reasons. Hence
G(n,m, i) ∩ H is a leaf `. Since {σk(`)} are pairwise disjoint and all
contained in Bd(H) for all k ≥ 0, there exists the least l such that σl(`)
is a point, and hence σl−1(`) is a critical leaf, i.e. a leaf whose image
is a point. If σl(G(m,n, i)) is a point then we are done with the proof
of the first claim of the theorem. If σl(G(m,n, i)) is not a point then
the same arguments can be repeated. However there are only finitely
many critical leaves in our lamination. Hence σr(G(n,m, i)) is a point
for some r. Since by Theorem 3.3 A is contained in some G(m,n, i),
we are done with the first claim. The claim that for any θ ∈ A its
σ-orbit is not dense easily follows from this description, and the proof
of the first part of the theorem is complete.

By [Hea96] K is pre-critical. Suppose that x is a bi-accessible point
which is neither pre-critical nor pre-Cremer. Then by the above it maps
into a repelling periodic point y and since x is bi-accessible then y is a
periodic cutpoint, a contradiction. ¤

4. Main results

First we establish some facts which may be of independent interest
and serve as an additional motivation for us. As was explained in the
Introduction, Kiwi’s results [K04] do not apply to uniCremer polyno-
mials. Still, one could hope to model (topologically) a basic uniCremer
Julia set J by monotonically mapping J onto a locally connected con-
tinuum. It turns out that this is impossible. In the quadratic case we
proved in [BO06b] that a monotone map of J onto a locally connected
continuum collapses J to a point. However the proofs in [BO06b] rely
also upon results of [GMO99] not known for basic uniCremer polyno-
mials. Using a new argument we fill this gap and prove Theorem 4.2.

Let us state some results of [BO06b]. An unshielded continuum
K ⊂ C is a continuum which coincides with the boundary of the infinite
complementary component to K. Given an external (conformal) ray R,
a crosscut C is said to be R-transversal if C intersects R only once and
the intersection is transverse and contained in C ∩R; if t ∈ R then by
Ct we always denote a R-transversal crosscut such that Ct ∩ R = {t}.
Given an external ray R we define the (induced) order on R so that
x <R y (x, y ∈ R) if and only if the point x is “closer to K on the ray
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R than y”. Given an external ray R, we call a family of R-transversal
crosscuts Ct, t ∈ R an R-defining family of crosscuts if for each t ∈ R
there exists a R-transversal crosscut Ct such that diam(Ct) → 0 as
t → K and Sh(Ct) ⊂ Sh(Cs) if t <R s.

Lemma 4.1. [BO06b, Lemma 2.1] Let K be an unshielded continuum
and R be an external ray to K. Then there exists an R-defining family
of R-transversal crosscuts Ct, t ∈ R.

Now we can prove Theorem 4.2.

Theorem 4.2. Suppose that P is a basic uniCremer polynomial and
ϕ : J → A is a monotone map of J onto a locally connected continuum
A. Then A is a singleton.

Proof. By way of contradiction suppose that ϕ : J → A is a monotone
map onto a locally connected non-degenerate continuum A. Define
the map Φ on the complex plane C so that it identifies precisely fibers
(point-preimages) of ϕ and does not identify any points outside J .
Since the decomposition of C into fibers of ϕ and points of C \ J is
upper-semicontinuous, the map Φ is continuous. Since J and hence
all its subcontinua are non-separating then by the Moore Theorem
[M25] the map Φ maps C onto C, and so Φ(J) = ϕ(J) = A is a den-
drite (locally connected continuum containing no simple closed curve).
External (conformal) rays Rα in the J-plane are then mapped into
continuous pairwise disjoint curves Φ(Rα) in the A-plane called below
A-rays. Clearly, if Rα = R lands then so does Φ(R). Let us show
that Φ(R) always lands, and in fact the impression Imp(α) maps un-
der ϕ to the landing point of the A-ray Φ(R). By Lemma 4.1 there
exists an R-defining family of crosscuts Ct. Since Φ is continuous then
diam(Φ(Ct)) → 0 as t → J . Consider two cases.

Suppose that Φ(Ct) is an arc for all t ∈ R, and hence a crosscut of
A. Since A is locally connected then by Carathéodory theory Φ(Ct)
converges to a unique point x ∈ A which implies that Φ(R) lands. Also,
by Carathéodory theory the Φ-images of the closures of the shadows
Sh(Ct) converge to the same point x which belongs to them all. Since
the intersection of the closures of the shadows Sh(Ct) is the impression
Imp(α) of α then ϕ(Imp(α)) = {x} as desired. Otherwise there exists
t ∈ R such that Φ(Ct) is a simple closed curve. This can only happen
if the endpoints of Ct map under ϕ to the same point, say, z. It follows
that Φ(Cs) is a simple closed curve for all s <R t, and these curves all
contain z. Thus, Φ(R) lands at z. Moreover, in this case the shadows
Sh(Cs) are mapped inside the simple closed curves Φ(Cs), s <R t which
as before implies that ϕ(Imp(α)) = {z}.
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Since impressions are upper-semicontinuous, the family of A-rays is
continuous, and the map ψ associating to every angle α the landing
point of the A-ray Φ(Rα) is a continuous map of S1 onto A. Define
the valence of a point y ∈ A as the number of components of the set
A \ {y} if it is finite and infinity otherwise. Let By be the set of A-rays
landing at y. Then the number of components of S1 \ By equals the
valence of y. Indeed, if (α, β) is a component of S1 \ By then the A-
rays of angles in (α, β) land in a component of A \ {y} and for distinct
components of S1 \ By we get distinct components of A \ {y}. In fact
there is exactly one component of A\{y} contained in the appropriate
wedge in the plane formed by the A-rays Φ(Rα) and Φ(Rβ). Indeed,
otherwise choose angles γ, θ ∈ (α, β) so that their A-rays Φ(Rγ) and
Φ(Rθ) land at points x, z from distinct components of A \ {y}. Then
the path ψ([γ, θ]) connects points x and z inside A and hence must
pass through y. On the other hand by the construction y 6∈ ψ([γ, θ]),
a contradiction.

We show that except for a countable set of points there are no more
than two A-rays landing at y ∈ A. Let Q′ be the set of all points y ∈ A
with finite valence for which there are infinitely many A-rays landing at
y. Then by the previous paragraph By has a non-empty interior for any
point y ∈ Q′, and so Q′ is countable. On the other hand, by Theorem
10.23 of [Nad92] the set Q′′ of all branch points of A is countable (a
branch point is a point of valence greater than 2). Hence, for any point
y ∈ A \ (Q′ ∪ Q′′) such that its valence is greater than 1 (such points
are called cutpoints) exactly two A-rays land at y.

Choose a point y ∈ A \ (Q′ ∪ Q′′) using a bit of dynamics. Let H
be the union of grand orbits of p and all critical points of P and set
Q′′′ = ϕ(H). Then Q̂ = Q′∪Q′′∪Q′′′ is countable. Choose y ∈ A\Q̂ to
be a cutpoint of A. Then exactly two A-rays land at y. Moreover, let
ϕ−1(y) = K; then by the choice of y forward images of K avoid p and
critical points of P . Since impressions are mapped by ϕ into points,
there are exactly two angles α, β with K = Imp(α) ∪ Imp(β) and the
impressions of other angles are disjoint from K.

By Theorem 3.5 there are integers 0 ≤ l < m such that P l(K)
and Pm(K) intersect. Since forward images of K avoid critical points,
σr(α) 6= σr(β) for any r and hence both P l(K) = Imp(σl(α)) ∪
Imp(σl(β)) and Pm(K) = Imp(σm(α))∪ Imp(σm(β)) are unions of im-
pressions of two distinct angles. Now, if the pair of angles σl(α), σl(β)
maps into itself by σm−l then P l(K) is a Pm−l-fixed continuum not
containing p, hence by Theorem 2.7 it is a repelling periodic point
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at which two rays land, a contradiction. Hence there exists an an-
gle γ ∈ {σm(α), σm(β)} \ {σl(α), σl(β)} such that Imp(γ) non-disjoint
from the P l(K). If we now pull P l(K) back to K we will get an
angle γ′ 6∈ {α, β} whose impression is non-disjoint from K, a contra-
diction. ¤

Since we assume that J is decomposable, all impressions are proper
and have empty interior. In particular no countable union of impres-
sions coincides with J . We begin by studying red dwarf Julia sets, i.e.
uniCremer Julia sets such that impressions of all angles contain the
Cremer point p.

Lemma 4.3. If J is a red dwarf Julia set then (1) the intersection K
of all impressions contains all forward images of all critical points, (2)
there exists ε > 0 such that the diameter of any impression is greater
than ε, (3) there are no points at which J is connected im kleinen, and
(4) no point of J is biaccessible and p is not accessible from C \ J .

Proof. Let us show that for any angle α its impression Imp(α) contains
all critical images. Indeed, otherwise there exists a critical point c such
that P (c) 6∈ Imp(α) which implies that c 6∈ K. Choose a curve T
starting at P (c), going to infinity and bypassing Imp(α). Then the
pullback of T containing c cuts the plane into at least two components
each of which contains at least one pullback of Imp(α), a contradiction.
Hence K contains all critical values, and since K is forward invariant,
K contains all forward images of all critical points.

Clearly, (1) implies (2) (by [Mn93] there is a recurrent critical point
whose forward orbit avoids p). By Lemma 2.12(2) J is nowhere con-
nected im kleinen. Moreover, no point x ∈ J is biaccessible from C\J .
Indeed, if x 6= p is biaccessible then one of the two half-planes into
which x and rays landing at x cut the plane will not contain p, hence all
rays contained in that half-plane will not contain p in their impressions,
a contradiction. On the other hand, if x = p we can take a preimage of
p and get the same contradiction. Hence p cannot be accessible from
C \ J because if it is then the corresponding ray is not fixed (periodic
rays cannot land on p by Douady and Hubbard [DH85]) and hence this
ray and its image show that p is biaccessible, a contradiction. ¤

Lemma 4.4 follows from Theorem 2.7.

Lemma 4.4. If K ⊂ J is a P n-invariant continuum or singleton not
containing p then K is a singleton. In particular, if γ is a periodic
angle and p 6∈ Imp(γ) then Imp(γ) is a singleton.
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Proof. All P n-fixed points in K are repelling, and by the definition of a
basic uniCremer polynomial at each of them exactly one P n-fixed ray
lands. Hence by Theorem 2.7 K is a singleton. ¤

For x ∈ J let A(x) be the set of all angles whose impressions contain
x, and let B(x) be the union of these impressions. Then A(x) and B(x)
are closed sets. In Lemma 4.5 we study these sets for a periodic x.

Lemma 4.5. If x is periodic then one of the following holds:

(1) x 6∈ B(p), then {x} = B(x) = Imp(θ) for a periodic K-separate
angle θ, A(x) = {θ}, and x is a repelling periodic point;

(2) x ∈ B(p), then B(x) is non-degenerate and no angle θ ∈ A(x)
is K-separate.

In particular, no angle θ ∈ A(p) is K-separate, and B(p) is non-
degenerate.

Proof. Consider first the case when x = p. We need to show that
then the case (2) holds. First let us show that B(p) is non-degenerate.
Suppose that A(p) is infinite. Since A(p) is invariant it follows from a
well-known result from the topological dynamics of locally expanding
maps that σ|A(p) is not one-to-one. Hence by [Hea96] B(p) contains
a critical point and cannot coincide with p. Suppose that A(p) is fi-
nite. Then A(p) contains periodic angles, hence B(p) contains periodic
points distinct from p and hence again B(p) is not degenerate.

Let us show that no angle θ ∈ A(p) is K-separate. We may assume
that A(p) = {θ} consists of just one angle and need to show that θ
is not K-separate. Clearly, σ(θ) = θ. Denote the landing point of
Rθ by x, and show that there is a critical point c ∈ B(p) = Imp(θ).
Indeed, otherwise choose a neighborhood U of B(p) such that no critical
points belong to U , consider the set of all points never exiting U , and
then the component K of this set containing p. Such sets are called
hedgehogs (see papers by Perez-Marco [Per94] and [Per97]) and have
a lot of important properties. In particular, by [Per94] and [Per97] K
cannot contain a periodic point other than p, a contradiction (clearly,
B(p) ⊂ K and B(p) contains x). Hence c ∈ B(p) for some critical
point c. This implies that for some integer i, 1 ≤ i ≤ d − 1 we have
c ∈ Imp(θ + i/d) and hence B(p) = Imp(θ) is not disjoint from the
impression of another angle and θ is not K-separate as desired.

Suppose now that x 6∈ B(p) is a periodic point of period m. Then
p 6∈ B(x) and hence by Lemma 4.4 B(x) is degenerate. By the above
quoted topological result this implies that A(x) is finite and therefore,
by the assumptions on P , A(x) = {θ} where θ is periodic and K-
separate. Now assume that x ∈ B(p). Then there is an angle α ∈ A(p)
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with p, x ∈ Imp(α) and hence p ∈ B(x) and B(x) is not degenerate.
Now, if there are more than one angle in A(x) then all such angles are
not K-separate and we are done. If however there is only one angle
in A(x) then this angle is α = θ which belongs to A(p) and by the
previous paragraph is not K-separate either. ¤

Lemma 4.5 implies a few facts: e.g., if θ is a K-separate periodic
angle then Imp(θ) is a repelling periodic point. Lemma 4.6 shows
that in some cases there are lots of such angles. For F ⊂ S1 denote by
Imp(F ) the set ∪θ∈F Imp(θ). Let E be the set of all K-separate periodic
angles; by Lemma 4.5 each angle in E has degenerate impression.

Lemma 4.6. Suppose p 6∈ Imp(θ) for some angle θ. Then (1) B(p)
is a nowhere dense subset of J , (2) the set E is dense in S1, (3) the
set Imp(E) is dense in J , (4) for a closed set of angles F 6= S1 the set
Imp(F ) is a proper subset of J , (5) J is connected im kleinen at every
point y ∈ Imp(E), (6) in any arc W ⊂ S1 there are two angles whose
impressions meet.

Proof. To prove the first claim it is enough to show that B(p) 6= J .
Suppose otherwise. Since by our standing assumption J is decompos-
able then no finite union of impressions can coincide with J , and A(p)
is infinite. Then in any open arc V there are angles whose impressions
meet. Indeed, we can find a big integer N such that σ−N(A(p)) ∩ V
is infinite. Each angle from σ−N(A(p)) contains a PN -preimage of p
in its impression. Since there are only finitely many PN -preimages of
p then there are two angles γ, γ′ ∈ σ−N(A(p)) ∩ V which contain the
same preimage of p and therefore meet as desired.

Denote by U an open arc containing θ such that for any angle in U
its impression does not contain p (then by Lemma 4.4 periodic angles
from U have degenerate impressions). Assume that (γ, γ′) ⊂ U is an
arc such that the impressions of γ, γ′ meet. The union Z = R(γ) ∪
Imp(γ)∪ Imp(γ′)∪R(γ′) cuts the plane into two half-planes H and G;
assume for the sake of definiteness that p ∈ G. Since no finite union
of impressions coincides with J then the union of impressions of angles
from (γ, γ′) is not contained in Z. Hence there exists a point h ∈ J∩H.
Then the impression of an angle from (γ′, γ) cannot contain h because
Z separates this angle’s ray from h. On the other hand, the impression
of an angle from [γ, γ′] cannot contain p either. Hence no impression
contains h and p simultaneously, implying that B(p) 6= J .

By Lemma 4.5 E is the set of all periodic angles such that landing
points of their rays do not belong to B(p). By the upper semi-continuity
of impressions, E is open in the set of all periodic angles. Since E is
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invariant, E is dense in S1 which proves (2). We claim that Imp(E) is
dense in J . Indeed, otherwise there exists an open set U ⊂ J disjoint
from Imp(E). Since periodic points are dense in J , they are dense in
U , and by the definition of E all these periodic points belong to B(p).
Hence B(p) has non-empty interior, a contradiction with (1). Thus,
Imp(E) is dense in J which proves (3). The claim (2) implies (4). By
Lemma 2.11 the rest of the lemma follows. ¤

So far the results of this section use mainly topological tools. This
changes in the lemmas below where we rely upon both continuum the-
ory and dynamics. Our aim is to prove that the angles with dense in
S1 orbits have degenerate impressions. Problems of this kind are of-
ten related to the dynamics of critical points. The result obtained in
Lemma 4.8 enables us to apply some standard tools and seems to be
interesting by itself. However first we need a simple lemma.

Lemma 4.7. Suppose that there exists an angle θ whose impression
does not contain p. Then the following statements are equivalent.

(1) An angle α has a dense in S1 orbit.
(2) Any point of Imp(α) has a dense in J orbit.
(3) There exists a point in Imp(α) which has a dense in J orbit.

Proof. Suppose that α has a dense in S1 orbit and choose x ∈ Imp(α).
Let y ∈ J and ε > 0. By Lemma 4.6 there exists γ ∈ S1 such that
Imp(γ) = {z} and d(z, y) < ε/2. Since the orbit of α is dense in S1

and impressions are upper semi-continuous, there exists n > 0 such
that σn(α) is so close to γ that Imp(σn(α)) ⊂ B(z, ε/2), and hence
d(P n(x), y) < ε. Therefore, ω(x) = J and (1) implies (2). Clearly, (2)
implies (3). Now, suppose that (3) holds. Then Imp(ω(α)) = J which
by Lemma 4.6(4) implies that ω(α) = S1 as desired. ¤

Now we show that if there exists an angle θ whose impression does
not contain p then no critical point has a dense orbit in J .

Lemma 4.8. Suppose that there exists an angle θ whose impression
does not contain p. Suppose that α is an angle with a dense orbit in
S1. Then α is K-separate and Imp(α) does not contain a critical point
of P . In particular, no critical point can have a dense orbit in J .

Proof. The proof consists of several steps. Suppose that there are fi-
nitely many angles α = α0, α1, . . . , αk such that the union I of their
impressions is a continuum. Let us show that then I has to be wander-
ing (all its iterates are pairwise disjoint). By way of contradiction and
without loss of generality we may assume that P (I)∩ I 6= ∅. Consider
the set Q of all angles whose impressions are not disjoint from B(p) and
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the set Imp(Q). Then Q 6= S1 by Lemma 4.5. Hence by Lemma 4.6(4)
Imp(Q) 6= J . Let us show that we may assume that all images of I
intersect Imp(Q).

By Lemma 4.5 the set Q contains two angles with non-disjoint im-
pressions. Denote these angles γ and β. Then the rays of these angles
together with their impressions cut the plane into two components H
and G so that the periodic K-separate angles from (γ, β) have point-
impressions in H and the periodic K-separate angles from (β, γ) have
point-impressions in G. Choose periodic K-separate angles θ′ ∈ (γ, β)
and θ′′ ∈ (β, γ), and then choose k < l so that σk(α) ∈ (γ, β) is very
close to θ′ and σl(α) ∈ (β, γ) is very close to θ′′. Then the continuum
Z = P k(I) ∪ P k+1(I) ∪ · · · ∪ P l(I) connects points from H to points
from G. Hence by Lemma 2.10 Z∩ Imp(Q) 6= ∅. Thus, from some time
on the images of I are non-disjoint from Imp(Q), and we may assume
that in fact I∩Imp(Q) 6= ∅ and hence all images of I intersect Imp(Q).

Just like the set B(p) was constructed as the union of all impressions
non-disjoint from p, and the set Imp(Q) was constructed as the union
of all the impressions non-disjoint from B(p), this process can be con-
tinued for k + 1 more steps resulting into a union of impressions which
we will denote by T . Clearly, T is a closed; moreover, since no point of
Imp(E) can belong to T then T is a proper subset of J . Since α has a
dense orbit, by Lemma 4.7 the orbit of any point of Imp(α) is dense in
J . On the other hand, by the previous paragraph the orbit of Imp(α)
is contained in T and T 6= J , a contradiction. So, the assumption
that I is not wandering leads to a contradiction which implies that I
is wandering. Observe that then by Theorem 3.2 k ≤ 2d.

Let us now show that α is K-separate. Indeed, otherwise let α′ 6= α
be such that Imp(α) ∩ Imp(α′) 6= ∅. Then by the above the maximal
finite collection of angles α0 = α, α1 = α′, . . . , αk such that the union I
of their impressions is connected consists of k+1 > 1 angles and is such
that I is wandering. By maximality the impressions of other angles are
disjoint from I. However the orbit of α is dense which contradicts
Theorem 3.5. Hence α is K-separate as desired. To complete the proof
it remains to notice that if a critical point c belongs to Imp(α) then,
because locally around c the map P is not one-to-one, there exists an
angle α′ such that σ(α) = σ(α′) and c ∈ Imp(α′) implying that α is not
K-separate. Hence Imp(α) does not contain critical points. Since this
holds for any angle with dense orbit we conclude that by Lemma 4.7
no critical point can have a dense orbit in J . ¤

Lemma 4.9 completes a series of claims made in Lemma 4.7 and
Lemma 4.8.
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Lemma 4.9. Suppose that there exists an angle θ whose impression
does not contain p. Let α be an angle such that the σ-orbit of α is
dense in S1. Then Imp(α) is a singleton, and, moreover, the angle α
is K-separate.

Proof. By Mañé [Mn93] the closure B′ of the union of orbits of all
critical points of P contains p. By Lemma 4.8 B′ is nowhere dense in J .
By Lemma 4.6 there is an angle γ ∈ E such that the singleton Imp(γ)
is not contained in B′. By the upper semi-continuity of impressions we
can find an arc U around γ so that the union of impressions of angles
from U is positively distant from B′. By Lemma 2.11 we can find two
angles τ ′ < γ < τ ′′ in U (the order is considered within U) such that
Imp(τ ′) ∩ Imp(τ ′′) 6= ∅. Set U ′ = (τ ′, τ ′′).

Consider the two connected open components of C \Rτ ′ ∪ Imp(τ ′)∪
Imp(τ ′′)∪Rτ ′′ ; let V be the component containing rays of angles from
U ′. Then there are points of J in V . Indeed, otherwise Imp(τ ′) ∪
Imp(τ ′′) contains the impressions of all angles from U ′ which yields
that a forward σ-image of τ ′ or τ ′′ will coincide with J implying by
Theorem 2.8 that J is indecomposable, a contradiction with the stand-
ing assumption. Let us prove that α is K-separate and its impression
is a point. Indeed, by the previous paragraph V is positively distant
from B′. Since V is simply connected, we can find two Jordan disks
W ′ ⊃ W ′′ ⊃ J ∩ V which are both positively distant from B′. There-
fore all pull-backs of W ′ and W ′′ are univalent. By Mañé [Mn93] this
implies that the diameter of the pull-backs of W ′′ converge to 0 as the
power of the map approaches infinity. Observe that as σ-images of
α approach γ, the corresponding P -images of Imp(α) get closer and
closer to Imp(γ) (because of the upper semi-continuity of impressions)
and thus we may assume that infinitely many P -images of Imp(α) are
contained in W ′′. Pulling W ′′ back along the orbit of Imp(α) for longer
and longer time we see that the diameter of Imp(α) cannot be pos-
itive, and hence Imp(α) = {y} is a point as claimed. Moreover, by
Lemma 4.8 the angle α is K-separate. This completes the proof.

¤

We can now prove our main theorem.

Theorem 4.10. For a uniCremer polynomial P the following facts are
equivalent:

(1) there is an impression not containing the Cremer point;
(2) there is a degenerate impression;
(3) the set Y of all K-separate angles with degenerate impressions

contains all angles with dense orbits and a dense set of periodic
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angles, and the Julia set J is connected im kleinen at landing
points of the corresponding rays;

(4) there is a point at which the Julia set is connected im kleinen.

Proof. Let us prove that (1) implies (2). Indeed, suppose that there is
an angle not containing p in its impression. Then by Lemma 4.6 there
exist angles with degenerate impressions.

We show that (2) implies (3). Indeed, let Imp(α) be a point. Then
so are the impressions of the angles α+1/d, . . . , α+(d−1)/d. At least
one of them is not p, so we may assume that Imp(α) 6= {p}. Then by
Lemma 4.6 the set E is dense in S1. Let us now consider an angle β
whose σ-orbit is dense in S1. By Lemma 4.9 Imp(β) is a point and β is
K-separate. By Lemma 2.11 J is connected im kleinen at the landing
points of the rays with arguments either from E, or from the set of
angles with dense in S1 orbits. This shows that indeed (2) implies (3).

Clearly, (3) implies (4). It remains to show that (4) implies (1).
Indeed, if all impressions contain p then by Lemma 4.3 J is nowhere
connected im kleinen, a contradiction. The proof is complete. ¤
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