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Abstract. In this paper we try to present in a coherent fashion proofs
of basic results developed so far (primarily by H. Bell) for the plane
fixed point problem. Some of these results have been announced much
earlier but without formal proof. We define the concept of the variation
of a map on a simple closed curve and relate it to the index of the
map on that curve: Index = Variation + 1. We define the concept of an
outchannel for a fixed point free map which carries a nonseparating plane
continuum into itself. We then prove Bell’s Lollipop Lemma and use it
to show that such a map has a unique outchannel, and that outchannel
must have variation = −1. We also define a special class of straight
line crosscuts and show that these suffice for a satisfactory treatment of
prime-ends of a non-separating plane continuum.

1. Introduction

By C we denote the plane and by C∞ the Riemann sphere. Let X be a
plane continuum. By T (X) we denote the topological hull of X consisting
of X union all of its bounded complementary domains. Thus, C∞ \T (X) is
a simply-connected domain containing ∞. The following is a long-standing
question in topology.

Fixed Point Question: “Does a continuous function taking a non-
separating plane continuum into itself always have a fixed point?”

We study the slightly more more general question, “Is there a plane con-
tinuum Z and a continuous function f : C → C taking Z into T (Z) with
no fixed points in T (Z)?” A Zorn’s Lemma argument shows that if one as-
sumes the answer is “yes,” then there is a subcontinuum X ⊂ Z minimal
with respect to these properties. Therefore, we will assume the following
throughout this paper:

1.1. Standing Hypotheses. We assume that f : C → C is a map and X
is a plane continuum such that f(X) ⊂ T (X) = Y , f has no fixed points in
Y , and X is minimal with respect to these properties.
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It will follow from Theorem 3.23 that for such a minimal continuum,
f(X) = X = ∂Y (though it may not be the case that f(Y ) ⊂ Y ).

By results of Cartwright-Littlewood and Bell, if one replaces “map” by
“homeomorphism of the plane” in the fixed point question, the answer is
yes. By results of Bell [3] (see also Sieklucki [11], and Iliadis [8]), the only
unsolved general case (with no special assumptions on the map) is where the
boundary of X is indecomposable (with a dense channel, explained later).
In this paper we use tools first developed by Bell to elucidate the action of a
fixed point free map (should one exist). Theorem 4.1 (Unique Outchannel)
is new and complete proofs of Theorems 2.13 and 2.14 appear in print for
the first time. In subsequent papers [6], we will apply the tools developed
here to prove some additional special cases (with restrictions on the map)
of a “fixed point theorem.”

2. Tools

Let S1 denote the unit circle in the complex plane and let p : R → S1

denote the covering map p(x) = e2πix. Let g : S1 → S1 be a map. By the
degree of the map g, denoted by degree(g), we mean the number ĝ(1)− ĝ(0),
where ĝ : R → R is a lift of the map g to the universal covering space R of
S1 (i.e., p ◦ ĝ = g ◦ p). It is well-known that degree(g) is independent of the
choice of the lift.

2.1. Index. Let g : S1 → C be a map and let S = g(S1). Suppose f : S →
C has no fixed points on S. Then for all z ∈ S, the vector z − f(z) 6= 0.

Hence the unit vector v(z) = z−f(z)
|z−f(z)| always exists. Define the map v =

v ◦ g : S1 → S1 by

v(t) = v(g(t)) =
g(t) − f(g(t))

|g(t) − f(g(t))|
.

Then the map v : S1 → S1 lifts to a map v̂ : R → R such that p◦ v̂ = v◦p.
Define the index of f with respect to g, denoted ind(f, g) by

ind(f, g) = v̂(1) − v̂(0) = degree(v).

More generally, for any parameters 0 ≤ a < b ≤ 1 in S1 = R/Z, define
the fractional index of f on the path g|[a,b] in S by

ind(f, g|[a,b]) = v̂(b) − v̂(a).

While necessarily, the index of f with respect to g is an integer, the fractional
index of f on g|[a,b] need not be. We shall have occasion to use fractional
index in the proof of Theorem 2.13. Note that (fractional) index is the net
change in argument of the vector g(t)− f(g(t)) as t runs along S1 from a to
b.

Proposition 2.1. Let g : S1 → C be a map with g(S1) = S, and suppose
f : S → C has no fixed points on S. Let a 6= b ∈ S1 with [a, b] denoting
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the counterclockwise subarc on S1 from a to b (so S1 = [a, b] ∪ [b, a]). Then
ind(f, g) = ind(f, g|[a,b]) + ind(f, g|[b,a]).

2.2. Stability of Index. The following standard theorems and observa-
tions about the stability of index under fixed-point-free homotopy are con-
sequences of the fact that index is continuous and integer-valued.

Theorem 2.2. Suppose f : C → C is a map and g1 : S1 → C and g2 : S1 →
C are homotopic maps in C such that the homotopy misses the fixed point
set of f . Then ind(f, g1) = ind(f, g2).

An embedding g : S1 → S ⊂ C is orientation preserving if g is isotopic
to the indentity map id|S1 . In particular, the index of f on a simple closed
curve S missing the fixed point set of f is independent of choice of param-
eterizations of S with the same orientation. If g1 and g2 are orientation-
preserving embeddings of S1 with the same image set g1(S

1) = S = g2(S
1),

then we have a well-defined index of f on S, namely ind(f, S) = ind(f, g1) =
ind(f, g2).

Theorem 2.3. Suppose g : S1 → C is a map with g(S1) = S, and f1, f2 :
S → C are homotopic maps such that each level of the homotopy is fixed-
point-free on S. Then ind(f1, g) = ind(f2, g).

In particular, if S is a simple closed curve and f1, f2 : S → C are maps
such that there is a homotopy ht : S → C from f1 to f2 with ht fixed-point
free on S for each t ∈ [0, 1], then ind(f1, S) = ind(f2, S).

Corollary 2.4. Suppose g : S1 → C is an an orientation preserving embed-
ding with g(S1) = S, and f : T (S) → C is a map such that f has no fixed
points on S and f(S) ⊂ T (S). Then ind(f, g) = 1.

Proof. Since f(S) ⊂ T (S) which is a disk with boundary S and f has no
fixed point on S, there is a fixed point free homotopy of f |S to a constant
map c : S → C taking S to a point in T (S)\S. By Theorem 2.3, ind(f, g) =
ind(c, g) = 1. ¤

Theorem 2.5. Suppose g : S1 → C is a map with g(S1) = S, and f :
T (S) → C is a map such that ind(f, g) 6= 0, then f has a fixed point in
T (S).

Proof. Notice that T (S) is a locally connected non-separating plane contin-
uum and, hence, contractible. Suppose f has no fixed point in T (S). Choose
point q ∈ T (S). Let c : S1 → C be the constant map to q. Let H be a
homotopy from g to c with image in T (S). Since H misses the fixed point
set of f , Theorem 2.2 implies ind(f, g) = ind(f, c) = 0. ¤

2.3. Variation. In this section we introduce the notion of variation of a
map on an arc and relate it to winding number.

Definition 2.6 (Junctions). The standard junction J0 is the union of the

three rays Ri = {z ∈ C | z = reiπ/2, r ∈ [0,∞)}, R+ = {z ∈ C | z =
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re0, r ∈ [0,∞)}, R− = {z ∈ C | z = reiπ, r ∈ [0,∞)}, having the origin
0 in common. By U we denote the lower half-plane {z ∈ C | z = x +
iy, x ∈ R, y < 0}. A junction Jv is the image of J0 under any orientation-
preserving homeomorphism h : C → C where v = h(0).

We will often suppress h and refer to h(Ri) as Ri, and similarly for the
remaining rays and the region h(U). When needed we will write Rv+ etc.
when we want to refer to a particular h(R+) of a junction Jv based at
v = h(0).

Suppose S is a simple closed curve and A ⊂ S is a subarc of S with
endpoints a and b, with a < b in the counter-clockwise orientation on S. We
will usually denote such a subarc by A = [a, b] and by (a, b) its interior in
S1.

Definition 2.7 (Variation on an arc). Let S be a simple closed curve and
A = [a, b] a subarc of S such that f(a), f(b) ∈ T (S) and f(A) ∩ A = ∅. We
define the variation of f on A with respect to S, denoted var(f, A, S), by the
following algorithm:

(1) Choose an orientation-preserving homeomorphism h of C such that
h(0) = v ∈ A and T (S) ⊂ h(U) ∪ {v}.

(2) As always we assume that a < b in the counterclockwise order.
(3) Counting crossings: Consider the set M = f−1(Jv) ∩ [a, b]. Each

time a point of f−1(h(R+))∩ [a, b] is immediately followed in M , in
the natural order on [a, b], by a point of f−1(h(Ri)) count +1 and
each time a point of f−1(h(Ri)) ∩ [a, b] is immediately followed in
M , in the natural order on [a, b], by a point of f−1(h(R+)) count
−1. Count no other crossings.

(4) The sum of the crossings found above is the variation, denoted
var(f, A, S).

Note that f−1(h(R+)) ∩ [a, b] and f−1(h(Ri)) ∩ [a, b] are disjoint closed
sets in [a, b]. Hence, in (3) in the above definition, we count only a finite
number of crossings and var(f, A, S) is a finite integer.

Let g : S1 → C be a map and w ∈ C \ g(S1) be a point. By the winding
number of g about the point w, denoted by win(g, w), we mean the number
ind(c, g), where c : C → C is the constant map c(z) = w. It is well-
known that the winding number is invariant under homotopies of g in C \w
and independent of the choice of the point w in a particular component of
C\g(S1). Note that if B is the closure of S\A and α : S → C is any map such
that α|A = f |A and α(B) ⊂ T (S) \ {v} ⊂ U , then var(f, A, S) = win(α, v).

In case A is an open arc (a, b) ⊂ S such that var(f,A, S) is defined, it
will be convenient to denote var(f,A, S) by var(f, A, S)

The following Lemma follows immediately from the definition.

Lemma 2.8. Let S be a simple closed curve. Suppose that a < c < b are
three points in S such that {f(a), f(b), f(c)} ⊂ T (S) and f([a, b])∩[a, b] = ∅.
Then var(f, [a, b], S) = var(f, [a, c], S) + var(f, [c, b], S).
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2.4. Stability of Variation. By the above remark that variation is a wind-
ing number, the invariance of winding number under suitable homotopies
implies that the variation var(f, A, S) also remains invariant under such ho-
motopies. That is, even though the specific crossings in (3) in the algorithm
may change, the sum remains invariant. We will state the required results
about variation below without proof. Proofs can also be obtained directly
by using the fact that var(f, A, S) is integer valued and continuous under
suitable homotopies.

Proposition 2.9 (Junction Straightening). Any two junctions h1, h2 with
v1 = h1(0) ∈ A, v2 = h2(0) ∈ A, T (S) ⊂ h1(U) ∪ {v1}, and T (S) ⊂
h2(U) ∪ {v2} give the same variation.

Proposition 2.10. Variation var(f, A, S) is an integer, well-defined, and
independent of h.

Since U is open for a given junction Jv for A = [a, b] with T (S) ⊂ U ∪
{v}, the computation of var(f, A, S) depends only upon the crossings of
the junction coming from a proper compact subarc of the open arc (a, b).
Consequently, var(f, A, S) remains invariant under homotopies ht of f |[a,b]

such that ht(a) and ht(b) remain in U and v 6∈ ht([a, b]) for all t. Moreover,
the computation is stable under an isoptopy of the plane that moves the
entire junction Jv (even off A), provided in the the isotopy v never crosses
the image f(A) and, f(a) and f(b) remain in the corresponding domain Ut.

Definition 2.11 (Variation on a finite union of arcs). Let S be a simple
closed curve and A = [a, b] a subcontinuum of S with partition a finite set
F = {a = a0 < a1, . . . , an = b}. For each i let Ai = [ai, ai+1]. Suppose
that f satisfies f(ai) ∈ T (S) and f(Ai) ∩ Ai = ∅ for each i. We define the
variation of f on A with respect to S, denoted var(f, A, S), by

var(f, A, S) =
n−1∑

i=0

var(f, [ai, ai+1], S).

In particular, we include the possibility that an = a0 in which case A = S.

By considering a common refinement of two partitions F1 and F2 of an
arc A ⊂ S such that f(F1) ∪ f(F2) ⊂ T (S) and satisfying the conditions in
Definition 2.11, it follows from Lemma 2.8 that we get the same value for
var(f, A, S) whether we use the partition F1 or the partition F2. Hence,
var(f, A, S) is well-defined. If A = S we denote var(f, S, S) simply by
var(f, S).

2.5. Index and variation for finite partitions. What links Theorem 2.5
with variation is Theorem 2.13 below, first obtained by Bell and announced
in the mid 1980’s, and later by Akis [2]. Our proof is a modification of Bell’s
unpublished proof. We first need a variant of Proposition 2.9. Let r : C → D

be radial retraction: r(z) = z
|z| when |z| ≥ 1 and r|D = id|D.
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Lemma 2.12 (Curve Straightening). Suppose f : S1 → C is a map with no
fixed points on S1. If [a, b] ⊂ S1 is a proper subarc with f([a, b])∩ [a, b] = ∅,
f((a, b)) ⊂ C\T (S1) and f({a, b}) ⊂ S1, then there exists a map h : S1 → C

homotopic to f in C\T (S) relative to {a, b}, with each level of the homotopy
fixed-point-free, such that r ◦ h : [a, b] → S1 is locally one-to-one. Moreover,
var(f, [a, b], S1) = var(h, [a, b], S1).

Note that if var(f, [a, b], S1) = 0, then r ◦ h carries [a, b] one-to-one onto
the arc in S1 \ [a, b] from f(a) to f(b). If the var(f, [a, b], S1) = m > 0, then
r ◦ h wraps the arc [a, b] counterclockwise about S1 so that h([a, b]) meets
each ray in Jv m times. A similar statement holds for negative variation.

Theorem 2.13 (Index = Variation + 1, Bell). Suppose g : S1 → C is an
orientation preserving embedding onto a simple closed curve S and f has
no fixed points on S. If F = {a0 < a1 < · · · < an} is a partition of S and
Ai = [ai, ai+1] for i = 1, . . . , n with an+1 = a0 such that f(F ) ⊂ T (S) and
f(Ai) ∩ Ai = ∅ for each i, then

ind(f, g) =
n∑

i=0

var(f, Ai, S) + 1 = var(f, S) + 1.

Note that it is possible for index to be defined yet variation not to be
defined on a simple closed curve S. For example, consider the map z → 2z
with S the unit circle.

Proof. By an appropriate conjugation of f and g, we may assume without
loss of generality that S = S1 and g = id. Let F and Ai = [ai, ai+1] be as
in the hypothesis. Consider the collection of arcs

K = {K ⊂ S | K is the closure of a component of S ∩ f−1(f(S) \ T (S))}.

For each K ∈ K, there is an i such that K ⊂ Ai. Since f(Ai) ∩ Ai =
∅, it follows from the remark after Proposition 2.10 that var(f, Ai, S) =∑

K⊂Ai,K∈K var(f, K, S). In particular, we can compute var(f, K, S) using
one fixed junction for Ai and it is now clear that there are at most finitely
many such K with var(f, K, S) 6= 0. Moreover, the images of the endpoints
of K lie on S.

Let m be the cardinality of the set Kf = {K ∈ K | var(f, K, S) 6= 0}.
By the above remarks, m < ∞ and Kf is independent of F . We prove the
theorem by induction on m.

Suppose for a given f we have m = 0. Observe that from the definition
of variation and the fact that the computation of variation is independent
of the choice of an appropriate partition, it follows that,

var(f, S) =
∑

K∈K

var(f, K, S) = 0.

We claim that there is a map f1 : S → C with f1(S) ⊂ T (S) and a
homotopy H from f |S to f1 such that each level Ht of the homotopy is
fixed-point-free and ind(f1, id|S) = 1.
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Figure 1. Replacing f : S → C by g : S → C with one less
subarc of nonzero variation.

To see the claim, first apply the Curve Straightening Lemma 2.12 to each
K ∈ K (if there are infinitely many, they form a null sequence) to obtain
a fixed-point-free homotopy of f |S to a map h : S → C such that r ◦ h is
locally one-to-one on each K ∈ K, where r is radial retraction of C to D,
and var(h, K, S) = 0 for each K ∈ K. Let K be in K with endpoints x, y.
Since h(K) ∩ K = ∅, r ◦ h is one-to-one, and var(h, K, S) = 0. Since K is
a null family, we can do this for each K ∈ K so that we obtain the desired
f1 : S → C as the end map of a fixed-point-free homotopy from f to f1.
Since f1 carries S into T (S), Corollary 2.4 implies ind(f1, id|S) = 1.

Since the homotopy f ' f1 is fixed-point-free, it follows from Theorem 2.3
that ind(f, id|S) = 1. Hence, the theorem holds if m = 0 for any f and any
appropriate partition F .

By way of contradiction, consider the collection of all maps f on S1 which
satisfy the hypotheses of the theorem, but not the conclusion. By the above
0 < |Kf | < ∞ for each. Let f and partition F be a counterexample for
which m = |Kf | is minimal. By modifying f , we will show there exists
another counterexample f ′ with |Kf ′ | < m, a contradiction.

Choose K ∈ K such that var(f, K, S) 6= 0. Then K = [x, y] ⊂ Ai =
[ai, ai+1] for some i. By the Curve Straightening Lemma 2.12 and Theo-
rem 2.3, we may suppose r ◦f is locally one-to-one on K. Define a new map
f1 : S → C by setting f1|S\K = f |

S\K
and setting f1|K equal to the linear

map taking [x, y] to the subarc f(x) to f(y) on S missing [x, y]. Figure 1
(left) shows an example of a (straightened) f and the corresponding f1 for
a case where var(f, K, S) = 1, while Figure 1 (right) shows a case where
var(f, K, S) = −2.
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Since on S \ K, f and f1 are the same map, we have

var(f, S \ K, S) = var(f1, S \ K, S).

Likewise for the fractional index,

ind(f, S \ K) = ind(f1, S \ K).

By definition (refer to the observation we made in the case m = 0),

var(f, S) = var(f, S \ K, S) + var(f, K, S)

var(f1, S) = var(f1, S \ K, S) + var(f1, K, S)

and by Proposition 2.1,

ind(f, S) = ind(f, S \ K) + ind(f, K)

ind(f1, S) = ind(f1, S \ K) + ind(f1, K).

Consequently,

var(f, S) − var(f1, S) = var(f, K, S) − var(f1, K, S)

and

ind(f, S) − ind(f1, S) = ind(f, K) − ind(f1, K).

We will now show that the changes in index and variation, going from
f to f1 are the same (i.e., we will show that var(f, K, S) − var(f1, K, S) =
ind(f, K) − ind(f1, K)). We suppose first that ind(f, K) = n + α for some
nonnegative n ∈ Z and 0 < α < 1. That is, the vector z − f(z) turns
through n full revolutions counterclockwise and α part of a revolution coun-
terclockwise as z varies from x to y in K. (See Figure 1 (left) for a case
n = 0 and α about 2

3 .) Then as z varies from x to y, f1(z) goes along S
from f(x) to f(y) in the clockwise direction, so z − f1(z) turns through the
angle −(1−α) = α−1. Hence, ind(f1, K) = −(1−α). It is easy to see that
var(f, K, S) = n + 1 and var(f1, K, S) = 0. Consequently,

var(f, K, S) − var(f1, K, S) = n + 1 − 0 = n + 1

and

ind(f, K) − ind(f1, K) = n + α − (α − 1) = n + 1.

In Figure 1 on the left we assumed that f(x) < x < y < f(y). The cases
where f(y) < x < y < f(x) and f(x) = f(y) are treated similarly.

Thus when n ≥ 0, in going from f to f1, the change in variation and the
change in index are the same. However, in obtaining f1 we have removed one
K ∈ K, reducing the minimal m for f1 by one, producing a counterexample
for smaller m, a contradiction.

The cases where ind(f, K) = n + α for negative n and 0 < α < 1 are
handled similarly, and illustrated for n = −2 and α about 1

2 in Figure 1
(right).

¤
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2.6. Locating arcs of negative variation. The principal tool in proving
the main theorem in the next section is the following theorem first obtained
by Bell. It provides a method for locating arcs of negative variation on a
curve of index zero.

Theorem 2.14 (Lollipop Lemma, Bell). Let S ⊂ C be a simple closed
curve such that f has no fixed points on S. Suppose F = {a0 < · · · <
an < an+1 < · · · < am} is a partition of S, am+1 = a0 and Ai = [ai, ai+1]
such that f(F ) ⊂ T (S) and f(Ai) ∩ Ai = ∅ for i = 0, . . . , m. Suppose I is
an arc in T (S) meeting S only at its endpoints a0 and an+1. Let Ja0

be a
junction in (C \ T (S)) ∪ {a0} and suppose that f(I) ∩ (I ∪ Ja0

) = ∅. Let
R = T ([a0, an+1]∪I) and L = T ([an+1, am+1]∪I). Then one of the following
holds

(1) If f(an+1) ∈ R, then
∑

i≤n

var(f, Ai, S) + 1 = ind(f, I ∪ [a0, an+1]).

(2) If f(an+1) ∈ L, then
∑

i>n

var(f, Ai, S) + 1 = ind(f, I ∪ [an+1, am+1].

(Note that in (1) in effect we compute var(f, ∂R) but technically, we have
not defined var(f, Ai, ∂R) since the endpoints of Ai do not have to map
inside R but they do map into T (S). Similarly in Case (2).)

Proof. Without loss of generality, suppose f(an+1) ∈ L. Let C = [an+1, am+1]∪
I (so T (C) = L). We want to construct a map f ′ : C → C, fixed-point-free
homotopic to f |C , that does not change variation on any arc Ai in C and
has the properties listed below.

(1) f ′(ai) ∈ L for all n + 1 ≤ i ≤ m + 1. Hence var(f ′, Ai, C) is defined
for each i > n.

(2) var(f ′, Ai, C) = var(f, Ai, S) for all n + 1 ≤ i ≤ m.
(3) var(f ′, I, C) = var(f, I, S) = 0.
(4) ind(f ′, C) = ind(f, C).

Having such a map, it then follows from Theorem 2.13, that

ind(f ′, C) =
m∑

i=n+1

var(f ′, Ai, C) + var(f ′, I, C) + 1.

By Theorem 2.5 ind(f ′, C) = ind(f, C). By (2) and (3),
∑

i>n var(f ′, Ai, C)+
var(f ′, I, C) =

∑
i>n var(f, Ai, S) and the Theorem would follow.

It remains to define the map f ′ : C → C with the above properties. For
each i such that n + 1 ≤ i ≤ m + 1, chose an arc Ii joining f(ai) to L as
follows:

(a) If f(ai) ∈ L, let Ii be the degenerate arc {ai}.
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Figure 2. Bell’s Lollipop.

(b) If f(ai) ∈ R and n+1 < i < m+1, let Ii be an arc in R \ {a0, an+1}
joining f(ai) to I.

(c) If f(a0) ∈ R, let I0 be an arc joining f(a0) to L such that I0 ∩ (L ∪
Ja0

) ⊂ An+1 \ {an+1}.

Let xn+1 = yn+1 = an+1, y0 = ym+1 ∈ I \ {a0, an+1} and x0 = xm+1 ∈
Am \ {am, am+1}. For n + 1 < i < m + 1, let xi ∈ Ai−1 and yi ∈ Ai such
that yi−1 < xi < ai < yi < xi+1. For n + 1 < i < m + 1 let f ′(ai) be
the endpoint of Ii in L, f ′(xi) = f ′(yi) = f(ai) and extend f ′ continuously
from [xi, ai]∪ [ai, yi] onto Ii and define f ′ from [yi, xi+1] ⊂ Ai onto f(Ai) by
f ′|[yi,xi+1] = f ◦ hi, where hi : [yi, xi+1] → Ai is a homeomorphism such that

hi(yi) = ai and hi(xi+1) = ai+1. Similarly, define f ′ on [y0, an+1] ⊂ I to
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f(I) by f |[y0,an+1] = f ◦ h0, where h0 : [y0, an+1] → I is a homeomorphism
such that h(an+1) = an+1 and extend extend f ′ from [xm+1, a0] ⊂ Am and
[ao, y0] ⊂ I onto I0 such that f ′(xm+1) = f ′(y0) = f(a0) and f ′(a0) is the
endpoint of I0 in L.

Note that f ′(Ai)∩Ai = ∅ for i = n+1, . . . , m and f ′(I)∩ [I∪Ja0
] = ∅. To

compute the variation of f ′ on each Am and I we can use the junction Ja0

Hence var(f ′, I, C) = 0 and, by the definition of f ′ on Am, var(f ′, Am, C) =
var(f(Am, S). For i = n + 1, . . . , m − 1 we can use the same junction
Jvi

to compute var(f ′, Ai, C) as we did to compute var(f, Ai, S). Since
Ii ∪ Ii+1 ⊂ T (S) we have that f ′([ai, yi])∪ f ′([xi+1, ai+1]) ⊂ Ii ∪ Ii+1 misses
that junction and, hence, make no contribution to variation var(f ′, Ai, C).
Since f ′−1(Jvi

) ∩ [yi, xi+1] is isomorphic to f−1(Jvi
) ∩ Ai, var(f ′, Ai, C) =

var(f(Ai, S) for i = n + 1, . . . , m.
To see that f ′ is fixed-point-free homotopic to f |C , note that we can pull

the image of Ai back along the arcs Ii and Ii+1 in R without fixing a point
of Ai at any level of the homotopy. Since f ′ and f |C are fixed-point-free
homotopic and f has no fixed points in T (S), it follows from Theorems 2.3
and 2.5, that ind(f ′, C) = ind(f, C). ¤

Note that if f is fixed point free on T (S), then ind(f, S) = 0 and the
following Corollary follows.

Corollary 2.15. Assume the hypotheses of Theorem 2.14. Suppose, in
addition, f is fixed point free on T (S). Then if f(an+1) ∈ R there exists
i ≤ n such that var(f, Ai, S) < 0. If f(an+1) ∈ L there exists i > n such
that var(f, Ai, S) < 0.

2.7. Extensions to variation for infinite partitions. Recall our Stand-
ing Hypotheses in 1.1: f : C → C takes continuum X into T (X) with no
fixed points in T (X), and X is minimal with respect to these properties.

Definition 2.16 (Bumping Simple Closed Curve). A simple closed curve S
in C which has the property that S ∩X is nondegenerate and T (X) ⊂ T (S)
is said to be a bumping simple closed curve for X. A subarc A of a bumping
simple closed curve, whose endpoints lie in X, is said to be a bumping
(sub)arc for X. Moreover, if S′ is any bumping simple closed curve for X
which contains A, then S′ is said to complete A.

A crosscut of O∞ = C∞ \T (X) is an open arc Q lying in O∞ such that Q
meets ∂O∞ in two endpoints a 6= b ∈ T (X). (As seems to be traditional, we
use “crosscut of T (X)” interchangeably with “crosscut of O∞.”) If S ∩X is
nondegenerate and proper in S, then each component of S \X is a crosscut
of T (X). A similar statement holds for a bumping arc A.

Since f has no fixed points in T (X) and X is compact, we can choose a
bumping simple closed curve S so close pointwise to T (X), with such small
crosscuts, and with the domains cut off so close pointwise to T (X), that
f has no fixed points in T (S). Thus, we obtain the following corollary to
Theorem 2.5.
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Corollary 2.17. There is a bumping simple closed curve S for X such
that f |T (S) is fixed point free; hence, by 2.5, ind(f, S) = 0. Moreover, any
bumping simple closed curve S′ such that S′ ⊂ T (S) has ind(f, S′) = 0. Fur-
thermore, any crosscut Q of X for which f has no fixed points in T (X ∪Q)
can be completed to a bumping simple closed curve S for which ind(f, S) = 0.

Theorem 2.18. Suppose S is a bumping simple closed curve for X. Then
there is a δ > 0 such that if A ⊂ S is a bumping subarc for X with diam(A) ≤
δ, then var(f, A, S) = 0.

Proof. Suppose not. Then, without loss of generality, there is a sequence
{Ai}

∞
i=1 of bumping subarcs converging to a point a ∈ X ∩ S such that

var(f, Ai, S) 6= 0 for each i. Let Ja be a junction based at a. Since f(a) ∈ X,
there are connected neighborhoods U of a and V of f(a) such that V ∩Ja = ∅
and f(U) ⊂ V . We may assume U ∩ S is connected. Since Ai → a, there
is a k such that for all i ≥ k, Ai ⊂ U . We may adjust the junction Ja to
a junction Jai

, keeping sufficiently close to S, so that for i ≥ k, ai ∈ Ai

and f(Ai) ∩ Jai
= ∅. It follows that var(f, Ai, S) = 0. This contradiction

completes the proof. ¤

Corollary 2.19. Suppose S is a bumping simple closed curve for X. Let
C be closed such that S \ C =

⋃∞
i=1 Ai, where the Ai are disjoint bumping

subarcs (or crosscuts) such that f(Ai) ∩ Ai = ∅ for each i. Then for all but
finitely many Ai, var(f, Ai, S) = 0.

The following Theorem follows from 2.19 and the remark following Defi-
nition 2.11.

Theorem 2.20. Suppose S is a bumping simple closed curve with A a
bumping subarc in S such that f(A) ∩ A = ∅. Suppose A =

⋃
i∈I Ai

is a partition of A into possibly infinitely many bumping subarcs. Then
var(f, A, S) =

∑
i∈I var(f, Ai, S).

Remark 2.21. It follows from Corollary 2.19 and Theorem 2.20 that The-
orems 2.13 and 2.14 hold for infinite partitions of bumping simple closed
curves where the partition elements map off themselves.

2.7.1. Variation on a crosscut. We show that variation is local by defining
it for a single bumping subarc (or single crosscut).

Proposition 2.22. Suppose A is a bumping subarc on X. If var(f, A, S) is
defined for some bumping simple closed curve S completing A, then for any
bumping simple closed curve S′ completing A, var(f, A, S) = var(f, A, S′).

Proof. Let A be a bumping subarc on X for which f(A) ∩ A = ∅. Let
S and S′ be two bumping simple closed curves completing A for which
variation is defined. Let Ja and Ja′ be junctions whereby var(f, A.S) and
var(f, A, S′) are respectively computed. Suppose first that both junctions
lie (except for {a, a′}) in C \ (T (S)∪ T (S′)). By the Junction Straightening
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Proposition 2.9 and Remark 2.4, either junction can be used to compute
either variation on A, so the result follows. Otherwise, at least one junction
is not in C\ (T (S)∪T (S′)). But both junctions are in C\T (X ∪A). Hence,
we can find another simple closed curve S′′ such that S′′ completes Q and
both junctions lie in (C \ T (S′′))∪ {a, a′}. Then by the Proposition 2.9 and
Remark 2.4, var(f, A, S) = var(f, A, S′′) = var(f, A, S′). ¤

It follows from Proposition 2.22 that variation on a crosscut of X is in-
dependent of the simple closed curve surrounding T (X) of which Q is a
subarc.

Definition 2.23 (Variation on a crosscut). Suppose Q is a crosscut of X
such that f(Q)∩Q = ∅. Let S be any bumping simple closed curve completing
Q for which variation is defined. Define the variation of f on Q with respect
to X, denoted var(f, Q, X), by var(f, Q, X) = var(f, Q, S).

We will need the following proposition in Section 3.3.

Proposition 2.24. Suppose Q = [a, b] is a crosscut of T (X) such that f is
fixed point free on T (X ∪Q) and f(Q) ∩Q = ∅. Suppose Q is replaced by a
bumping subarc A with the same endpoints such that Q separates A \ {a, b}
from ∞ and each component Qi of A\X is a crosscut such that f(Qi)∩Qi =
∅. Then

var(f, Q, X) =
∑

i

var(f, Qi, X).

Proof. Note that each of Q and A can be completed to a simple closed curve
with the same bumping arc B such that on both T (Q ∪ B) and T (A ∪ B),
f is fixed point free. By Corollary 2.17 and Remark 2.21 we have

var(f, Q ∪ B) + 1 = ind(f, Q ∪ B) = ind(f, A ∪ B) = var(f, A ∪ B) + 1.

Thus,

var(f, Q, Q ∪ B) + var(f, B, Q ∪ B) = var(f, Q ∪ B) = var(f, A ∪ B)

= var(f, A, A ∪ B) + var(f, B, A ∪ B).

Consequently, by Theorem 2.20 and Proposition 2.22,

var(f, Q, X) = var(f, Q, Q ∪ B) = var(f, A, A ∪ B)

=
∑

i

var(f, Qi, A ∪ B) =
∑

i

var(f, Qi, X).

¤

2.8. Prime Ends. Prime ends provide a way of studying the approaches
to the boundary of a simply-connected plane domain with non-degenerate
boundary. See [7] or [9] for an analytic summary of the topic and [12] for
a more topological approach. We will be interested in the prime ends of
O∞ = C∞ \ T (X). Recall Y = T (X). Let ∆∞ = {z ∈ C∞ | |z| > 1} be
the “unit disk about ∞.” The Riemann Mapping Theorem guarantees the
existence of a conformal map φ : ∆∞ → O∞ taking ∞ → ∞, unique up
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to the argument of the derivative at ∞. Fix such a map φ. We identify
S1 = ∂∆∞ with R/Z and identify points e2πit in ∂∆∞ by their argument
(mod 2π). Crosscuts are defined in Section 2.7.

Definition 2.25 (Prime End). A chain of crosscuts is a sequence {Qi}
∞
i=1

of crosscuts of O∞ such that for i 6= j, Qi ∩ Qj = ∅, diam(Qi) → 0, and
for all j > i, Qi separates Qj from ∞ in O∞. Two chains of crosscuts
are said to be equivalent iff it is possible to form a sequence of crosscuts by
selecting alternately a crosscut from each chain so that the resulting sequence
of crosscuts is again a chain. A prime end E is an equivalence class of chains
of crosscuts.

If {Qi} is a chain of crosscuts of O∞, it can be shown that {φ−1(Qi)}
is a chain of crosscuts of ∆∞ converging to a single point t ∈ S1 = ∂∆∞,
independent of the representative chain. Thus, we may name the prime end
E defined by {Qi}, where φ−1(Qi) → t ∈ S1, by Et.

Let Et be a prime end with defining chain of crosscuts {Qi}. Let Oi denote
the bounded complementary domain of O∞ \Qi. We use {Qi} and {Oi} to
define two subcontinua of ∂O∞ associated with Et.

Definition 2.26 (Impression and Principal Continuum). The set

Im(Et) =
∞⋂

i=1

Oi

is a subcontinuum of ∂O∞ called the impression of Et. The set

Pr(Et) = {z ∈ ∂O∞ | for some chain {Qi} defining Et, Qi → z}

is a continuum called the principal continuum of Et.

For a prime end Et, Pr(Et) ⊂ Im(Et), possibly properly. We will be inter-
ested in the existence of prime ends Et for which Pr(Et) = Im(Et) = ∂O∞.

Definition 2.27 (External Rays). Let t ∈ [0, 1) and define

Rt = {z ∈ C | z = φ(re2πit), 1 < r < ∞}.

We call Rt the external ray at t. If x ∈ Rt then the (Y, x)-end of Rt is the
component Kx of Rt \ {x} whose closure meets Y .

The external rays foliate O∞.

Definition 2.28 (Essential crossing). An external ray Rt is said to cross a
crosscut Q essentially if and only if an (Y, x)-end of Rt is contained in the
bounded complementary domain of Y ∪ Q.

The properties below may readily be established.

Proposition 2.29 ([7]). Let Et be a prime end of O∞. Then Pr(Et) =
Rt \ Rt. Moreover, for each 1 < r < ∞ there is a crosscut Qr at φ(re2πit)
on Rt with diam(Qr) → 0 as r → 1 and such that Rt crosses Qr essentially.
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Definition 2.30 (Landing Points and Accessible Points). If Pr(Et) = {x},
then we say Rt lands at x ∈ T (X) and x is the landing point of Rt. A point
x ∈ ∂T (X) is said to be accessible (from O∞) iff there is a arc in O∞ ∪{x}
one endpoint of which is x.

Proposition 2.31. A point x ∈ ∂T (X) is accessible iff x is the landing
point of some external ray Rt.

Definition 2.32 (Channels). A prime end Et of O∞ for which Pr(Et) is
nondegenerate is said to be a channel in ∂O∞ (or in T (X)). If moreover
Pr(Et) = ∂O∞ = ∂T (X), we say Et is a dense channel. A crosscut Q with
endpoints {a, b} is said to cross the channel Et iff Rt crosses Q essentially.

When X is locally connected, there are no channels, as the following clas-
sical theorem proves. In this case, every prime end has degenerate principal
set and degenerate impression.

Theorem 2.33 (Caratheodory). X is locally connected iff the Riemann
map φ : ∆∞ → O∞ = C∞ \ T (X) taking ∞ → ∞ extends continuously to
S1 = ∂∆∞.

2.9. Index and Variation for Caratheodory Loops. We extend the
definitions of index and variation and the theorem relating index to variation
to Caratheodory loops.

Definition 2.34 (Caratheodory Loop). Let φ : S1 → C such that φ is
continuous and has an extension ψ : C \ T (S1) → C \ T (φ(S1)) such that
ψ|C\T (S1 is an orientation preserving homeomorphism from C \ T (S1) onto

C \ T (φ(S1)). We call φ (and loosely, S = φ(S1)), a Caratheodory loop.

In particular, if a Riemann map extends continuously to S1, we have a
Caratheodory loop. In order to define variation of f on a Caratheodory loop
S = φ(S1), we do the partitioning in S1 and transport it to the Caratheodory
loop S = φ(S1). An allowable partition of S1 is a set {a0 < a1 < · · · < an}
in S1 ordered counterclockwise, where a0 = an and Ai denotes the counter-
clockwise interval [ai−1, ai], such that for each i, f(φ(ai)) ∈ T (φ(S1)) and
f(φ(Ai)) ∩ φ(Ai) = ∅. Variation on each path φ(Ai) is then defined exactly
as in Definition 2.7, except that the junction (see Definition 2.6) is chosen
so that the vertex v ∈ φ(Ai) and T (φ(S1)) ⊂ h(U) ∪ {v}, and the crossings
of the junction by f(φ(Ai)) are counted (see Definition 2.7). Variation on
the whole loop, or an allowable subarc thereof, is defined just as in Defini-
tion 2.11, by adding the variations on the partition elements. At this point
in the development, variation is defined only relative to the given allowable
partition F of S1 and the parameterization φ of S: var(f, F, φ(S1)).

Index on a Caratheodory loop S is defined exactly as in Section 2.1 with
S = φ(S1) providing the parameterization of S. Likewise, the definition of
fractional index and Proposition 2.1 apply to Caratheodory loops.

Theorems 2.2, 2.3, Corollary 2.4, and Theorem 2.5 apply to Caratheodory
loops. It follows that index on a Caratheodory loop S is independent of
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the choice of parameterization φ. It remains to extend Theorem 2.13 to
Caratheodory loops. It then follows that variation on a Caratheodory loop
S is independent of choice of parameterization φ(S1) = S and allowable
partition of S1. Thus, var(f, S) is well-defined for any Caratheodory loop S
that has some parameterization and some allowable partition.

Theorem 2.35. Suppose S = φ(S1) is a parameterized Caratheodory loop
in C and f has no fixed points on S. Suppose variation of f on S1 =
A0 ∪ · · · ∪An with respect to φ is defined for some partition A0 ∪ · · · ∪An of
S1. Then

ind(f, φ) =
n∑

i=0

var(f, Ai, φ(S1)) + 1.

Proof. Let ψ be the homeomorphic extension of φ carrying C \ T (S1) onto
C \ T (S). Let Si = {1 + 1

i )e
2πiθ | θ ∈ [0, 1)} be the concentric circles of

radius 1 + 1
i converging to S1. For the given partition A0 ∪ · · · ∪ An of S1,

let Aj = [aj−1, aj ] with an = a0, Then aj = e2πiθj for some θj ∈ [0, 1) with

θ0 < θ1 < · · · < θn = θ0. For each j, let Ri,j = {re2πiθj | 1 ≤ r ≤ 1 + 1
i }

be the radial arc from Si to S1 at aj . Note diam(Ri,j) → 0 as i → ∞.

Let Ci,j = {(1 + 1
i )e

2πiθ | θj−1 ≤ θ ≤ θj} be the subarc of Si between
ci,j−1 = Si∩Ri,j−1 and ci,j = Si∩Ri,j . Then Ci,j = [ci,j−1, ci,j ] approximates
Aj as i → ∞. Moreover, ci,j → ai,j as i → ∞. Since ψ is a map, the same
holds for the images.

For each j, choose a junction Jvj
with vertex vj ∈ ψ(Aj) so that T (ψ(S1)) ⊂

Uj ∪ {vj}, where Uj is the usual complementary half-plane of the junction
(see Definition 2.6).

Since ψ(Ci,j) approximates ψ(Aj) with ψ(Ri,j) shrinking as i → ∞, we
may choose i sufficiently large so that the following conditions are satisfied:

(1) ψ(Ci,j) ∩ f(ψ(Ci,j)) = ∅.
(2) var(f, Aj , ψ(S1)) = var(f, ψ(Ci,j), ψ(Si)).
(3) There are no fixed points of f in T (ψ(Si)) \ T (ψ(S1)).
(4) ind(f, ψ(Si)) = ind(f, ψ(S1)).

Condition (1) holds because of continuity of ψ and the similar condition
for Aj . To see condition (2), apply the observations about the stability
of variation in Section 2.4. Condition (3) holds because there are no fixed
points of f on S, and ψ(Si) approximates S. Condition (4) then follows from
the stability of index under fixed-point-free homotopy, noted in Section 2.2.
(Use ψ on Sk, k ≥ i, to define the homotopy.)

By Theorem 2.13,

ind(f, ψ(Si)) =
n∑

j=0

var(f, ψ(Ci,j), ψ(Si)) + 1.
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Hence, noting φ = ψ|S1 , it follows from conditions (2) and (4) that

ind(f, φ) =
n∑

j=0

var(f, Aj , φ(S1)) + 1.

¤

3. Geometric Prime Ends

For the proof of the principal new result in this paper, the uniqueness of
the outchannel in the next section, we develop in this section Bell’s tools
using a special collection of geometric crosscuts of T (X). These results, and
their connection to the standard conformal theory of prime-ends, are more
fully developed in [1]. Recall our Standing Hypotheses in 1.1: f : C → C

takes continuum X into Y = T (X) with no fixed points in T (X), and X is
minimal with respect to these properties.

3.1. Geometric crosscuts. We are going to define a special class of geo-
metric crosscuts (chords) of O∞ = C∞\Y and auxiliary nonseparating plane
continua which contain Y as subsets, and in some sense have some of the
same channels as Y , but have a nicer boundary than Y .

Definition 3.1 (Closest Points). Let z ∈ O∞. We define the set of closest
points of Y to z by

C(z) = {x ∈ Y | d(z, x) = d(z, Y )}.

The collection of all z ∈ O∞ with at least three closest points is denoted C3;
the collection of all z ∈ O∞ with exactly two closest points is denoted C2.

Definition 3.2. For a given compact subset Z ⊂ C, the convex hull of
Z, denoted by Convexhull(Z), consists of Z together with all straight line
segments whose endpoints are in Z. Then Convexhull(Z) is a convex con-
tinuum. For z ∈ C \ Y , V (z) = Convexhull(C(z)) \ C(z) if z ∈ C2 and
V (z) = Int(Convexhull(C(z))) if z ∈ C3. If z ∈ C2, we call V (z) a chord.
We call V (z) for z ∈ C3 a simplex.

Note that each simplex of Y lies in the convex hull of Y . Note also that
for z ∈ C2, V (z) is an open arc and for z ∈ C3, V (z) is an open topological
disk with Jordan curve boundary composed of countably many straight line
crosscuts plus a set contained in C(z).

Definition 3.3. For z ∈ O∞, let B(z, Y ) = {w ∈ C | d(z, w) < d(z, Y )}
and S(z, Y ) = {w ∈ C | d(w, z) = d(z, Y )}. Then B(z, Y ) is the maximal
open ball around z, disjoint from Y and its boundary is S(z, Y ). Moreover,
if z ∈ Y , let S(z, Y ) = {z}.

Definition 3.4 (Geometric Crosscuts–Chords). Define the following collec-
tions of crosscuts and simplices:

Fs = {L | L is a component of ∂V (z) \ C(z) for some z ∈ C3}
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Fc = {K | K is a component of ∂Convexhull(Y ) \ Y }

F2 = {V (z) | z ∈ C2}

F3 = {V (z) | z ∈ C3}

F = Fs ∪ Fc ∪ F2 ∪ F3

G = F2 ∪ Fs ∪ Fc

Gδ = {Q ∈ G | diam(Q) ≤ δ}.

We call the elements of G chords. Note that every element of G and every
element of Gδ is a straight line segment, while F also contains simplexes.

Lemma 3.5. Let z1 6= z2 ∈ C2 ∪C3. Then either V (z1)∩V (z2) is the empty

set, or is the closure of an element Q ∈ G, or V (z1)∩V (z2) is a single point
in Y . In particular, members of F are either equal or disjoint.

Proof. Clearly V (z) ⊂ B(z, Y ) for each z ∈ C. If S(z1, Y ) ∩ S(z2, Y ) = y

is a single point, then this point clearly is in Y and V (z1) ∩ V (z2) = y
is a single point in Y . Hence, we may assume that z1 6= z2 ∈ O∞ such
that B(z1, Y ) ∩ B(z2, Y ) 6= ∅. Then Y ∩ [B(z1, Y ) ∪ B(z2, Y )] = ∅ and,
since {z1, z2} ⊂ C2 ∪ C3, S(z1, Y ) ∩ S(z2, Y ) = {a, b}, with a 6= b. Then

it is easy to see that V (z1) ⊂ K1 = Convexhull(B(z1, Y ) \ B(z2, Y )) and

V (z2) ⊂ K2 = Convexhull(B(z2, Y ) \ B(z1, Y )). Since K1 ∩ K2 = [a, b], the
desired result follows. ¤

If {Hi} is a sequence in F we say that the sequence {Hi} converges if the
sequence {H i} converges in the space of compacta of C with the Hausdorff
metric topology. If the Hi are distinct and the limit exists, the limit is either
a point of the continuum X or the closure of a chord Q ∈ G.

The proof of the following result is left to the reader. The last part follows
from stability of variation (see Section 2.4).

Proposition 3.6 (Compactness). If {Qi} is a convergent sequence of chords
in Gδ or of distinct elements of F3 of diameter less than or equal to δ,
then either Qi converges to a chord in Gδ or Qi converges to a point of
X. Moreover, if {Qi} converges to a chord Q, then for sufficiently large i,
var(f, Q, Y ) = var(f, Qi, Y )

Corollary 3.7. For each ε > 0, there exist δ > 0 such that for all Q ∈ G
with Q ⊂ B(Y, δ), diam(Q) < ε.

Proof. Suppose not, then there exist ε > 0 and a sequence Qi in G such that
limQi ⊂ X and diam(Qi) ≥ ε a contradiction to Proposition 3.6. ¤

The proof of the following proposition is left to the reader:

Proposition 3.8. For each ε > 0 there exists δ > 0 such that for each open
arc A such that A ∩ Y = {a, b}, with a 6= b, and diam(A) < δ, T (Y ∪ A) ⊂
B(Y, ε).
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Proposition 3.9. Let ε, δ be as in Proposition 3.8 above with δ < ε/2 and
let A be a crosscut of Y such that diam(A) < δ. Let x ∈ T (A ∪ Y ) ∩ V (z)
for some z ∈ C \ Y such that d(x, A) ≥ ε, then diam(V (z)) < 2ε.

Proof. Suppose that clA is an arc from a to b. If z ∈ T (A ∪ Y ), then by
Proposition 3.8, d(z, Y ) < ε and diam(V (z) < 2ε. Hence we may assume
that z 6∈ T (A∪Y ). Then the straight line segment B from x to z must cross A
at some point w. Hence d(x, w) ≥ ε and d(x, z) = d(x, w)+d(w, z) > d(a, z),
a contradiction since B(z, d(z, Y )) ∩ Y = ∅. ¤

Proposition 3.10. Let C ⊂ Convexhull(Y ) be a crosscut of Y and let A
and B be disjoint closed sets in Y such that C∩A 6= ∅ 6= C∩B and for each
x ∈ C there exists Fx ∈ F such that x ∈ Fx and Fx ∩ (A ∪ B) 6= ∅. Then
there exists F ∈ F such that F ∩ C 6= ∅, F ∩ A 6= ∅ and F ∩ B 6= ∅.

Proof. The proof follows from Proposition 3.6, the connectedness of C and
the fact that C meets both A and B. ¤

Proposition 3.10 allows us to replace small crosscuts which cross the prime
end Et with non-trivial principal continuum essentially by small nearby
chords which also cross Et essentially. For if C is a small crosscut in
Convexhull(Y ) with endpoints a and b which crosses Rt essentially, let A
and B be the closures of the sets in Y accessible from a and b, respectively
by small arcs missing Rt.

The following result of Bell’s is the linchpin of the theory of chords.

Theorem 3.11 (Geometric Foliation, Bell). The collection F foliates
Convexhull(Y ) \ Y .

Proof. Suppose that K is a component of Convexhull(Y ) \
⋃
F ∪ Y . Then

K meets no V (z).
Claim 1. ∂K contains a geometric cross cut Q = (a, b) of Y and K is

open.
Proof of Claim 1. Since Y is bounded,

⋃
F ∪ Y is closed by 3.6 and K

is open. Hence ∂K ⊂ G ∪ Y . Since Y does not separate the plane, there
exists Q ∈ G and a point q ∈ Q ∩ ∂K. Without loss of generality Q is a
subset of the x-axis and there exists a sequence qi ∈ K converging to q such
that each qi is contained in the upper half plane W . We claim that there
exists r > 0 such that B(q, r) ∩ W ⊂ K. If not, then for each i there exists
si ∈ W ∩ B(q, 1/i) ∩ ∂K. Then, for i large, si ∈ C \ Y and, hence, there
exists Qi = (ai, bi) ∈ G with si ∈ Qi. By 3.5, (a, b) ∩ (ai, bi) = ∅. It follows
from the definition of geometric cross cuts that limQi = Q Hence there exist
i, j, k and an arc M ⊂ C \ Y joining qi and qj which intersects Qk exactly
once. It follows that qi and qj are in distinct components of C \ Y ∪ Qk, a
contradiction. Thus {x ∈ (a, b) | x ∈ ∂K} is open in (a, b). However, it is
also closed in (a, b) and (a, b) ⊂ ∂K.

Claim 2. K is convex.
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Proof of Claim 2. Since Y ∪
⋃

F is connected, it follows that K is simply
connected. Suppose that K is not convex. Then there exist p 6= q ∈ K
and x ∈ (p, q) ⊂ L, where L is the straight line through p and q, such that
x ∈ ∂K. Without loss of generality, L is the x-axis. Let A be an arc from
p to q in K and let A′ be an irreducible open subarc of A which meets two
components of K \ {x}. We may assume that A = A′ and A is contained
in the upper half plane. Let W be the bounded complementary domain of
the simple closed curve A∪ (p, q). Note that Y ∩W 6= ∅. For if Y ∩W 6= ∅,
then x ∈ (c, d) ∈ G, where {c, d} ⊂ C \ L with one of the endpoints, say c,
contained in the upper half plane. Since (c, d) ∩ A = ∅, c ∈ Y ∩ W .

Choose y ∈ Y ∩W such that the second coordinate of y is maximal. Note
that B(z, d(z, y) ∩ Y = ∅ for z directly above and very close to y. Let z
be a point directly above y such that B(z, d(z, y) ∩ Y = ∅ and d(z, y) is
maximal for all such points. Since there exists points in ∂K higher than y,
such a maximal ball must exist. Then there exist y′ ∈ S(z, Y ) \ {y} 6= ∅.
and (y, y′) ∈ G. Since y is the highest point of Y in W , y′ 6∈ W . Hence
(y, y′) ∩ A 6= ∅, a contradiction. This completes the proof of Claim 2.

Claim 3. If Q = (a, b) ⊂ ∂K and Q ∈ G, then Q ∈ F2 ∪ Fs.
Proof of Claim 3. Suppose not, then Q ∈ Fc. Please see figure 3 for a

geometric picture of the notations defined below. Let L be the straight line
containing Q and let Lp be the perpendicular bisector of Q. Let c = L∩Lp

and choose d ∈ Lp ∩ K. Since K is convex, (c, d] ⊂ K. We may assume
that Lp is the x-axis and L is the y-axis. Then L divides the plane into a

left half plane H and a right half plane HK and we may assume Y ⊂ HK

since Q ∈ Fc. Let Ha and Hb be the components of C \ Lp which contain

a and b, respectively. Let La ⊂ H and Lb ⊂ H be the half lines parallel to
Lp and containing a and b, respectively. Then C(x) = {a} for each x ∈ La

and C(x) = {b} for each x ∈ Lb. Let E = {x ∈ H | d(x,Ha ∩ Y ) =
d(x,Hb ∩ Y )}. Then E is closed and E separates La from Lb. Hence E
contains an unbounded sequence ei which is located between the half lines
La and Lb. For each i choose ai ∈ S(ei, Y )∩Ha and bi ∈ S(ei, Y )∩Hb. Then
Qi = (ai, bi) ∈ G and lim ai = a and lim bi = b. Note that since Q 6∈ F2∪Fs,
{a, b} \ S(z, Y ) 6= ∅ for each z ∈ C \ Y . In particular, {ai, bi} \ {a, b} 6= ∅
for each i. Hence Qi ⊂ HK for each i and Qi ∩ (c, d] 6= ∅ for i large, a
contradiction. This completes the proof of Claim 3.

We will continue to use the notation used in the proof of Claim 3 and
illustrated in figure 3 with the exception that it is no longer necessarily true
that Y ⊂ HK . Since K is convex, we may assume that K ⊂ HK . By
Claim 3, there exists Q = (a, b) ∈ F2 ∪ Fs such that Q ⊂ ∂K. Then there
exists e ∈ Lp such that {a, b} ⊂ S(e, Y ). Suppose first that there exists
e ∈ (Lp ∩ HK) ∪ {c} such that {a, b} ⊂ S(e, Y ). If S(e, Y ) meets HK , it
follows that K ⊃ V (e), a contradiction. Hence S(e, Y ) ∩ Hk = ∅. As in the
proof of Claim 2, we may assume that the first coordinate of e is maximal.
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Figure 3. Foliation of the convex hull of Y by geometric
crosscuts and simplexes.

Let T be the (possibly degenerate) triangle with vertices a, b and e. Let
ε be sufficiently small such that any arc which is not contained in the y-
axis and joins a point of B(a, ε) ∩ HK to any point of B(b, ε) ∩ HK , meets
(c, d] ⊂ K. Since S(e, Y ) ∩ HK = ∅, there exists δ > 0 such that for each
w ∈ B(e, δ), S(w, Y ) ∩ HK ⊂ B(a, ε) ∪ B(b, ε). Clearly, for all p in the
intersection of the straight line segment (e, a) and B(e, δ), S(p, Y ) = {a}.
Similarly, for all q ∈ (e, b)∩B(e, δ), S(q, Y ) = {b}. It follows that there exists

a set D in B(e, δ) \ T which separates {x ∈ B(e, δ) \ T | d(x,B(a, ε) ∩ Y ) <

d(x,B(b, ε)∩Y )} from {x ∈ B(e, δ)\T | d(x,B(a, ε)∩Y ) > d(x,B(b, ε)∩Y )}.

If x ∈ D, then there exist ax ∈ B(a, ε) ∩ Y ∩Hk) and bx ∈ B(b, ε) ∩ Y ∩Hk

such that {ax, bx} ⊂ S(x, Y ). Choose a point x ∈ D whose first coordinate
is larger than the first coordinate of e. Since the first coordinate of e was
maximal with respect to the property that {a, b} ⊂ S(e, Y ), either ax 6= a
or bx 6= b. Hence Qx = (ax, bx) ∈ G is not contained in the y-axis. By the
choice of ε, Qx ∩ (c, d] 6= ∅ and Qx meets K, a contradiction.

Suppose next that for all e ∈ Lp ∩ HK , {a, b} \ S(e, Y ) 6= ∅. Then there
exists e ∈ Lp ∩ H such that {a, b} ⊂ S(e, Y ) and the first coordinate of
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e is minimal. Let T be the triangle with vertices a, b and e. A similar
argument, this time using points in B(e, δ) ∩ T , shows that there exists a
point x ∈ D ∩ T ∩ B(e, δ) such that there exist {ax, bx} ⊂ S(x, Y ) with
Qx = (ax, bx) ∈ G and Qx ∩ K 6= ∅. This completes the proof of the
theorem. ¤

Fix a Riemann map φ : ∆∞ → O∞ = C∞ \ Y taking ∞ → ∞.

Proposition 3.12. Suppose the external ray Rt lands on x ∈ Y , and
{Qi}

∞
i=1 is a sequence of crosscuts converging to x with φ−1(Qi) → t ∈

S1 = ∂∆∞. Then for sufficiently large i, var(f, Qi, Y ) = 0.

Proof. Since f is fixed point free on Y and f(x) ∈ Y , we may choose a
connected neighborhood W of x such that f(W ) ∩ (W ∪ Rt) = ∅. For
sufficiently large i, Qi ⊂ W . For each such i, let Ji be a junction starting
from a point in Qi, staying in W until it reaches Rt, then following Rt to
∞. By our choice of W , var(f, Qi, Y ) = 0. ¤

Proposition 3.13. If Rt is an external ray of Y . Then one of the following
must hold:

(1) Rt lands on a point of Y ∩ ∂Convexhull(Y ),
(2) There exist z ∈ C2 ∪ C3 such that Rt lands on a point of S(z, Y ),
(3) There is a defining sequence Qi of chords for Rt.

Proof. Let Rt be an external ray and let

Q = {Q ∈ G | Rt crosses Q essentially}.

Suppose first that Q = ∅. If there is a (Y, x)-end of Rt in C\Convexhull(Y ),
then there exists y ∈ Rt ∩ Y ∩ ∂Convexhull(Y ). Since y is accessible, Rt

must land on y and (1) holds. If not, there is a cofinal sequence {xi} in Rt

such that xi ∈ ∂Convexhull(Y ). Let y ∈ lim supxi. As above, Rt lands on
y and (1) holds.

Suppose, therefore, that Q 6= ∅. Then there exist a partial order on
Q defined by Q1 < Q2 if Q1 is contained in the bounded complementary
domain of Y ∪Q2. Let Qi be a cofinal decreasing sequence in Q. Without loss
of generality limQi = Q in the hyperspace of subcontinua of Convexhull(Y ).
By proposition 3.6, Q is either a point y of Y , or Q = [a, b], where (a, b) ∈ G
is a chord. If Q is a singleton y, then (3) holds.

Suppose Q is non-degenerate and choose xi ∈ Rt∩Qi such that the (Y, xi)-
end of Rt is contained in the bounded complementary domain of Y ∪ Qi.
If Q 6∈ Q, then it follows that e ∈ Rt for some e ∈ {a, b}. In this case, as
above, the ray Rt must land on e and (2) holds. We suppose, therefore, that
Q ∈ Q is the least element of Q. Let x ∈ Rt ∩ Q such that the (Y, x)-end
Kx of Rt is contained in the bounded complementary domain of Y ∪ Q. If
{Q′

i} were a sequence in G converging to Q such that Q′
i < Q for each i,

Rt would cross Q′
i essentially for large i, contradicting the minimality of Q.

Hence Q ⊂ ∂V (z) for some z ∈ C3. As in the case Q = ∅, it follows that Rt

must land on a point of ∂V (z) ∩ Y and (2) holds. ¤
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Corollary 3.14. Let Et be a channel in Y such that Pr(Et) is non-degenerate.
Then for each x ∈ Pr(Et), for every δ > 0, there is a chain {Qi}

∞
i=1 of chords

defining Et selected from Gδ with Qi → x ∈ ∂Y .

Proof. Let x ∈ Pr(Et) and let {Ci} be a defining chain of crosscuts for
Pr(Et) with {x} = limCi. By the remark following Proposition 3.10, there
is a sequence {Qi} of chords such that Qi ∩ Ci 6= ∅ and Pr(Et) crosses each
Qi essentially. By Proposition 3.9, the sequence Qi converges to {x}. ¤

Lemma 3.15. Suppose an external ray Rt lands on a ∈ Y with {a} =
Pr(Et) 6= Im(Et). Suppose {xi}

∞
i=1 is a collection of points in O∞ with xi →

x ∈ Im(Et) \ {a} and φ−1(xi) → t. Then for sufficiently large i, there is a
sequence of chords {Qi}

∞
i=1 such that Qi separates xi from ∞, Qi → a and

φ−1(Qi) → t.

Proof. The existence of the chords Qi follows from the remark following
proposition 3.10. It is easy to see that limϕ−1(Qi) = t. ¤

3.2. Auxiliary Continua.

Definition 3.16. Fix δ > 0. Define the following collections of chords:

G+
δ = {Q ∈ Gδ | var(f, Q, Y ) ≥ 0}

G−
δ = {Q ∈ Gδ | var(f, Q, Y ) ≤ 0}

To each collection of chords above, there corresponds an auxiliary continuum
defined as follows:

Yδ = T (Y ∪ (∪Gδ))

Y +
δ = T (Y ∪ (∪G+

δ ))

Y −
δ = T (Y ∪ (∪G−

δ ))

Proposition 3.17. Let Z ∈ {Yδ, Y
+
δ , Y −

δ }, and correspondingly W ∈ {Gδ,G
+
δ ,G−

δ }.
Then the following hold:

(1) Z is a nonseparating plane continuum.
(2) ∂Z ⊂ Y ∪ (∪W).
(3) Every accessible point p in ∂Z is either a point of Y or a point

interior to a chord A ∈ W.
(4) If p is an accessible point of ∂Z and in the interior of the chord

A ∈ W, then every point of A is accessible in ∂Z.

Proof. By Proposition 3.6, Y ∪ (∪W) is compact. Moreover, Y is connected
and each crosscut A ∈ W has endpoints in Y . Hence, the topological hull
T (Y ∪ (∪W)) is a nonseparating plane continuum, establishing (1).

Since Z is the topological hull of Y ∪ (∪W), no boundary points can be in
complementary domains of Y ∪ (∪W). Hence, ∂Z ⊂ Y ∪ (∪W), establishing
(2). Conclusion (3) follows immediately.

To prove (4), suppose p ∈ A is an accessible point of ∂Z in the interior of
a chord A ∈ W. By Proposition 3.11, F foliates ConvexHull(Y ) \ Y . Since
W ⊂ G, if p is accessible, then no other crosscut B ∈ W separates p from ∞.
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By Proposition 3.6, every point of A is accessible (by moving along parallel
to A left and right of p). ¤

Proposition 3.18. Yδ is locally connected; hence, ∂Yδ is a Caratheodory
loop.

Proof. Suppose that Yδ is not locally connected. Then there exists k ∈ Yδ

and ε, 0 < ε < δ/3, and distinct components Ki of B(k, 2ε)) ∩ Yδ with k ∈
limKi ⊂ K0, where K0 is the component containing k. We also suppose that
Ki∩∂B(k, ε) is not connected and Ki+1 separates Ki from K0 for each i > 0.
Since Yδ is a non-separating continuum, there exist xi ∈ [C \ Yδ] ∩ ∂B(k, ε)
and if Ri is a ray joining xi to infinity in C \ Yδ, then Ri separates Ki from
K0 ∪ Ki+1 ∪ . . . in B(k, ε). We may assume that each Ki meets B(k, ε/3).
Let Ai ⊂ B(k, ε/3) be an irreducible arc from Ri to Ri+1 and let Ui be
the component of C \ [Ri ∪ Ai ∪ Ri+1] which does not contain k. Then
Ui ∩ K+1i ∩ ∂B(k, ε) 6= ∅ for each i. Since Ki ⊂ Yδ = T (Y ∪ Gδ) it follows
that Ui ∩ Y \ B(k, ε) 6= ∅. Since Y is a continuum, there exists continua

Li ⊂ Y , such that Li separates Ri from Ri+1 in B(k, ε).

Let B(k, ε) \ Ri = Bi ∪ Ci be separated sets such that Ki+1 ⊂ Bi and
Ki ⊂ Ci. Let Mi = Y ∩ Bi and Ni = Y ∩ Ci, then Mi and Ni are disjoint
compact sets. Let M = {x ∈ C | d(x, Mi) = d(x, Ni)}. Then separates Ni

from Mi in C. Since C is unicoherent [13], a component L of N separates.

Choose z ∈ L∩B(k, ε/3), then xi 6∈ B(z, Y ). Note that B(z, Y )∪Y separates
xi from infinity. Hence, ∂B(z, Y )\S(z, Y ) separates xi from infinity in C\Y .
Since C \ Y is unicoherent, a component P of ∂B(z, Y ) \ S(z, Y ) separates
xi from ∞. Let Q be the straight line segment joining the two end points
of P , then Q ∈ Gδ for large i and Q also separates xi from infinity, a
contradiction. ¤

3.3. Outchannels.

Definition 3.19 (Outchannel). An outchannel of the nonseparating plane
continuum Y is a prime end Et of O∞ = C∞ \ Y such that for some chain
{Qi} of crosscuts defining Et, var(f, Qi, Y ) 6= 0 for every i. We call an
outchannel Et of Y a geometric outchannel iff for sufficiently small δ, every
chord in Gδ, which crosses Et essentially, has nonzero variation. We call a
geometric outchannel negative (respectively, positive) iff every chord in Gδ,
which crosses Et essentially, has negative (respectively, positive) variation.

Lemma 3.20. Let Z ∈ {Yδ, Y
+
δ , Y −

δ }. Fix a Riemann map φ : ∆∞ →
C∞ \ Z such that φ(∞) = ∞. Suppose Rt lands at x ∈ ∂Z. Then there
is an open interval M ⊂ ∂∆∞ containing t such that φ can be extended
continuously over M .

Proof. Let ti converge to t in S1 such that Rti lands on xi in Z and xi

converges to x. Without loss of generality, {ti} is an increasing sequence. Let
ti < si < ti+1 in S1. Note that lim supRsi

⊃ Rt. If lim supRsi
is not equal to

Rt, then by Lemma 3.15 there exist chords Qi (by passing to a subsequence if
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necessary) such that Rsi
crosses Qi essentially. By Proposition 3.9, Qi ∈ Gδ

for large i. But by Proposition 3.12, var(f, Qi, X) = 0 so Qi ⊂ Z for large i,
a contradiction. So lim supRsi

= Rt. In particular, Rsi
must land on some

point yi and lim yi = x. So on an interval M about t in S1 each Rs lands
ys ∈ Z for each s ∈ M and if {si} converges to s, then lim ysi

= ys. Hence
the map taking s ∈ M to the landing point of Rs in Z is continuous. ¤

Lemma 3.21. If there is a chord Q of Y of negative (respectively, positive)
variation, such that there is no fixed point in T (Y ∪ Q), then there is a
negative (respectively, positive) geometric outchannel Et of Y for which a
defining chain begins with Q.

Proof. Without loss of generality, assume var(f, Q, Y ) < 0. Choose δ > 0
so small that Q /∈ Gδ, no chord in Gδ separates Q from ∞, and, since
there are no fixed points in T (Y ∪ Q), every chord in Gδ separated from
∞ by Q moves off itself under f (so variation on it is defined). Let ϕ :
∆∞ → C \ Y +

δ be the Riemann map. Assume t′ < t ∈ S1 such that
ϕ(t′) = a and ϕ(t) = b. By Lemma 3.20, ϕ extends to a continuous function

ϕ̃ : ∆̃∞ → [C\Y +
δ ]∪{accessible points of Y +

δ }. Consider the arc-component

M of [∆̃∞ \ ∆∞] ∩ [t′, t] containing t′. If t ∈ M , then ϕ̃([t′, t]) is an arc in
Y +

δ joining a to b which is separated by Q from ∞. But

var(f, Q, X) =
∑

C∈Gδ, C⊂ϕ̃([t′,t])

var(f, C, X).

This is a contradiction since var(f, Q, X) < 0 and all var(f, C, X) ≥ 0.
Hence b is not in M . Let s = supM , then Es is a negative geometric
outchannel. For if some chord C ∈ Gδ crosses Rs essentially, then s ∈
Int(M), a contradiction. ¤

3.4. Invariant Channel in X. We are now in a position to prove Bell’s
principal result on any possible counter-example to the fixed point property,
under our standing hypothesis.

Lemma 3.22. Suppose Et is a geometric outchannel of Y = T (X) under
f . Then the principal continuum Pr(Et) of Et is invariant under f . So
Pr(Et) = X.

Proof. To see that Pr(Et) is invariant under f , let Et be a geometric outchan-
nel of T (X) under f . Let x ∈ Pr(Et). Then for some chain {Qi}

∞
i=1 of cross-

cuts defining Et selected from Gδ, we may suppose Qi → x ∈ ∂T (X) and
var(f, Qi, X) 6= 0 for each i. Let Rt be the image under the conformal map
φ of the radial ray to t ∈ S1. Since Qi meets Rt and var(f, Qi, X) 6= 0, we
have f(Qi) meeting Rt (since any junction from Qi “parallels” Rt). Since
diam(f(Qi)) → 0, we have f(Qi) → f(x) and f(x) ∈ Pr(Et). ¤

Theorem 3.23 (Dense channel, Bell). Under our standing Hypothesis, Y =
T (X) contains a negative geometric outchannel; hence, ∂O∞ = ∂T (X) =
X = f(X) is an indecomposable continuum.
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Proof. Recall that the map f : C → C taking X into T (X) has no fixed
points in T (X), and X is minimal with respect to these properties. Choose
δ > 0 so that each crosscut Q ∈ Gδ is sufficiently close to Y = T (X) so that
f has no fixed points in T (Y ∪ Q), and so that for any geometric crosscut
Q ∈ Gδ, f(Q) ∩ Q = ∅. Let C = ∂Yδ. Since Yδ is locally connected, C
is a Caratheodory loop. Since f is fixed point free on C, ind(f, C) = 0.
Consequently, by Theorem 2.13 for Caratheodory loops, var(f, C) = −1.
By the summability of variation on C, it follows that on some chord Q ⊂ C,
var(f, Q, Y ) < 0. By Lemma 3.21, there is a negative geometric outchannel
Et under the crosscut Q.

Since Pr(Et) is invariant under f by Lemma 3.22, it follows that Pr(Et)
is an invariant subcontinuum of ∂O∞ ⊂ ∂T (X) ⊂ X. So by the minimal-
ity condition in our Standing Hypothesis, Pr(Et) is dense in ∂O∞. Hence,
∂O∞ = ∂T (X) = X and Pr(Et) is dense in X. It then follows from a
theorem of Rutt [10] that X is an indecomposable continuum. ¤

Theorem 3.24. The boundary of Yδ is a simple closed curve. The set of
accessible points in the boundary of each of Y +

δ and Y −
δ is a countable union

of continuous one-to-one images of R.

Proof. Since X is indecomposable by Theorem 3.23, it has no cut points.
By Proposition 3.18 ∂Yδ is a Caratheodory loop. Since X has no cut points,
neither does Yδ. A Caratheodory loop with no cut points is a simple closed
curve.

Let Z ∈ {Y +
δ , Y −

δ }. Fix a Riemann map φ : ∆∞ → C∞ \ Z such that

φ(∞) = ∞. Corresponding to the choice of Z, let W ∈ {G+
δ ,G−

δ }. Apply
Lemma 3.20 and find the maximal collection J of open subarcs of ∂∆∞

over which φ can be extended continuously. Since X has no cutpoints this
extension is one-to-one. Since angles corresponding to accessible points are
dense in ∂∆∞, C = ∂∆∞ \ ∪J contains no open arc. If Z = Y +

δ , then it is
possible that ∪J is all of ∂∆∞ except one point, but it cannot be all of ∂∆∞

since there is at least one (negative) geometric outchannel by Theorem 3.23.
Since it is a collection of open arcs in ∂∆∞, J is countable. ¤

Theorem 3.24 still leaves open the possibility that Z ∈ {Y +
δ , Y −

δ } has a
very complicated boundary. Note that φ is not continuous at points of the
closed zero-dimensional set C. We may call C the set of outchannels of Z.
In principle, there could be an uncountable set of outchannels, each dense in
X. The one-to-one continuous images of R lying in ∂Z are the “sides” of the
outchannels. If two elements J1 and J2 of the collection J happen to share
a common endpoint t, then the prime end Et is an outchannel in Z, dense in
X, with φ(J1) and φ(J2) as its sides. It seems possible that an endpoint t of
J ∈ J might have a sequence of elements Ji from J converging to it. Then
the outchannel Et would have only one (continuous) “side.” This possibility,
and even having more than one outchannel in Z, is eliminated in the next
section.



VARIATION AND UNIQUENESS OF OUTCHANNELS 27

In the lemma below we show that for Y −
δ those pieces of the boundary,

which correspond to arc components in the set of accessible points, are well
behaved and do not contain large unnecessary “wiggles.”

Lemma 3.25. Assume that ∂Y −
δ is not a simple closed curve. Let K be

an arc component of the set of accessible points of Y −
δ . Then for each ε,

0 < ε < δ/2, there exists ξ > 0 such that for any two points x, y ∈ K ∩X, if
Q is any crosscut of Y −

δ joining x to y, and diam(Q) < ξ, Then there exists
an arc B ⊂ K, joining x to y such that diam(B) < 8ε.

Proof. Let ε > 0 be fixed and choose ξ as in Proposition 3.9. Let B be
the unique arc in K joining x to y. By Theorem 3.24, K is a one-to-one
continuous image of R. We will denote the unique subarc of K which joins
two points p, q ∈ K by 〈p, q〉. Hence B = 〈x, y〉. Suppose there exist z ∈ B
such that d(z, Q) ≥ 8ε. Let b ∈ T (Q ∪ Y −

δ ) \ Y −
δ such that d(b, z) ≤ ε/2.

Let P = 〈x, z〉 \B(b, ε) and M = 〈z, y〉 \B(b, ε). Then P and Q are disjoint
closed sets in Y −

δ . Let N be a component of B(Q, 3ε) \ Y −
δ which separates

b from ∞ in C\Y −
δ and such that N is contained in the bounded component

of T (Q∪Y −
δ ). By Proposition 3.9, each point of N lies in an element Fx ∈ F

with diameter at most 2ε. Since Fx is small and meets Y , Fx ∩ (P ∪M) 6= ∅
for each x ∈ N . It follows from Proposition 3.10 that there exists x ∈ N
such that Fx = F meets both P and M and, hence, F separates b from ∞
in C \ Y −

δ . We may assume that F ∈ G since, if F = V (z) is a simplex for

some z, we can replace F by one of the components of V (z) \ (Y ∪ V (z)).
Now, var(f, F, X) ≤ 0. For if var(f, F, X) > 0, there exists a positive

geometric outchannel Es for which a defining chain starts with F . But, if the
end points of F are x′, y′, then Rs would cross some chord G ⊂ 〈x′, y′〉 ⊂ K
essentially. This is a contradiction since K contains no crosscuts of positive
variation. So var(f, F, X) ≤ 0.

It follows that F ⊂ Y −
δ and T (Y ∪ F ) ⊂ Y −

δ . This contradicts that

b ∈ C \ Y −
δ . ¤

4. Uniqueness of the Outchannel

Theorem 3.23 asserts the existence of at least one negative geometric
outchannel which is dense in X. We show below that there is exactly one
geometric outchannel, and that its variation is −1. Of course, X could have
other dense channels, but they are “neutral” as far as variation is concerned.

Theorem 4.1 (Unique Outchannel). Assume the standing hypothesis 1.1.
Then there exists a unique geometric outchannel Et for X, which is dense in
X = ∂Y . Moreover, for any sufficiently small chord Q in any chain defining
Et, var(f, Q, X) = −1, and for any sufficiently small chord Q′ not crossing
Rt essentially, var(f, Q′, X) = 0.

Proof. Suppose by way of contradiction that X has a positive outchannel.
Let δ > 0 such that T (B(Y, 2δ)) contains no fixed points of f and such that,
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Figure 4. Uniqueness of the negative outchannel.

if M ⊂ B(Y, 2δ) with diam(M) < 2δ, then f(M) ∩ M = ∅. Since X has
a positive outchannel, ∂Y −

δ is not a simple closed curve. By Theorem 3.24

∂Y −
δ contains an arc component K which is the one-to-one continuous image

of R. Note that each point of K is accessible.
Let ϕ : ∆∞ → U∞ = C \ Y −

δ a conformal map. By Theorem 3.24, and

its proof, ϕ extends continuously and injectively to a map ϕ̃ : ∆̃∞ → Ũ∞,
where ∆̃∞ \ ∆∞ is a dense and open subset of S1 which contains K in
its image. Then ϕ̃−1(K) = (t′, t) ⊂ S1 is an open arc with t′ < t in the
counterclockwise order on S1. Let < denote the order in K induced by ϕ̃
and for x < y in K, denote the arc in K with endpoints x and y by 〈x, y〉.
Let 〈x,∞〉 = ∪y>x〈x, y〉

Let Et be the prime-end corresponding to t. Then Pr(Et) is a positive
geometric outchannel and, hence, by Lemma 3.22, Pr(Et) = X. Let Rt =
ϕ(reit), r > 1, be the external conformal ray corresponding to the prime-end



VARIATION AND UNIQUENESS OF OUTCHANNELS 29

Et. Since Rt \ Rt = X and the small chords which define Pr(Et) have one

end point in K (c.f., Proposition 3.9), 〈x,∞〉 ∩ Y −
δ = X.

Let ε > 0 such that T (B(Y, ε)) ⊂ B(Y, δ) (by Proposition 3.8). It follows
from Propositions 3.8, 3.10 and 3.13, there exists x ∈ K such that in each
arc M ⊂ 〈x,∞〉 with diam(M) > ε/4, there exists y ∈ M and a chord
G ∈ Gδ with end point y which crosses Rt essentially.

Let a0 ∈ K ∩ X so that a0 > x and Ja0
a junction of Y −

δ . Let W be
a topological disk about a0 with simple closed curve boundary of diameter
less than ε so that the component of K ∩W containing a0 has closure 〈a, b〉,
a < a0 < b in K and f(W ) ∩ (W ∪ Ja0

) = ∅. We may suppose that
(K ∩W )\〈a, b〉 is contained in one component of W \ 〈a, b〉 since one side of

K is accessible from ∞ in C\Y −
δ . Since X ⊂ 〈a0,∞〉, there are components

of W ∩ 〈b,∞〉 which pass arbitrarily close to a0. Choose 〈c, d〉 to be the
closure of a component of W ∩ 〈b,∞〉 such that:

(1) a and d lie in the same component of ∂W \ {b, c},
(2) there exists y ∈ 〈c, d〉 ∩X ∩ W and an arc I ⊂ (W \ 〈a, d〉)∪ {a0, y}

joining a0 to y, and
(3) there is a chord Q ⊂ W with y and z as endpoints which crosses Rt

essentially.

To see the above, note that there are small chords or simplexes which
cross Rt essentially through each point of Rt. By Proposition 3.10 given an
arc A that crosses Rt essentially and is sufficiently close to X, there is a small
diameter chord that essentially crosses Rt and meets A. By Lemma 3.25, it
follows that if two small chords both cross Rt essentially and both meet a
small diameter arc in Rt, then they both meet a small diameter arc in K.
Thus we can satisfy (3) on any arc in W ∩ K which gets close to a0. Note
that (2) holds for any point of 〈c, d〉 for which (3) holds.

Let B be the arc in ∂W \{b} with end points a and d. Let A be a bumping
arc in (C \ [Ja0

∪ T (〈a, d〉 ∪ B)]) ∪ {a, d} with end-points a and d such that
Y \T (〈a, d〉∪B) ⊂ T (A∪B). Hence, S = 〈a, d〉∪A is a simple closed curve
and Y ⊂ T (S). We may suppose that A ⊂ B(Y, ε) so that f is fixed point
free on T (S) and each component of A \X has diameter less than δ so that
variation is defined on each such component.

Since Q ∩ Y = {y, z} we may suppose that A ∩ Q = {z}. Note that I is
an arc in T (S) which meets S only at its end points a0 and y. Since I ⊂ W ,
f(I)∩Ja0

= ∅. Let R = T (〈a0, y〉∪ I) and let L = T (〈y, d〉∪ I ∪A∪〈a, a0〉).
Let Jy be a junction for S such that Jy ∩ Q = {y}, Ja0

\ W ⊂ Jy so that
R∗

a0
\ W ⊂ R∗

y for each ∗ ∈ {+, i,−} and Jy runs very close to 〈a0, y〉 ∪ Ja0
.

Note that the order < on K coincides with the counterclockwise order on
S. It follows that W ∪ Ri

y separates L ∪ R−
y \ Ja0

from R ∪ R+
y \ Ja0

. Since
Q crosses Rt essentially, we know that var(f, Q, Y ) > 0. We will use this
information to show that f(y) ∈ R. To compute var(f, Q, Y ) = var(f, Q, S)
we will use the fact that the variation is invariant under a homotopy which
keeps y and z in h(Uy) (see Proposition 2.10 and the remark following that
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proposition). Hence, if we homotope f |Q to a map f ′ : Q → C\W such that

f |f−1(T (S))∩Q = f ′|f−1(T (S))∩Q, then var(f ′, Q, S) = var(f, Q, S). Moreover,

we can choose f ′ such that the number of components of f ′−1(C \ T (S)) is
minimal (the set of components of Q ∩ f−1(C \ T (S)) whose closures meet
both f−1(T (L)) and f−1(T (R)) is finite since f(Q) ∩ W = ∅). Then to
compute var(f ′, Q, S) we use the following recipe: As we go along Q from y
to z, each time the image of f ′ goes from R to L count +1. Each time the
image goes from L to R count −1. Make no other counts. Then it follows
that if f ′(y) = f(y) ∈ R and f(z) ∈ L, then var(f ′, Q, S) = +1, if f ′(y) ∈ L
and f ′(z) ∈ R, then var(f ′, Q, S) = −1. Otherwise var(f ′, Q, S) = 0. Since
var(f ′, Q, S) > 0, f(y) ∈ R.

The Lollipop Lemma, Theorem 2.14, applies to S and the arc I. Also,
since Y ⊂ T (S), var(f, C, S) = var(f, C, Y ) for each chord C contained in S.
Hence, there exists a chord Q1 ⊂ 〈a0, y〉 such that var(f, Q1, Y ) < 0. Since
there are no chords of positive variation on 〈a0, y〉 and

0 = ind(f, I ∪ 〈a0, y〉) =
∑

C∈G, C⊂〈a0,y〉

var(f, C, Y ) + 1,

we know that var(f, Q1, Y ) = −1.
We repeat the above argument starting with y ∈ K in place of a0 and

Jy in place of Ja0
and an open disk V ⊂ W about y to find a second chord

Q2 ⊂ 〈y,∞〉 with var(f, Q2, Y ) = −1.
We will now show that the existence of chords Q1 and Q2 in K with

variation −1 on each leads to a contradiction. Choose c′ < d′ ∈ K such
that 〈c′, d′〉 is the closure of a component of K ∩W satisfying the following
conditions.

(1) Q1, Q2 ⊂ 〈a0, c
′〉 ⊂ K,

(2) {a, d′} is contained in one component of ∂W \ {b, c′},
(3) there exist y′ ∈ 〈c′, d′〉 ∩ Y ∩ W and an arc I ′ from a0 to y′ in

{a0, y
′} ∪ (W \ 〈a, d′〉), and

(4) there exists a chord Q′ ⊂ W with endpoints y′ and z′ such that Q′

crosses Rt essentially.

Let B′ be the arc in ∂W \{b} with endpoints {a} and {d′}. Let A′ be an arc
in {a, d′}∪C\T (〈a, d′〉∪B′) such that Y \T (〈a, d′〉∪B′) ⊂ T (A′∪B′) and such
that the components of A′ \ X have diameter less than δ. We may suppose

that Q
′
∩A′ = {z′}. We can prove, as above, that f(y′) ∈ R′ = T (〈a0, y

′〉∪ I ′)
and, hence all conditions of the Lollipop Lemma 2.14 are again satisfied for
S′ and I ′ and

ind(f, 〈a0, y
′〉 ∪ I ′) =

∑

C∈G, C⊂〈a0,y′〉

var(f, C, S′) + 1.

Since 〈a0, y
′〉 contains Q1 and Q2, var(f, Qi, S

′) = var(f, Qi, Y ) < 0 and
contains no chords of positive variation,

∑
var(f, C, S′) + 1 ≤ −1.
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Since f is fixed point free on R′, ind(f, 〈a0, y
′〉 ∪ I ′) = 0 by Theorem 2.5.

This contradiction shows that X has no positive outchannels.
By Theorems 3.23 and 2.13, X has exactly one negative outchannel and

its variation is −1. ¤

References

[1] J. M. Aarts, G. A. Brouwer, and L. G. Oversteegen. On a metric prime-end theory.
In preparation.

[2] V. Akis. On the plane fixed point problem. Topology Proc., 24:15–31, 1999.
[3] H. Bell. On fixed point properties of plane continua. Trans. A. M. S., 128:539–538,

1967.
[4] H. Bell. A correction to my paper “Some topological extensions of plane geometry”,

Rev. Colombiana 9 (1975), pp. 125–153. Rev. Colombiana, 10:93, 1976.
[5] H. Bell. A fixed point theorem for plane homeomorphisms. Fund. Math., 100:119–128,

1978. See also: Bull. A. M. S. 82(1976), 778-780.
[6] H. Bell, R. J. Fokkink, J. C. Mayer, L. G. Oversteegen, and E. D. Tymchatyn. Fixed

points for positively oriented maps of the plane. Preprint, 2002.
[7] E. F. Collingwood and A. J. Lohwater. Theory of Cluster sets, volume 56 of Cambridge

Tracts in Math. and Math. Physics. Cambridge University Press, Cambridge, 1966.
[8] S. D. Iliadis. Location of continua on a plane and fixed points. Vestnik Moskovskogo

Univ. Matematika, 25(4):66–70, 1970. Series I.
[9] J. Milnor. Dynamics in One Complex Variable. Vieweg, Wiesbaden, second edition,

2000.
[10] N. E. Rutt. Prime ends and indecomposability. Bull. A. M. S., 41:265–273, 1935.
[11] K. Sieklucki. On a class of plane acyclic continua with the fixed point property. Fund.

Math., 63:257–278, 1968.
[12] H. D. Ursell and L. C. Young. Remarks on the theory of prime ends. Mem. of the

Amer. Math. Soc., page 29p, 1951.
[13] G. T. Whyburn. Analytic Topology, volume 28. AMS Coll. Publications, Providence,

RI, 1942.

(Harold Bell) Department of Mathematics, University of Cincinnati, Cincin-

nati, Ohio 45221-0025

E-mail address, Harold Bell: bell@ucbeh.san.uc.edu

(John C. Mayer and Lex G. Oversteegen) Department of Mathematics, University

of Alabama at Birmingham, Birmingham, AL 35294-1170

E-mail address, John C. Mayer: mayer@math.uab.edu

E-mail address, Lex G. Oversteegen: overstee@math.uab.edu

(E. D. Tymchatyn) Department of Mathematics and Statistics, University of

Saskatchewan, Saskatoon, Canada S7N 0W0

E-mail address, E. D. Tymchatyn: tymchat@math.usask.ca


