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Abstract. In general, little is known about the exact topological
structure of Julia sets containing a Cremer point. In this paper we
show that there exist quadratic Cremer Julia sets of positive area
such that for a full Lebesgue measure set of angles the impressions
are degenerate, the Julia set is connected im kleinen at the landing
points of these rays, and these points are contained in no other
impression.

1. Introduction

A long outstanding problem of whether polynomial Julia sets of pos-
itive area exist has recently been solved in [BC06]. In that paper the
authors implemented a program initiated by A. Douady and showed
that there exist quadratic polynomials of various types all of which have
Julia sets of positive area. In particular, there exist quadratic polyno-
mials with a fixed Cremer point whose Julia set has positive area. The
topological structure of Julia sets containing a Cremer point (including
the above mentioned ones of positive area) has remained elusive. In
the present paper we want to shed some light upon this problem.

Let us first discuss the topological structure of connected polynomial
Julia sets in general. The best case scenario is the case when J is locally
connected. Then J is homeomorphic to the quotient space S1/ ∼=
J∼ of the unit circle with respect to a specific equivalence relation ∼
called an invariant lamination. Moreover, the factor map in this case
conjugates the polynomial to the map f∼ induced on J∼ by the map
zd : S1 → S1 with d being the degree of the polynomial. Spaces like J∼
are called below topological Julia sets while the induced maps f∼ on J∼
are called topological polynomials. Thus, in the locally connected case
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topological polynomials are good (one-to-one) models for true complex
polynomials on their Julia sets.

The picture is more complicated when J is not locally connected.
Still even in that case recently developed tools allow one to use topo-
logical polynomials as models (albeit not as good as above). Given
a polynomial P , denote by JP its Julia set. Call irrational neutral
periodic points CS-points ; a CS-point p is said to be a Cremer point
if the power of the map which fixes p is not linearizable in a small
neighborhood of p. Suppose that P is a polynomial with connected
Julia set and no CS-points. In his fundamental paper [K04] Jan Kiwi
introduced for P an invariant lamination ∼P on S1 such that P |JP

is
semi-conjugate to the induced map f∼P

: J∼P
→ J∼P

by a monotone
map m : JP → J∼P

(by monotone we mean a continuous map whose
point preimages are connected). Then J∼P

is a locally connected model
for J , and P |J is monotonically semiconjugate to f∼P

. In addition Kiwi
proved in [K04] that at all periodic points p of P in JP the set JP is
locally connected at p and m−1 ◦m(p) = {p}.

However in some cases the entire approach which uses modeling of
the Julia set by means of a monotone map onto a locally connected
continuum breaks down. From now on we will consider only quadratic
polynomials; the critical point will be always denoted by c. A quadratic
polynomial P with a Cremer fixed point (i.e. with a neutral non-
linearizable fixed point p ∈ J such that P ′(p) = e2πiα with α irrational)
is said to be a basic Cremer polynomial, and its Julia set is called a
basic Cremer Julia set (in this case we always denote the Cremer fixed
point of P by p). The main result of a recent preprint [BO06b] is that
if P is a basic Cremer polynomial then any monotone map m : JP → A
with m(JP ) locally connected must collapse all of JP to a point. Hence
studying the topology of basic Cremer Julia sets requires new tools (see,
e.g., the fundamental papers [Per94] and [Per97] by Perez-Marco); some
tools here are provided by continuum theory and developed in [GMO99]
(in which results of [Yoc95] were used) and further in [BO06a]. Before
introducing them let us have an overview of a few known results.

By Sullivan [Sul83], a basic Cremer Julia set J is not locally con-
nected. Moreover, by Kiwi [K00] the critical point c is not accessible.
Still, there are points in J at which rays are landing (e.g., repelling
periodic points [DH85]), so it makes sense to study in more detail the
pattern in which such landing can occur. In this respect the following
important question is due to C. McMullen [McM94]: can a basic Cre-
mer Julia set contain any points at which at least two rays are landing
(so-called biaccessible points)? This question was partially answered by
Schleicher and Zakeri in [SZ99, Theorem 3] (see also [Zak00, Theorem
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3]) where they show that if a basic Cremer Julia set contains a biac-
cessible point then this point eventually maps to the Cremer point. In
[BO06a] it is shown that if a basic Cremer Julia set has a biaccessible
point then it is a solar Julia set as described in Theorem 1.1. However
it is still unknown if there exist basic Cremer Julia sets with biaccessi-
ble points. Another paper studying the topology of basic Cremer Julia
sets is that of Sørensen [Sor98]. In that paper the author constructs
basic Cremer polynomials with external rays which accumulate on both
the Cremer point and its preimage and thus gives examples of basic
Cremer polynomials whose Julia sets have very interesting topological
properties.

Now we would like to state the results of [BO06a]. If P is a ba-
sic Cremer polynomial then by [Mn93] p ∈ ω(c) (see also [Per97] and
[C05, Theorem 1.3]). Following Kiwi [K04] we say that two angles θ, γ
are K-equivalent if there are angles x0 = θ, . . . , xn = γ such that the
impressions of xi−1 and xi are non-disjoint for 1 ≤ i ≤ n; a class of
K-equivalence is called a K-class, and an angle whose impression is dis-
joint from all other impressions is said to be K-separate. A continuum
X is connected im kleinen at a point x provided for each open set U
containing x there exists a connected set C ⊂ U such that x is in the
interior of C (relative to X). A continuum X is locally connected at a
point x provided there exists a basis of open connected neighborhoods
at x. Observe that sometimes different terminology is used. For exam-
ple, in Milnor’s book [Mil00, p. 168] the property of local connectivity
is called “open local connectivity” while to the property of being con-
nected im kleinen at a point Milnor refers to as the property of being
“locally connected at a point”. On the other hand, in the textbook by
Munkres [Mun00, p. 162] connected im kleinen is called “weakly lo-
cally connected”. Using our terminology, if a space is locally connected
at x, then it is connected im kleinen at x. It is well known that if a
continuum is connected im kleinen at each point, then it is locally con-
nected (see, e.g., [Mun00, p. 162, Ex. 6]). However, a continuum can
be connected im kleinen at a point without being locally connected at
this point (as an example one can consider the so-called infinite broom,
see [Mun00, p. 162, Ex. 7]).

The main result of [BO06a] is the following theorem (by a degenerate
impression we mean an impression consisting of one point).

Theorem 1.1. Let P be a basic Cremer polynomial. Then its Julia
set J must be one of the following two types.

Solar Julia set: J has the following equivalent properties:
(1) there is an impression not containing the Cremer point;
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(2) there is a degenerate impression;
(3) the set Y of all K-separate angles with degenerate impres-

sions contains all angles with dense orbits (Y contains a
full Lebesgue measure Gδ-set dense in S1) and a dense in
S1 set of periodic angles, and the Julia set J is connected
im kleinen at the landing points of these rays;

(4) there is a point at which the Julia set is connected im
kleinen;

(5) not all angles are K-equivalent.
Red dwarf Julia set: J has the following equivalent properties:

(1) All impressions are non-degenerate.
(2) The intersection of all impressions is a non-degenerate sub-

continuum of J containing the Cremer point and the limit
set of the critical point.

(3) J is nowhere connected im kleinen.

The main aim of this paper is to prove the following theorem.

Theorem 1.2. There exist basic Cremer polynomials with solar Julia
sets of positive area.

We prove Theorem 1.2 combining results from [BC06] and [BO06a].
An interesting remaining problem then is that of the existence of red
dwarf Julia sets. It is related to a well-known problem concerning the
existence of indecomposable Julia sets (a continuum is indecomposable
if it cannot be represented as the union of two proper subcontinua). It
is known that if the Julia set is indecomposable then every impression
coincides with the entire Julia set (see, e.g., [MR93] and [CMR05]).

2. Preliminaries

2.1. General facts and notation. In what follows we use standard
tools of Carathéodory theory. An unshielded continuum X ⊂ C is a
continuum which coincides with the boundary of the infinite comple-
mentary component U of X. Given an unshielded continuum X let φ
be the normalized Riemann map from the unit disk D onto U . The
external ray Rα is the image of the radius of D corresponding to the
external angle α. The impression Imp(α) of Rα is defined (see, e.g.,
[Pom92]) as the set of all limit points of sequences φ(xi) taken over all
sequences xi → e2πiα, xi ∈ D (if we do not want to specify the angle
we will omit it from the notation). By a component of a set we always
mean a connected component of this set, and by a non-separating pla-
nar set we mean a set whose complement in the plane is connected.
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Also, given sets A,B such that A ∩ B is a singleton, we shall say that
A is attached to B.

Given a polynomial f : C → C with non-separating Julia set J(P )
and a continuum K ⊂ J(P ), a set K ′′ is said to be a K-pullback
(of order n by f) if K ′′ is a component of f−n(K). Clearly, any K-
pullback K ′′ maps onto K as a branched covering map. For us the most
interesting is the case of quadratic polynomials with non-separating
Julia sets and subcontinua K of the Julia set. Then if K contains f(c),
the first K-pullback is unique and maps onto K in a 2-to-1 branched
covering fashion while if K does not contain f(c) then there are two
first K-pullbacks each of which maps onto K homeomorphically. Given
a quadratic polynomial f with the critical point cf = c, we denote by
ψf = ψ the involution which maps any z onto the other preimage of
f(z) (e.g., ψ(c) = c, and if f(z) = z2 + v then ψ(z) = −z). Below we
often consider forward invariant continua K ⊂ Jf which contain c but
are such that the first n-segment of the orbit of c avoids ψ(K) = K ′

(i.e., f(c) 6∈ K ′, . . . , fn(c) 6∈ K ′). In this case we consider K ′-pullbacks
of order at most n (K ′ is considered its own pullback of order 0).
Because of the assumptions, all these K ′-pullbacks map univalently
onto K ′.

2.2. Siegel polynomials. A quadratic polynomial is said to be a basic
Siegel polynomial if it has an invariant Siegel disk. Denote by Slc the
family of basic Siegel polynomials with locally connected Julia set. We
need a few well-known facts concerning their Julia sets J (see, e.g.,
[GMO99]). Given a polynomial P ∈ Slc, let ∆ be its closed Siegel
disk, S = ∂∆, and ψ(∆) = ∆′. Since J is locally connected, {c} =
∆′ ∩ ∆, and so ∆′ is attached to ∆ at c and contains no forward
images of c. Consider the branch c−1, c−2, . . . of the backward orbit of
c = c0 consisting only of points of S (here P (c−n−1) = c−n). At each
point c−n the appropriate n-th pullback of ∆′, corresponding to c−n

as the pullback of c, is attached to ∆. However all other ∆′-pullbacks
are disjoint from ∆. Since all forward images of c avoid ∆′ then the
picture described in the previous subsection applies to ∆ and we have
a family of well-defined univalent ∆′-pullbacks of all orders. The entire
set P−n(∆) is a connected union of ∆ and 2n − 1 ∆′-pullbacks, n of
which are attached to ∆, while others are disjoint from ∆.

The way ∆ and ∆′-pullbacks intersect (but not their relative location
on the plane!) is the same for all polynomials P ∈ Slc. To describe it,
observe that two external rays landing at c cut C into two half-planes.
Assign 1 to the closed half-plane L ⊃ ∆ and 0 to the closed half-plane
R ⊃ ∆′ and study the symbolic dynamics of points of J in terms of
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∆

∆′

L R

Figure 1. Example of a locally connected basic Siegel
polynomial Julia set: that with the golden mean rotation
number. We put the two external rays landing at the
critical point and grayed the half-plane R.

this partition of the plane. To each point x ∈ J we associate its infinite
itinerary i(x) defined in the obvious way. Clearly, the only ambiguity in
i(x) arises if the point x is a critical preimage because the only point of
J which belongs to both L and R is c (and hence c can be assigned both
0 and 1 as the first entry in its itinerary). This ambiguity is resolved
though if instead of points we deal with ∆′-pullbacks. Namely, if Q
is ∆ or a ∆′-pullback then we assign as its infinite itinerary i(Q) the
itinerary of any non-precritical point of Q (any such itinerary i(Q) from
some time on consists of 1’s). To simplify the notation, let us denote
by 1i the string of 1’s of length i (possibly, i = ∞). Similarly, if a finite
string i′ = i0i1 . . . il is given then i′k = {i0 . . . il}k is the concatenation
of k copies of i′ (here again k can be ∞). Then we have, e.g., that
i(∆) = 1∞, i(∆′) = 01∞, etc.

For c and its preimages the above ambiguity can be dealt with by
considering c as a point of ∆ or as a point of ∆′ and assigning different
itineraries respectively. That is, if we take a preimage of c then until it
maps onto c its itinerary is well-defined but at the time when it maps
onto c we either consider it as a point of ∆ and assign 1 to it, or consider
it as a point of ∆′ and assign 0 to it. For the forthcoming images of c we
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L

R

1∞

01∞
001∞

0001∞

101∞

1101∞

11101∞

01101∞

0101∞
00101∞

1001∞

11001∞

01001∞

10101∞

00001∞

10001∞

Figure 2. Example of itineraries of ∆ and of pullbacks
of ∆′ and of their dynamics for the Golden mean basic
Siegel Julia set. Some of the missing arrows can be de-
termined by using the central symmetry: two symmetric
components are mapped to the same component.

again have no ambiguity (1 is assigned to all of them). In other words,
to each preimage of c exactly two itineraries are assigned as explained
above. This implies that two ∆′-pullbacks with itineraries ī = i0i1 . . .
and j̄ = j0j1 . . . have a point in common if and only if there exists k
such that i0 = j0, . . . , ik−1 = jk−1, ik = 1, jk = 0 while ir = jr = 1 for
any r > k (in particular, no more than two ∆′-pullbacks can intersect
at one point). In what follows we denote the ∆′-pullback with itinerary
ī as ∆ī. Observe that since ∆ and ∆′ have only one point - namely
c - in common, then any two ∆′-pullbacks (or ∆) may have at most
one point in common and no three ∆′-pullbacks (or ∆) intersect (any
common point of two ∆′-pullbacks maps onto c while the two pullbacks
in question map onto ∆ and ∆′).

So far we have considered as examples points of ∆′-pullbacks (or
∆′-pullbacks themselves). To deal with other points of J we need
well-known facts about Julia sets of polynomials P ∈ Slc (see, e.g.,
[GMO99]); the notation introduced here will be used from now on. Let
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p be the fixed point of P belonging to ∆, σ be the angle doubling map
on S1, (γ, γ′) (resp. [γ, γ′]) be the open (resp. closed) counterclockwise
circle arc from γ to γ′, and let γγ′ be the chord connecting γ and γ′

in the disk. If P ′(p) = e2πiρ (ρ is irrational) then there exists a special
rotational σ-invariant Cantor set F ⊂ S1 such that σ|F is no more
than 2-to-1 semiconjugate to the irrational rotation by the angle 2πρ
[BS94]. More precisely, call an arc complementary to F an F -hole.
Then the semiconjugacy maps the endpoints of every F -hole into one
point and otherwise is one-to-one. The most important F -hole is the
longest one which is the half-circle (β, α) with the endpoints denoted
below by 0 < α < 1/2 and β = α+1/2; the chord αβ connecting α and
β is called the critical leaf (diameter). Other F -holes are preimages of
(β, α).

The limit set F = ω(α) is exactly the set of angles whose entire
orbits are contained in [α, β]; also, the angles in F are exactly the
angles whose rays land at points of S = ∂∆. The endpoints of an F -
hole can be denoted by α−n, β−n (since they are appropriate preimages
of α and β). Both rays Rα−n and Rβ−n land at the point c−n, the n-th
pullback of c belonging to ∆. We need the following simple fact.

Lemma 2.1. Suppose that two angles α′′ 6= β′′ are given none of which
maps into F by any power of σ. Then there exists m such that σm(α′′)
and σm(β′′) are separated by the critical leaf αβ.

Proof. Define d(θ, θ′) as the length of the shortest arc between θ and
θ′ (we normalize the circle so that its length is equal to 1). It is easy
to see that d(σ(θ), σ(θ′)) = T (d(θ, θ′)) where T : [0, 1/2] → [0, 1/2]
is the appropriate scaling of the full tent map. Since T (x) > x for
0 < x < 1/3, there exists m such that d(σm(α′′), σm(β′′)) ≥ 1/3. If
d(σm(α′′), σm(β′′)) = 1/2 then since α′′, β′′ are not preimages of σ(α) we
see that σm(α′′), σm(β′′) are separated by αβ and we are done. Assume
that σm(α′′), σm(β′′) are not separated by αβ and d(σm(α′′), σm(β′′)) <
1/2. Since the longest complementary arcs to the set σ−1(F ) are of
length 1/4, we see that σm(α′′), σm(β′′) belong to two distinct comple-
mentary arcs of F ∪ F + 1/2 located on one side of αβ. Thus after
several steps the σ-image of, say, α′′ will belong to (β, α) while the
corresponding image of β′′ will still be inside (α, β). This means that
these two images of α′′, β′′ will be separated by αβ. ¤

Call a point y ∈ J a local cutpoint of J if the point y is a cutpoint
of some connected neighborhood U of y in J . The union of boundaries
of ∆ and all ∆′-pullbacks forms the set of all local cutpoints of J . The
remaining points of J are called the endpoints of J , or, more informally,
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the “dust”. We say that a connected set X connects a connected set
A and a connected set B if the union A ∪ B ∪ X is connected (in
practice we use this term when A and B are disjoint). Also, by a
string of ∆′-pullbacks we mean a countable collection of ∆′-pullbacks
concatenated to each other (so that consecutive pullbacks in the string
intersect over exactly one point). Lemma 2.2 studies how dust points
in J are connected to ∆.

Lemma 2.2. Let y ∈ J be a dust point with itinerary ī = (i0i1 . . . ).
Then there exists a unique string Sy of ∆′-pullbacks which connects ∆
and y. Denote the ∆′-pullbacks in Sy as follows: ∆1(y) is the closest to
∆ (in the sense of the spatial order on the string), ∆2(y) is the second
once, etc. Then the itinerary of ∆j(y) is obtained from the itinerary
ī = i0i1 . . . of y as follows: choose the j-th appearance of 0 in ī, keep
all the entries before that, and replace all other entries in ī by 1.

Proof. Since J is locally connected, it is arcwise connected. Hence
there exists an arc (homeomorphic image of the interval [0, 1]) I ′ ⊂ J
connecting y and c. Let us show that I ′ ∩ ∆ = I ′ ∩ S is connected
(recall, that S = ∂∆). Indeed, suppose that there exists an arc in J
whose endpoints belong to S while otherwise the arc is disjoint from S.
Then it follows that parts of S are “shielded” from infinity by this arc,
i.e. are not accessible from infinity, a contradiction. Hence such arcs in
J do not exist which shows that I ′ ∩ S is either an arc or the point c.
If I ′ ∩ S = {c} is a point set π(y) = c, otherwise let π(y) be the other
endpoint of I ′ ∩ S. Observe that by the above argument such point is
unique so that π is well-defined. Denote the arc connecting y and π(y)
by I; then I ∩S = π(y). Intuitively, one can think of the point π(y) as
a “projection” of y into S.

Since all points of I except for y are not from the dust, it follows that
I \{y, π(y)} is contained in the union of some ∆′-pullbacks. The union
of these ∆′-pullbacks forms the desired string Sy. Observe, that the
string Sy is unique by the same geometric argument as above - otherwise
some points of the Julia set are not accessible from infinity because they
will be “shielded” from infinity by other connected subsets of J (these
subsets will be parts of the two strings which hypothetically connect ∆
and y and will form the boundary of a simply connected domain in the
plane containing points of J). A similar geometric argument is often
used in the paper, so we explain it here in detail while simply alluding
to it in the future.

By the definition we do not include ∆ in Sy and begin Sy from
∆1(y), the ∆′-pullback closest to ∆ in Sy. Thus, ∆1(y) is either ∆′ or
a pullback of ∆′ attached to ∆. Therefore ∆1(y) has itinerary 1k101∞
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with k1 ≥ 0 digits 1 to begin with (if k1 = 0 then ∆1(y) = ∆′). The
next pullback ∆2(y) in the string Sy is attached to ∆1(y), hence its
itinerary coincides with that of ∆1(y) until ∆1(y) maps onto ∆. At
this moment ∆2(y) becomes the closest to ∆ pullback of ∆′ in the
appropriate image of Sy and the process repeats itself with the only
difference that now the image of ∆2(y) needs k2 steps to move around
∆ until it finally gets mapped onto ∆′ and then onto ∆. This argument
yields that the “spatially” j-th pullback ∆j(y) of ∆′ in Sy has itinerary
1k101k20 . . . 1kj

01∞. It has to coincide with the itinerary of y until the
first time ∆j(y) maps onto ∆. Also, numbers ki may be equal to zero.
Hence the itinerary of ∆j(y) is obtained from the itinerary ī = i0i1 . . .
of y as follows: choose the j-th appearance of 0 in ī, keep all the entries
before that, and replace all other entries in ī by 1. ¤

As an example consider the periodic point x with itinerary ī =
{011}∞. Then the following are the pullbacks of ∆′ forming the string
Sx: ∆1(x) = ∆01∞ , ∆2(x) = ∆01101∞ , ∆3(x) = ∆01101101∞ etc. By
Lemma 2.1 any two distinct periodic points u ∈ J and v ∈ J have
distinct itineraries (it is enough to consider rays landing at u and v).
Therefore their strings Su and Sv may have a certain initial piece in
common (perhaps empty), and then will separate. For example, let
z be the periodic point of itinerary {0110111}∞. Then the string
Sz consists of the following pullbacks of ∆′: ∆1(z) = ∆01∞ , ∆2(z) =
∆01101∞ , ∆3(z) = ∆011011101∞ , . . . . Comparing Sx and Sz we see that
∆1(x) = ∆1(z), ∆2(x) = ∆2(z), but ∆3(x) 6= ∆3(z). It follows that
∆3(x) and ∆3(z) are disjoint (both are attached to the same ∆′-pullback
but at distinct points, hence if they meet then some points of the Ju-
lia set will not be accessible from infinity). From this moment on the
strings Sx and Sz go their own ways, converging to x and z respectively.

Consider now the dynamics of the string Sx. Since x is of period 3
then Sx must cover itself under P 3 while P 3(Sx) contains ∆. In fact,
already the first application of P restricted onto Sx maps ∆1(x) onto
∆. Then Sx rotates about ∆ for one step and on the next step Sx

maps over itself. Thus, P 3(∆2(x)) = ∆1(x), P 3(∆3(x)) = ∆2(x) etc.
In other words, P 3 shifts the pullbacks in Sx 1 pullback “down” (i.e.
closer to ∆). The number 1 is then called the basic length of Sx; the
string Sx consists of countably many fragments whose length is 1 and
who are shifted by P 3 one onto another closer to ∆ except for the first
fragment of Sx which maps by P 3 onto ∆.

In the case of the string Sz the picture is a bit more complicated,
however it has essentially the same properties (in our description of
the dynamics of Sz we skip discussing simple rotations of Sz around
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∆). It is easy to check that first P 3 shifts ∆2(z) onto ∆1(z) while
∆3(z) = ∆011011101∞ maps onto ∆011101∞ . Then P 4 maps ∆011101∞ onto
∆′ = ∆1(z) and the entire string Sz finally covers itself. In other words,
since the periodic fragment of the itinerary of z contains two zeros, then
P 7 shifts the pullbacks in Sz down (closer to ∆) by 2 pullbacks. In this
case the basic length of Sz is 2; the string Sz consists of countably
many fragments whose length is 2 and who are shifted by P 7 one onto
another closer to ∆ except for the first fragment of Sz which maps by
P 7 onto ∆. Clearly, P 7 maps the first fragment of Sz onto ∆ as a
continuous map (there have to be critical points), but otherwise the
map P 7 shifts fragments in Sz homeomorphically.

In general, given a periodic orbit y of period k whose itinerary has the
minimal periodic fragment with l zeros we see that the map P k shifts
the ∆′-pullbacks in Sy down (closer to ∆) by l pullbacks. In this case
the first fragment of Sy is ∆1(y)∪· · ·∪∆l(y), the second fragment of Sy

is the union ∆l+1(y)∪ · · · ∪∆2l(y), etc. Observe that all the fragments
in Sy are in fact the pullbacks of the first fragment by the appropriate
branch of the inverse function to P l, and from the second fragment on
all the fragments in Sy are disjoint from ∆. Moreover, since in this case
the critical limit set ωP (c) coincides with ∆, we see that by well-known
shrinking properties of pullbacks under polynomial/rational maps (see,
e.g., Shrinking Lemma [LM97]) the diameters of the pullbacks in Sy

converge to 0. If diameters of the sets in a sequence converge to 0 then
the sets are said to form a null sequence; it follows that in this case
the fragments in Sy described above form a null sequence. Of course,
in the case at hand any string Sζ converges to the point ζ defining it
- after all, the Julia set J is locally connected. However even in the
case of basic Cremer Julia sets (which are not locally connected) these
ideas, with some modifications, still apply.

Let us go back to the example we have already partially considered
before, i.e. to the periodic points x, z and their strings Sx, Sz. As we
have seen, Sx and Sz converge to the periodic points x and z respec-
tively. On the other hand, we have seen that the strings Sx and Sz

separate after the pullback ∆2(x) = ∆2(z) = ∆01101∞ . Let Rγ, Rγ′ be
the external rays landing at x and z respectively. Denote by I the
open arc between γ and γ′ contained in the 0-semicircle. Denote by Ŝx

the closure of the “tail” of Sx taken from ∆01101∞ to the point x and
by Ŝz the closure of the “tail” of Sz taken from ∆01101∞ to the point
z (so that Ŝx ∩ Ŝz = ∆01101∞). Then the union of Ŝx, Ŝz, Rγ and R′

γ

is a “fork” which encloses a wedge containing all rays Rθ, θ ∈ I. The
impression of θ ∈ I must be contained in the closure of this wedge and



12 A. BLOKH, X. BUFF, A. CHÉRITAT, AND L. OVERSTEEGEN

∆ ∆′

∆2(x)=∆2(z)

x

Rγ

z

Rγ′

P 3

P 7

Figure 3. Illustration, for the golden mean basic Siegel
Julia set, of the examples of periodic points x and z con-
sidered in the text, together with the associated strings
of ∆-pullbacks.

therefore is disjoint from ∆. Again, for the polynomials in Slc this fact
can be shown in a much easier way. However the argument is valuable
because it applies in more general situations.

Let σ2 be the one-sided shift on the space of all sequences with
symbols 1 and 0, and let An = σ−n

2 (1∞). Notice that An includes all
σ2-preimages of 1∞ of order less than or equal to n. Consider elements
of An as vertices of a graph connected by edges if and only if the ∆′-
pullbacks with these itineraries intersect. Clearly, this makes An into
a tree (if there is a loop in An then as before there must be points of
J shielded from the infinity, a conradiction). From now on we always
consider An endowed with the tree structure. Suppose that for each
s ∈ An a set Ms is given and g : ∪Mt → ∪Mt is a function such that 1)
g(Ms) ⊂ Mσ2(s), and 2) Ms ∩Mt 6= ∅ if and only if ∆s ∩∆t 6= ∅. Then
we say that (g, {Ms, s ∈ An}) has the same (dynamical) intersection
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pattern as {∆s, s ∈ An}. It follows from the results of [BC06] (see
below) that for certain basic Cremer polynomials f there is an invariant
continuum M which plays the role of the Siegel disk ∆ above in the
sense that the intersection pattern of M and all appropriately defined
M ′-pullbacks of order n and the intersection pattern of ∆ and all ∆′-
pullbacks of order n are the same.

2.3. Basic Cremer polynomials. Let us introduce terminology and
notation. Let Pα(z) = e2πiαz + z2. Clearly, the critical point of Pα is
cα = (−.5)e2πiα; set Mα = ω(cα) and call it the critical limit set of
Pα. It is well-known (see, e.g., [Mn93]) that if Pα is a basic Cremer
polynomial then its Cremer fixed point pα belongs to Mα. The next
lemma is obtained in [C05].

Lemma 2.3 (Childers). If Pα is a basic Cremer polynomial then the
set Mα is a continuum.

The construction in the next section aims at proving that certain
Julia sets of positive area are solar. We need the following definition:
an angle θ is said to be of bounded type if there exists K such that in
the continued fraction expansion [a1, a2, . . . ] of θ we have ai < K for all
i. Consider the polynomial Pθ(z) assuming that θ is of bounded type.
Then Pθ has an invariant closed Siegel disk ∆θ, ∂∆θ = Mθ is a simple
closed curve and JPθ

is locally connected [Pet96]. For every N , define

S̃N as the set of all θ’s with ai ≥ N, i = 1, 2, . . . . Given two sets A,B
let us denote by ∂[A,B] the number sup{dist(a,B) : a ∈ A} (thus, if
∂[A,B] = ε then the set A is contained in the closed ε-neighborhood
of B). Theorem 2.4 is proven in [BC06].

Theorem 2.4 (Buff-Chéritat). There exists N such that for every θ ∈
S̃N of bounded type and every ε > 0 if α ∈ S̃N is sufficiently close to θ
then ∂[Mα, ∆θ] < ε and Mα 6= JPα. Moreover, there exist basic Cremer
polynomials Pα with α ∈ S̃N arbitrarily close to θ and with positive
area Julia sets.

In what follows we will use the notation introduced above.

3. Main theorem

The aim of this section is to prove Theorem 1.2. From now on we fix
N as in Theorem 2.4. Set ψα(Mα) = M ′

α. The following lemma uses
self-explanatory notation.

Lemma 3.1. Given n, θ ∈ S̃N of bounded type, and ε > 0 there
exists a neighborhood U of θ such that for any α ∈ S̃N ∩ U we have
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P i
α(cα) 6∈ M ′

α, i ≤ n, and there exists a collection of well-defined M ′
α-

pullbacks Mα,j, j ∈ An by Pα such that ∂[Mα,j, ∆θ,j] < ε for any j ∈ An

and the M ′
α-pullbacks {Mα,j, j ∈ An} have the same intersection pattern

as ∆′
θ-pullbacks {∆θ,j, j ∈ An}.

Proof. The proof is based upon Theorem 2.4 and continuity arguments.
By Theorem 2.4, M ′

α is very close to ∆′
θ for α ∈ S̃N sufficiently close

to θ. Since P i
θ(cθ) 6∈ ∆′

θ, it follows then that P i
α(cα) 6∈ M ′

α, i ≤ n

for α ∈ S̃N sufficiently close to θ (so that an i-th pullback of M ′
α is

mapped 1-to-1 if i ≤ n). Moreover, by continuity and by Theorem 2.4
given an itinerary j ∈ An we can correctly define M ′

α-pullbacks Mα,j

by Pα corresponding to ∆′
θ-pullbacks ∆θ,j by Pθ and guarantee that

1) ∂[Mα,j, ∆θ,j] < ε for any j ∈ An, and hence 2) for two itineraries

s ∈ An, t ∈ An if ∆θ,s ∩ ∆θ,t = ∅ then Mα,s ∩Mα,t = ∅. Let us show
that if ∆θ,s ∩ ∆θ,t 6= ∅ then Mα,s ∩ Mα,t 6= ∅. Observe that since An

is a tree then if we remove the edge in An connecting s and t then An

falls into two trees, As and At. Now, it is easy to see that the union
of all pullbacks Mα,r, r ∈ An is the set P−n

α (Mα) which is connected
because the entire orbit of cα is contained in Mα (cα is recurrent for Pα

and Mα = ω(cα)). On the other hand suppose that Mα,s ∩Mα,t = ∅.
Then the unions Mα,As

= ∪i∈As
Mα,i and Mα,At

= ∪i∈At
Mα,i are disjoint

because they could only intersect over Mα,s∩Mα,t which is empty. This
contradiction shows that Mα,s ∩Mα,t 6= ∅ as desired. ¤

We are now ready to prove Theorem 1.2. However it will be conve-
nient to first prove a simple technical lemma.

Lemma 3.2. Let P be a basic Cremer polynomial and K ⊂ J be a
continuum such that for some k > 0 we have that P−k(K) ∩ K 6= ∅
and P i(c) 6∈ P k(K) for any i ≥ 0. Then there exists a unique sequence
K(0) = K,K(−1), . . . of K pullbacks by P k such that K(−i)∩K(−i−
1) 6= ∅ and P k(K(−i−1)) = K(−i) for all i ≥ 0. Moreover, if P 2k(K)
is disjoint from K then in the sequence of sets P 2k(K), P k(K), K, . . .
non-empty intersections are only possible between two consecutive sets.

Proof. Since J is a non-separating one-dimensional continuum, J is a
tree-like continuum (i.e., for each ε > 0 there exists a map φ : J → T
where T is a finite tree such that for each t ∈ T the diameter of
φ−1(t) < ε). Since P i(c) 6∈ K then it is clear that for every i the
family of K-pullbacks by P k consists of 2ki pairwise disjoint continua
contained in J . Since P−k(K) ∩ K 6= 0, there exists a K-pullback
K(−1) of order 1 by P k non-disjoint from K. Such pullback is unique.
Indeed, otherwise there exists another K-pullback K ′ of order 1 by
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P k which is not disjoint from K. Set K(−1) ∪ K ∪ K ′ = Y . Then
P k|Y is not 1-to-1 which implies by [H96] that P k|Y has a critical
point y ∈ Y . This means that for some j, 0 ≤ j ≤ k − 1 we have
P j(y) = c. If y ∈ K(−1)∪K ′ then this implies that P 2k−j(c) ∈ P k(K),
a contradiction to the assumptions. On the other hand, if y ∈ K then
P k−j(c) ∈ P k(K), again a contradiction to the assumptions. Hence
such point y ∈ Y does not exist, and K(−1) is unique. Since K(−1)
clearly satisfies the same assumptions as K itself we see that the desired
sequence of pullbacks of K exists and is unique.

Suppose that P 2k(K) ∩ K = ∅. Then P k(K) ∩ K(−1) = ∅ and
for any i ≥ 0 we have K(−i) ∩ K(−i − 2) = ∅ (otherwise we ap-
ply the appropriate power of P k to get a contradiction). Let us show
that then K(−j) ∩ P 2k(K) = ∅ for any j ≥ 0. Indeed, otherwise
choose the minimal such j that K(−j) ∩ P 2k(K) 6= ∅. Then j ≥
1 and by the choice of j the only non-empty intersections among
sets P 2k(K), P k(K), K, . . . , K(−j) are intersections among consecutive
pullbacks and the intersection K(−j) ∩ P 2k(K) 6= ∅. Set P 2k(K) ∪
P k(K) ∪ · · · ∪K(−j + 1) = E. Then

E ∩K(−j) = [P 2k(K) ∩K(−j)] ∪ [K(−j + 1) ∩K(−j)]

is disconnected as the union of two disjoint non-empty continua. How-
ever all continua are contained in a non-separating continuum J with
empty interior. Hence the intersection of any two sub-continua of J
must be connected. It follows that K(−j) ∩ P k(K) = ∅ for any j ≥ 1
as desired. ¤

To prove Theorem 1.2 we need the following construction. Choose
two Pθ-periodic points u and v of periods k and l respectively. Then
depending on their itineraries the strings Su, Sv of ∆′

θ-pullbacks will
have a few common pullbacks and then, starting at the last common
pullback, will consist of two pairwise disjoint sequences of pullbacks.
Clearly, the points u and v can be chosen so that the strings Su and
Sv have at least two common ∆′

θ-pullbacks. For example, if u = x has
itinerary {011}∞ and v = z has itinerary {0110111}∞ then the strings
Sx and Sz have two pullbacks ∆′

θ = ∆θ,01∞ and ∆θ,01101∞ in common,
yet from the third pullback on the strings Sx and Sz are disjoint. In any
case, and this is important for what follows, the last common pullback
of the strings Sx and Sz is ∆θ,01101∞ , and it is disjoint from ∆θ.

Let us assume that the basic length of Su is w, the basic length
of Sv is q, and the initial finite string F , common to both Su and
Sv, consists of m ≥ 2 ∆′

θ-pullbacks. For simplicity and without loss
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of generality assume that m < min(w, q). Denote the last common
∆′

θ-pullback in F by L. Consider w ∆′
θ-pullbacks in Su immediately

following F and denote their union by F̂u; also, denote the union of w
∆′

θ-pullbacks in Su immediately following F̂u by Fu. Similarly, consider
q ∆′

θ-pullbacks in Sv immediately following F and denote their union

by F̂v; also, denote the union of q ∆′
θ-pullbacks in Sv immediately

following F̂v by Fv. By Lemma 3.2 there exists a string of Fu-pullbacks
by P k

θ Fu(0) = Fu, Fu(−1), . . . such that Su = F ∪ F̂u ∪ (∪∞i=0Fu(−i))
and a string of Fv-pullbacks by P l

θ Fv(0) = Fv, Fv(−1), . . . such that

Sv = F ∪ F̂v ∪ (∪∞i=0Fv(−i)).
Set n = m+3k +3l. We choose α ∈ S̃N very close to θ so that a few

conditions are satisfied. By Theorem 2.4 we may assume that the area
of J(Pα) is positive and that Pα is a basic Cremer polynomial. We use
Lemma 3.1 to guarantee that ∂[Mα, ∆θ] is so small that the first n iter-
ates of cα avoid M ′

α (so that M ′
α-pullbacks by Pα of order at most n map

to M ′
α univalently), all M ′

α-pullbacks by Pα of order n are very close to
the corresponding ∆′

θ-pullbacks by Pθ and the intersection patterns of
∆′

θ,i
, i ∈ An and M ′

α,i
, i ∈ An are the same. Hence we may talk about

the strings Fα, F̂α
u , F̂α

v , Fα
u , Fα

v of M ′
α-pullbacks by Pα which correspond

to the strings F, F̂u, F̂v, Fu, Fv, and all the sets F α, F̂α
u , F̂α

v , Fα
u , Fα

v are
continua. Denote by Lα the M ′

α-pullback corresponding to the ∆′
θ-

pullback L. Recall that since m ≥ 2 then L ∩ ∆θ = ∅ and hence (by

the choice of α) we may assume that Mα ∩ (Lα ∪ F̂α
u ∪ F̂α

v ) = ∅.
Consider the set Fα

u . Then P k
α(Fα

u ) = F̂α
u is disjoint from Mα = ω(cα)

and hence P i
α(cα) 6∈ P k

α(Fα
u ) for any i ≥ 0. On the other hand, by the

choice of n we have that P−k(Fα
u ) ∩ Fα

u 6= ∅. Hence by Lemma 3.2
there is a sequence of Fα

u -pullbacks Fα
u = Fα

u (0), Fα
u (−1), . . . by P k

α .
Observe that F α

u is disjoint from P 2k(Fα
u ) by the choice of α (clearly,

P 2k(Fα
u ) = P k

α(F̂α
u ) is the string of M ′

α-pullbacks by P k
α connecting Lα

and Mα united with Mα itself). By Lemma 3.2 we conclude that the
set

F̂ α
u ∪

∞⋃
i=0

Fα
u (−i) = Qα

u

is a chain of “concatenated” continua such that intersections among
them are only possible between F̂α

u and Fα
u = Fα

u (0) and between two
consecutive pullbacks of Fα

u .

Analogous claims can be proven for F̂α
v and Fα

v . For the correspond-
ing pullbacks of Fα

v we use similar notation and get the set
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F̂α
v ∪

∞⋃
i=0

Fα
v (−i) = Qα

v ,

a chain of “concatenated” continua such that intersections among them
are only possible between F̂α

v and F α
v = Fα

v (0) and between two con-
secutive pullbacks of Fα

v .
It is easy to see that the sets Qα

u and Qα
v are disjoint. Indeed, sup-

pose otherwise. Then we can choose minimal r, s such that Fα
u (−r) ∩

Fα
v (−s) 6= ∅. It follows that r > 1 and s > 1. Then the continua

X = Lα ∪ (∪r
i=0F

α
u (−i)) and Y = Lα ∪ (∪s

i=0F
α
v (−i)) have a discon-

nected intersection (it consists of Lα and a non-empty compact set
Fα

u (−r) ∩ Fα
v (−l) disjoint from Lα) despite the fact that they both

are contained in the Julia set J(Pα) (recall that the Julia sets of basic
Cremer polynomials are non-separating continua with empty interior).

Since Mα ∩ (F̂ α
u ∪ F̂α

v ) = ∅ by the choice of α then by the Shrinking
Lemma [LM97] we know that diam(Fα

u (−i)) → 0 as i → ∞ (i.e.,
Fα

u (−i), i = 0, 1, . . . is a null-sequence). Hence by continuity any limit
point a of this sequence of sets is P k

α -fixed. Since there are finitely
many P k

α -fixed points while the set of all limit points of the sequence of
sets Fα

u (−i), i = 0, 1, . . . is connected (recall, that this sequence of sets
is a chain of “concatenated” continua) we conclude that the sequence
Fα

u (−i), i = 0, 1, . . . converges to a P k
α -fixed point which we will denote

by u′. Similarly, the sequence Fα
v (−i), i = 0, 1, . . . converges to a P l

α-
fixed point which we will denote by v′.

Let us study possible intersections between some of these sets. Set
Z = P k

α(F̂α
u ) = P l

α(F̂ α
v ) (Z is the string of pullbacks of M ′

α connecting
Lα and Mα, united with Mα). Lemma 3.2 implies that

[Z ∪ F̂α
u ] ∩Qα

u = F̂α
u

and

[Z ∪ F̂ α
v ] ∩Qα

v = F̂α
v .

Let us show that u′ 6∈ Z ∪ Qα
u . Indeed, since u′ is a P k-fixed point

then u′ 6∈ Qα
u because of the way sets Fα

u (−i), i ≥ 0 intersect. Suppose

that u′ ∈ Z and consider two continua, X = Qα
u and Y = Z ∪ F̂α

u .

It follows that their intersection X ∩ Y = {u′} ∪ F̂α
u is disconnected,

a contradiction. Thus, u′ 6∈ Z ∪ Qα
u . Similarly we can show that

v′ 6∈ Z∪Qα
v . Analogous arguments show that since the continua Z ∪Qα

u

and Z ∪Qα
v must have a connected intersection then u′ 6∈ Qα

v , v′ 6∈ Qα
v
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and u′ 6= v′. Finally, since by the construction Mα∩(Lα∪ F̂ α
u ∪ F̂α

v ) = ∅
then Mα ∩ Lα ∪Qα

u ∪Qα
v = ∅ (notice that by the above u′, v′ 6∈ Mα.

Let Rγ be the external ray for Pα landing at u′ and Rβ be the external
ray for Pα landing at v′. The above implies that the union

Lα ∪Qα
u ∪Qα

v ∪Rγ ∪Rβ

cuts the plane into two open half-planes W and H, one of which (say,
W ) contains Mα (and therefore the Cremer point pα of Pα). Choose
any external angle τ whose external ray Rτ is contained in H. Then
it follows that the impression of Rτ is contained in Lα ∪Qα

u ∪Qα
v and

hence does not contain pα. By Theorem 1.1 this implies that J(Pα) is
a solar Julia set which completes the proof of Theorem 1.2.

References

[BO06a] A. Blokh and L. Oversteegen, The Julia sets of quadratic Cremer poly-
nomials, Topology and its Appl., 153 (2006), 3038–3050.

[BO06b] A. Blokh and L. Oversteegen, Monotone maps of Cremer Julia sets,
preprint (2006).
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