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ABSTRACT. Thurston introduced σd-invariant laminations (where σd =
zd : S1 → S1, d ≥ 2) and defined wandering k-gons as sets T ⊂ S1

such that σn
d (T ) consists of k ≥ 3 distinct points for all n ≥ 0 and the

convex hulls of all the sets σn
d (T ) in the plane are pairwise disjoint. He

proved that σ2 has no wandering k-gons.
We show that there exist uncountably many cubic laminations with a

wandering 3-gon (triangle) and pairwise non-conjugate induced maps on
the corresponding quotient spaces J . Then we show that these dynamical
systems are realizable as weakly hyperbolic, cubic polynomials on their
Julia sets (which are locally connected).

1. INTRODUCTION

Laminations were introduced by Thurston [24] as a tool for studying both
individual complex polynomials and the space of all of them, especially in
degree 2. The former is achieved as follows. Let P : C∗ → C∗ be a degree d
polynomial with a connected Julia set JP acting on the complex sphere C∗.
Denote by KP the corresponding filled-in Julia set. Let θ = zd : D → D
(D ⊂ C is the open unit disk). There exists a conformal isomorphism
Ψ : D → C∗ \KP with Ψ ◦ θ = P ◦Ψ [11]. If JP is locally connected, then
Ψ extends to a continuous function Ψ : D → C∗ \KP and Ψ ◦ θ = P ◦Ψ.
Let S1 = ∂D, σd = θ|S1 , ψ = Ψ|S1 . Define an equivalence relation ∼P

on S1 by x ∼P y if and only if ψ(x) = ψ(y). The equivalence ∼P is
called the (d-invariant) lamination (generated by P ). The quotient space
S1/ ∼P = J∼P

is homeomorphic to JP and the map f∼P
: J∼P

→ J∼P

induced by σd is topologically conjugate to P .
Kiwi [13] extended this construction to all polynomials P with connected

Julia set and no irrational neutral cycles. For such polynomials he obtained
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a d-invariant lamination ∼P on S1. Then J∼P
= S1/ ∼P is a locally con-

nected continuum and the induced map f∼P
: J∼P

→ J∼P
is semi-conjugate

to P |JP
under a monotone map m : JP → J∼P

(by monotone we mean a
map whose point preimages are connected). The lamination ∼P generated
by P provides a combinatorial description of the dynamics of P |JP

. One
can introduce laminations abstractly as equivalence relations on S1 having
certain properties similar to those of laminations generated by polynomials
as above (we give detailed definitions below); in the case of such an ab-
stract lamination ∼ we call S1/ ∼= J∼ a topological Julia set and denote
the map induced by σd on J∼ by f∼.

On the other hand, studying the space of all polynomials of degree d re-
duces to studying the space Pd

∼= Cd−1 of degree d ≥ 2 monic centered
polynomials z 7→ zd + ad−2z

d−2 + · · ·+ a0 [6]. The connectedness locus is
the set Cd of parameters inPd for which the Julia set is connected (by [6, 15]
Cd is compact and connected). If d = 2, the set Cd is called the Mandelbrot
set and is denoted byM. Thurston [24] defined a “meta-lamination” QML
and showed that the space of all 2-invariant (quadratic) laminations can be
thought of as the quotient space S1/QML = Mc, a combinatorial counter-
part of M. A crucial role in this was played by the No Wandering Triangle
Theorem [24] which states that quadratic laminations have no wandering
k-gons; Thurston [24] posed the problem of extending it to the higher de-
gree case and emphasized its importance. Let us also mention here, that
in a recent preprint [7] Bruin and Schleicher study various combinatorial
invariants of quadratic polynomials and discuss relations between them; in
particular, they study the Mandelbrot set and its combinatorics.

In the language of induced maps, the No Wandering Triangle Theorem
states the non-existence of wandering non-precritical branch points of in-
duced maps of quadratic topological Julia set and extends a simple property
of continuous maps of finite graphs according to which all branch points of
graphs are either preperiodic or precritical. In other words, induced maps
of quadratic topological Julia sets still possess certain properties of maps of
finite graphs (which is quite surprising since topological Julia sets are much
more complicated and in general have infinitely many branch points).

The aim of this paper is to prove that wandering classes of three points
(triples) exist for an uncountable family of essentially distinct 3-invariant
(cubic) laminations (see [5] for a sketch of the construction) corresponding
to weakly hyperbolic, cubic polynomials with locally connected Julia sets.
We start with some definitions. By the positive direction on S1 we mean
the counterclockwise direction and by the arc (p, q) ⊂ S1 we mean the
positively oriented arc from p to q.

Consider an equivalence relation ∼ on the unit circle S1 such that:
(E1) ∼ is closed: the graph of ∼ is a closed set in S1 × S1;
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(E2) ∼ defines a lamination, i.e., it is unlinked: if g1 and g2 are distinct
equivalence classes, then the convex hulls of these equivalence classes in
the unit disk D are disjoint,
(E3) each equivalence class of ∼ is totally disconnected.

We always assume that ∼ has a class of at least two points. Equivalence
classes of ∼ are called (∼-)classes. A class consisting of two points is
called a leaf ; a class consisting of at least three points is called a gap (this
is more restrictive than Thurston’s definition in [24]). Fix an integer d > 1.
The equivalence relation ∼ is called (d-)invariant if:
(D1) ∼ is forward invariant: for a class g, the set σd(g) is a class too
which implies that
(D2) ∼ is backward invariant: for a class g, its preimage σ−1

d (g) = {x ∈
S1 : σd(x) ∈ g} is a union of classes;
(D3) for any gap g, the map σd|g : g → σd(g) is a covering map with
positive orientation, i.e., for every connected component (s, t) of S1 \ g the
arc (σd(s), σd(t)) is a connected component of S1 \ σd(g).

Call a class g critical if σd|g : g → σ(g) is not one-to-one, and precritical
if σj

d(g) is critical for some j ≥ 0. Call g preperiodic if σi
d(g) = σj

d(g) for
some 0 ≤ i < j. A gap g is wandering if g is neither preperiodic nor
precritical. Let p : S1 → J∼ = S1/ ∼ be the standard projection of S1 onto
its quotient space J∼ and let f∼ : J∼ → J∼ be the map induced by σd.

J. Kiwi [12] extended Thurston’s theorem by showing that a wandering
gap in a d-invariant lamination is at most a d-gon. In [16] G. Levin showed
that laminations with one critical class have no wandering gaps. Let k∼ be
the maximal number of critical ∼-classes g with pairwise disjoint infinite
σd-orbits and |σd(g)| = 1.

Theorem 1 ([3]). Let ∼ be a d-invariant lamination and let Γ be a non-
empty collection of wandering dj-gons (j = 1, 2, . . . ) with distinct grand
orbits. Then

∑
j(dj − 2) ≤ k∼ − 1 ≤ d− 2.

Let us call laminations with wandering k-gons WT-laminations. Until re-
cently it had not been known if WT-laminations existed, even in case the
degree d = 3. In the language of topological Julia sets their existence
would mean the existence of cubic topological Julia sets with wandering
branch points; this could serve as a step towards the completion of the de-
scription of the combinatorial portrait of topological Julia sets. Our main
theorem shows the existence of WT-laminations realized by polynomials
with Topological Collet-Eckmann property (TCE-polynomials).
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Theorem 2. There is an uncountable family {Pα}α∈A of cubic TCE polyno-
mials Pα such that for every α the lamination ∼Pα generated by Pα is WT-
lamination, the Julia set JPα is a dendrite containing a wandering branch
point x of JPα of order 3 and the maps Pα|JPα

are pairwise non-conjugate.

Thus, weak hyperbolicity of cubic polynomials does not prevent their
Julia sets from exhibiting such “pathology” as having wandering branch
points.

Let us describe how we organize the paper. In Section 2 we study (discon-
tinuous) self-mappings of certain setsA ⊂ S1 and give sufficient conditions
under which such maps can be embedded into σd : S1 → S1. In Section 3 a
preliminary version of the main theorem is proven; in this version we estab-
lish the existence of an uncountable family of cubic WT-laminations. The
proof was inspired by [3] and [18]; the result was announced in [5]. We
construct a set A ⊂ S1 and a function g : A → A of degree 3 so that (1) A
is the g-orbit of a wandering triple T and (2) the set A with the map g can
be embedded into S1 by means of an embedding ϕ : A → S1 so that the
induced map on ϕ(A) is σ3. Standard arguments show that ϕ(T ) is a wan-
dering gap in a cubic invariant lamination. Flexibility in the construction
allows us to fine tune it in Section 4 to prove our main theorem.

2. CIRCULAR MAPS WHICH ARE σ-EXTENDABLE

In this section we introduce the notion of a topologically exact dynamical
system f : A → A,A ⊂ S1 of degree n. A dynamical system which can
be embedded into σn : S1 → S1 is said to be σ-extendable (of degree n).
We show that a topologically exact countable dynamical system of degree
3 without fixed points is σ-extendable of degree 3.

A subset of S1 is said to be a circular set. An ordered circular triple
{x, y, z} is positive if y ∈ (x, z). Given X ⊂ S1, a function f : X →
S1 is order preserving if for any positive triple {x, y, z} ⊂ X the triple
{f(x), f(y), f(z)} is positive too. Given a set A ⊂ S1, a (possibly discon-
tinuous) function f : A → B is of degree d if d is the minimal number for
which there exists a partition x0 < x1 < · · · < xd = x0 of S1 such that
for each i, f |[xi,xi+1)∩A is order preserving. If A is finite, one can extend
f to a map on S1 which maps each arc complementary to A forward as an
increasing map and is one-to-one inside the arc - the degree of the extension
is equal to that of f . Thus, if A is finite then d < ∞, but d may be finite
even if A is infinite. If d <∞, we denote it by deg(f).

If A = B and deg(f) <∞, we call f a circular map. An order preserv-
ing bijection h : X → Y (with X, Y ⊂ S1) is called an isomorphism. Two
circular maps f : A → A and g : A′ → A′ are conjugate if they are conju-
gate in the set-theoretic sense by an isomorphism h : A → A′. The degree
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of a circular map is invariant under conjugacy. A circular map f : A → A
is σ-extendable if for some σdeg(f)-invariant set A′ ⊂ S1 the map f |A is
conjugate to the function σdeg(f)|A′ : A′ → A′. We prove that a version of
topological exactness (i.e., the property that all arcs eventually expand and
“cover” the entire circle) implies that a circular map is σ-extendable.

We need a few other definitions. An arc in a circular set X (or X-arc)
is the intersection of an arc in S1 and X . Every arc I in X (or in S1) has
the positive order <I determined by the positive orientation on S1 (if it is
clear from the context what I is, we omit the subscript I). Given sets A and
B contained in an arc J ⊂ S1 we write A < B if a < b for each a ∈ A
and each b ∈ B. Arcs in the circle may be open, closed or include only one
of the two endpoints and will be denoted (a, b), [a, b] etc. Corresponding
arcs in a circular set X will be denoted by (a, b)X , [a, b]X etc. If X,Y ⊂ S1

are two disjoint closed arcs then by (X, Y ) we mean the open arc enclosed
between X and Y so that the movement from X to Y within this arc is in
the positive direction. We always assume that a circular set A contains at
least two points.

Definition 3. Let f : A → A be a circular map. Then f is said to be
topologically exact if for each x 6= y in A there exists an n ≥ 1 such that
either fn(x) = fn(y) or f([fn(x), fn(y)]A) 6⊂ [fn+1(x), fn+1(y)]A.

A circular map f : A → A may not admit a continuous extension over
A. However we define a class of set-valued functions which help in dealing
with f anyway. Namely, a set-valued function F : S1 → S1 is called an arc-
valued map if for each x ∈ S1, F (x) = [ax, bx] (with ax ≤ bx ∈ S1 in the
positive order) and for each sequence zi → z in S1, lim supF (zi) ⊂ F (z);
clearly, this is equivalent to the fact that the graph of F is closed as a subset
of the 2-torus T2 = S1 × S1.

Definition 4. We say that an arc-valued map F : S1 → S1 is locally in-
creasing if for any z ∈ S1 there exists an arc I = [xz, yz], xz <I z <I yz

with 1) F (xz) ∩ F (yz) = ∅, 2) for each u <I w ∈ (xz, yz) the arcs
F (u), F (w) are contained in the open arc (F (xz), F (yz)) and F (u) <
F (w). The degree of a locally increasing arc-valued map F , denoted by
deg(F ), is the number of components of F−1(z) (by F−1(z) we mean the
set of all y ∈ S1 such that z ∈ F (y)). It is easy to see (by choosing a finite
cover of S1 by intervals (xz, yz)) that deg(F ) is well-defined and finite.

Let F be a locally increasing arc-valued map and f : A→ A,A ⊂ S1, be
a circular map; we say that F is an arc-valued extension of f if f(a) ∈ F (a)
for each a ∈ A. Now we prove the main result of this subsection; the
statement is far from the most general one, but sufficient for our purpose.
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Theorem 5. Suppose that f : A→ A is a topologically exact circular map
of degree 3 such that A is countable and does not contain a fixed point.
Then f is σ-extendable.

Proof. We may assume that points ofA are isolated (otherwise replace each
point of A with a small enough interval and put the point of A in the middle
of it) and, hence, that points of A \ A do not belong to A. Define an arc-
valued extension F of f as follows. First, for each z ∈ A define

L(z) =


f(z) if z ∈ A;

lim f(ai), if there exists ai ∈ A such that ai ↗ z;

lim f(bi), for a sequence bi ∈ A such that bi ↘ z otherwise.

The map L(z) is well-defined, and is easy to see that L(z) maps A into
A and that L(z) is still of degree 3. Given a map g : S1 → S1 defined at
points a, b, let the linear extension of g on (a, b) be the map which maps
the interval (a, b) linearly onto the interval (g(a), g(b)). Extend L(z) on
each component of S1 \ A linearly. For each point x ∈ S1 define F (x) as
the interval [limt↗x L(t), limt↘x L(t)]. Then F is a locally increasing arc-
valued map with f(z) ∈ F (z) for each z ∈ A and deg(f) = deg(F ) = 3.
Note that for each a ∈ A, F (a) = {f(a)} and the set of points with non-
degenerate image is countable.

Let p : R → S1 = R/Z be a standard projection of the real line onto the
circle. We may assume that F (0) is a point. Choose a lifting G of F such
that G(0) is a point between 0 and 1. Then the graph of G|[0,1] stretches
from the point (0, G(0)) to (1, G(1)) and G(1) = G(0) + 3. Hence the
graph of G|[0,1] intersects the graph of y = x + 1, and we can change the
projection p so that 0 ∈ G(0). Then 0 /∈ A′ (A′ is the lifting of A) because
otherwise a = p(0) would be a fixed point in A.

Since the graph of G intersects each horizontal line at exactly one point,
there are two points 0 < b′ < c′ < 1 with 1 ∈ G(b′), 2 ∈ G(c′). Then
b′, c′ /∈ A′ because otherwise b = p(b′) ∈ A or c = p(c′) ∈ A and so
a ∈ A, a contradiction. Hence a ∈ F (a) ∩ F (b) ∩ F (c). Consider the arcs
[a, b] = I0, [b, c] = I1 and [c, a] = I2 and associate to every point x ∈ A its
itinerary itin(x) in the sense of this partition. Then F k(x), k ≥ 0 is a point
for a point x ∈ A, and F k(x) 6= a, b, c for any k (because f |A has no fixed
points). Hence itin(x) is well-defined.

Let us show that any two points of A have distinct itineraries. Define
pullbacks of the arcs I0, I1, I2 by taking preimages of points a, b, c inside
I0, I1 and I2 appropriately and considering arcs between these preimages.
This can be done arbitrarily many times, hence every point x ∈ A belongs
to the intersection I(itin(x)) of the appropriate pullbacks of I0, I1 and I2.



WANDERING GAPS FOR WEAKLY HYPERBOLIC POLYNOMIALS 7

If points x, y ∈ A had the same itinerary r̄ then they would both belong
to the same interval I(r̄). Let J be the arc between x and y contained in
I(r̄). Then: a) J and all its F -images have well-defined endpoints (i.e. the
endpoints of every F -image of J are such that their F -images are points,
not intervals), and b) every F -image of J is contained in I0, or I1, or I2.
This contradicts the topological exactness of f |A and shows that itin(x) 6=
itin(y). Hence no point z ∈ A can have itinerary itin(z) = (iii . . . ) for
some i = 0, 1, 2 (otherwise z and f(z) 6= z have the same itinerary).

The same construction applies to σ3. Set K0 = [0, 1/3], K1 = [1/3, 2/3]
and K2 = [2/3, 1] (here 0 and 1 are identified and the full angle is assumed
to be 1) and use the notation K(r̄) for the point x with σ3-itinerary r̄. Given
x ∈ A define h(x) as K(itin(x)). Then h is a one-to-one map from A onto
a σ-invariant set B ⊂ S1. Since on each finite step the circular order among
the F -pullbacks of I0, I1 and I2 is the same as the circular order among the
σ-pullbacks of K0, K1 and K2 then the map h is an isomorphism between
the circular sets A and B, hence h conjugates f |A and σ|B. �

3. CUBIC LAMINATIONS WITH WANDERING TRIANGLES

In Section 3 we prove a preliminary version of Theorem 2. The con-
struction must satisfy necessary conditions for a cubic lamination ∼ to be
a WT-lamination which follow from [12] or from [3]. Indeed, by Theo-
rem 1 if ∼ is a cubic WT-lamination then k∼ = 2, the two critical classes
of ∼ are leaves, and J∼ is a dendrite, i.e. a locally connected continuum
without subsets homeomorphic to the circle. The two critical leaves in ∼
correspond to two critical points in J∼. By [2] (see also [9] for laminations
of any degree) both critical points in J∼ must be recurrent with the same
limit set under the induced map f∼.

Set σ3 = σ. The circle S1 is identified with the quotient space R/Z;
points of S1 are denoted by real numbers x ∈ [0, 1). Let B = {0 < c′ <
s0 < u0 <

1
2
< d′ < v0 < t0 < 1} with v0 − u0 = 1/3 and t0 − s0 =

2/3, c̄0 be the chord with the endpoints u0, v0, and d̄0 be the chord with
the endpoints s0, t0. Let u−k be the point with u−k ∈ (u0, v0), σ(u−k) ∈
(u0, v0), . . . , σ

k(u−k) = u0. Similarly we define points v−k, s−k, t−k. Then
limu−n = 1

2
and σ(u−i) = u−i+1; analogous facts hold for v−n, s−n, and

t−n. All these points together with the set B form the set B′. The chord
connecting u−k, v−k is denoted by c̄−k, and the chord connecting s−k, t−k is
denoted by d̄−k. Also, let d′ ∈ (v−1, t−1).

Below we define a triple T1 = {x1,y1, z1} and the set X1 = B′ ∪T1. On
each step a new triple Tn = {xn,yn, zn} is added and the set Xn = Xn−1 ∪
{xn,yn, zn} is defined. Denote new points added on each step by boldface
letters. This explains the following notation: the function g on points xn−1,
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yn−1, zn−1 is defined as g(xn−1) = xn, g(yn−1) = yn, g(zn−1) = zn. Below
a “triple” means one of the sets Ti and a “triangle” means the convex hull
of a triple. By “the triangle (of the triple) Ti” we mean “the convex hull of
the triple Ti”. Define A as ∪Ti and A′ as A ∪B′ \ {c′, d′}.

Suppose Xi−1 is defined. The location of the i-th triple Ti is determined
by points p, q, r ∈ Xi−1 with p < xi < q < yi < r < zi and [(p,xi) ∪
(q,yi) ∪ (r, zi)] ∩ Xi−1 = ∅; then we write Ti = T (p,xi, q,yi, r, zi). If 2
or 3 points of a triple lie between two adjacent points of Xi−1, we need less
than 6 points to denote Ti - e.g., T (p,xi,yi, q, zi)(p, q ∈ Xi−1), means that
p < xi < yi < q < zi, and [(p,yi)∪(q, zi)]∩Xi−1 = ∅. Define the function
g on all points of [(B′∩[s−1, t−1])\{d′}]∪{0} as σ. Set g(u0) = g(v0) = c′,
g(s0) = g(t0) = d′. This gives a function g : B′ \ {c′, d′} → B′. The
function g is constructed step by step to satisfy Rule A below.
Rule A. All triples Ti are pairwise unlinked and disjoint from the set B′.
The map g is order preserving on [s0, u0]A′ , [u0, v0)A′ , [v0, t0]A′ , [t0, s0)A′

(which implies that the degree of g|A′ is 3).
Now we introduce locations of the initial triples:

T1 = T (0,x1, c
′,y1, t0, z1), T2 = T (s−1,x2, v−1,y2, d

′, z2),
T3 = T (s0,x3, v0,y3, z3), T4 = T (x1,x4, c

′,y4, z4),
T5 = T (u−1,x5,y5, t−2, z5), T6 = T (u0,x6,y6, t−1, z6),
T7 = T (y1,x7,y7, t0, z7).

Rule A forces the location of some triples. For two disjoint chords p, q de-
note by S(p, q) be the strip enclosed by p, q and arcs of the circle. Then the
boundary A′-arcs of the strip S(d̄−1, c̄0) must map one-to-one into the arcs
(t0, c

′)A′ and (c′, s0)A′ . Also, the boundary A′-arcs of the strip S(c̄−i, d̄−i)
map into the boundary arcs of the strip S(c̄−i+1, d̄−i+1) one-to-one, and the
boundary A′-arcs of the strip S(d̄−i−1, c̄−i) map into the boundary arcs of
the strip S(d̄−i, c̄−i+1) one-to-one. Observe, that T2 ⊂ S(c̄−1, d̄−1) and so
by Rule A T3 ⊂ S(c̄0, d̄0) (the point x3 must belong to (s0, u0) while the
points y3, z3 must belong to (v0, t0)). The segment of triples T1, . . . , T7 is
the basis of induction (see Figure 1).

Clearly, T7 separates the chord d̄0 from T1. Our Rules then force the loca-
tion of forthcoming triples T8, T9, . . . with respect to X7, X8, . . . for some
time. More precisely, T8 = T (y2,x8,y8, d

′, z8), T9 = T (y3,x9,y9, z9),
T10 = T (y4,x10,y10, z10). The first time when the location of a triple with
respect to the previously constructed triples and points of B′ \{c′, d′} is not
forced is when T10 is mapped onto T11. At this moment Rule A guarantee
that T11 must be located in the arc (y5, z5), but otherwise the location of T11

is not forced. In particular, the location of the triangle T11 with respect to 1
2

is not forced. The freedom of choice of the location of T11 at this moment,
and the similar variety of options available later on at similar moments, is
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FIGURE 1. The first seven triangles

the reason why the construction yields not just one, but uncountably many
types of behavior of a wandering triangle.

Let us pass on to the step of induction. It depends on a sequence of
natural numbers n1 < m1 < n2 < m2 < . . . (each pair of numbers ni, mi

corresponds to the i-th step of induction). The inductive assumptions are of
dynamical nature and deal with the locations of triples on the circle.

Next we introduce a general rule which will be enforced throughout the
construction and will help us determine the location of the triples.
Rule B. Points of any triple Ti are ordered in the arc (0, 0) as follows:
xi < yi < zi. All triangles are disjoint from the chords c̄0, d̄0.

Since Rule B deals with the order of points on the arc (0, 0), it establishes
more than mere fact that the cyclic order among points xi,yi, zi is kept.
Denote by UP the upper semicircle (0, 1

2
) and by LO the lower semicircle

(1
2
, 0). By Rule B there are three types of triples:

(1) up triples, or triples of4-type: triples with xi ∈ UP,yi < zi ∈ LO,
denoted by 4(·) (the standard notation is T (·));

(2) down triples, or triples of 5-type: triples with xi < yi ∈ UP, zi ∈
LO, denoted by 5(·);

(3) horizontal triples, or triples of C-type: triples with xi < yi < zi

contained entirely either in UP or in LO, denoted by C(·).
Up triples and down triples are called vertical triples. Convex hulls of

up, down, vertical and horizontal triples are said to be up, down, vertical
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and horizontal triangles. Chords with endpoints in UP and LO are vertical
(e.g., c̄0 and d̄0 are vertical), otherwise they are horizontal (all sides of a hor-
izontal triangle are horizontal). Let us discuss properties of vertical triples.
A proper arc is an arc which contains none of the points 0, 1

2
, s0, t0, u0, v0.

Given a triple Ti = {xi, yi, zi}, call the arcs (xi, yi), (yi, zi) and (zi, xi)
xy-arc, yz-arc, and zx-arc; all such arcs are said to be generated by the cor-
responding triples (or simply arcs of that triple). An up triple generates
only one proper arc contained in LO and a down triple generates only one
proper arc contained in UP . A vertical triangle has two vertical sides. Also,
if vertical triples T ′, T ′′ are unlinked then none of them contains the other
in its proper arc (this is not true for horizontal triples).

In the construction there will be crucial moments at which the Rules leave
open the choice for the location of a new triple Tn+1 with respect to Xn; the
dynamics of a triangle at a crucial moment is called a crucial event. Crucial
events are of the 4 types: an h5-event (the next closest approach of the triple
to 1

2
while the triple is of 5-type), a d-event (the next closest approach to

the entire chord d̄0 from the right), an h4-event (the next closest approach
to 1

2
while the triple is of 4-type), and a c-event (the next closest approach

to c̄0-chord from the right). The crucial moments of these types are denoted
h5(i), d(i), h4(i) and c(i); the number i indicates that the crucial event
takes place at the corresponding crucial moment during the i-th inductive
step of the construction. We are now ready to state our Rule C.
Rule C. Vertical triples have the following properties:

(1) up triples can only be contained in the strips S(c̄0, d̄0), S(c̄−1, d̄−1),
. . . , S(c̄−i, d̄−i), . . . .

(2) down triples can only be located to the right of the chord d̄0 as well
as in the strips S(d̄−1, c̄0), S(d̄−2, c̄−1), . . . , S(d̄−i−1, c̄−i), . . . .

The Rules allow us to explain how we choose the location of a triple;
giving the order of the points without mentioning the Rules would signif-
icantly lengthen the verification. Crucial moments always happen in the
order d(i) < h4(i) < c(i) < h5(i) < d(i + 1) < . . . . Let us describe the
i-th segment of the triples in the set A′ from the moment d(i) through the
moment d(i+1)−1. A triple Tk is minimal if it contains no triples Ti, i < k
in its proper arcs. Set d(0) = 1, h4(0) = 2, c(0) = 3, h5(0) = 5, d(1) = 7.

Inductive assumptions for step i

(a) The i-th segment begins at the crucial moment d(i) when the triple Td(i)

is a down triple closest from the right to the chord d̄0:

Td(i) = 5(yd(i−1),xd(i),yd(i), t0, zd(i))
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(b) Between the moments d(i) + 1 and h4(i) − 1 all triples are horizontal
and minimal. Their location is determined by our Rules and existing triples.
(c) At the crucial moment h4(i) the triple Th4(i) is an up triple closest to 1

2

and contained in the strip S(c̄−ni
, d̄−ni

):

Th4(i) = 4(s−ni
,xh4(i), v−ni

,yh4(i), zh4(i))

(d) We set c(i) = h4(i) + ni (1)
For each 1 ≤ j ≤ ni − 1 we have that

Th4(i)+j = 4(s−ni+j,xh4(i)+j, v−ni+j,yh4(i)+j, zh4(i)+j)

if the triple Th4(i)+j is the first triple entering the strip S(c̄−ni+j, d̄−ni+j). If
this triple enters a strip of type S(c̄−r, d̄−r) already containing other triples,
then we locate it to be an up triple closest to c̄−r.
(e) At the crucial moment c(i) the triple Tc(i) is an up triple closest from the
right to the chord c̄0:

Tc(i) = 4(xc(i−1),xc(i), v0,yc(i), zc(i))

(f) Between the moments c(i) + 1 and h5(i) − 1 all triples are horizontal
and minimal. Their location is determined by our Rules and existing triples.
(g) At the crucial moment h5(i) the triple Th5(i) is a down triple closest to
1
2

and contained in the strip S(d̄−mi
, c̄−mi+1):

Th5(i) = 5(u−mi+1,xh5(i),yh5(i), t−mi
, zh5(i))

(h) We set d(i+ 1) = h5(i) +mi (2)
For each 1 ≤ j ≤ mi − 1 we have that

Th5(i)+j = 5(u−mi+j+1,xh5(i)+j,yh5(i)+j, t−mi+j, zh5(i)+j)

if the triple Th5(i)+j is the first triple entering the strip S(d̄−mi+j, c̄−mi+j+1).
If this triple enters a strip of type S(d̄−r, c̄−r+1) already containing other
triples, then we locate it to be a down triple closest to d̄−r.

The properties (a) - (h) are exhibited at the basic step from d(0) to d(1).
The step of induction can be made to satisfy the same properties.
Step of induction
(a) The i + 1-st segment begins at the crucial moment d(i + 1) when the
triple Td(i+1) is a down triple closest from the right to the chord d̄0:

Td(i+1) = 5(yd(i),xd(i+1),yd(i+1), t0, zd(i+1))

Then Td(i+1) lies between Td(i) and d̄0. The Rules and inductive assumptions
determine the next few locations of the triple. We call Td(i) the forcing triple
and Td(i+1) the current triple (this terminology applies to their images too).



12 ALEXANDER BLOKH AND LEX OVERSTEEGEN

(b) By the Rules on the next step the current triple Td(i+1)+1 is contained
in the arc (yd(i)+1, zd(i)+1), and for some time the triples Td(i+1)+j are con-
tained inside yz-arcs of the images of the forcing triple. The containment
holds at least until, at the crucial moment h4(i), the crucial event of h4-
type takes place for the forcing triple. However since the yz-arc of the forc-
ing triple then is not exposed to 1

2
, we see that yet for a while the current

triple stays inside the yz-arcs of the forcing triple and remains minimal. In
fact, it remains minimal until, at the crucial moment h5(i), the i-th crucial
event of type h5 takes place for the forcing triple. Then the location of the
current triple with respect to B′ and existing triples is not fully determined
because the yz-arc of the forcing triple is “exposed” to 1

2
for the first time.

Choose this to be the crucial moment h4(i+ 1) for our current triple. Then

h4(i+ 1) = d(i+ 1) + h5(i)− d(i) (3)
(c) At the crucial moment h4(i+1) the triple Th4(i+1) is an up triple closest
to 1

2
and contained in the strip S(c̄−ni+1

, d̄−ni+1
):

Th4(i+1) = 4(s−ni+1
,xh4(i+1), v−ni+1

,yh4(i+1), zh4(i+1))

(d) We set c(i + 1) = h4(i + 1) + ni+1 (see (1)). Between the crucial
moments h4(i + 1) and c(i + 1) the locations of the triples are almost
completely determined by the Rules. For each 1 ≤ j ≤ ni+1 − 1 we have

Th4(i+1)+j = 4(s−ni+1+j,xh4(i+1)+j, v−ni+1+j,yh4(i+1)+j, zh4(i+1)+j)

if the triple Th4(i+1)+j is the first triple entering the corresponding strip. If
this triple enters a strip of type S(c̄−r, d̄−r) already containing other triples,
then we locate it to be an up triple closest to c̄−r.
(e) At the crucial moment c(i + 1) the triple Tc(i+1) is an up triple closest
from the right to the chord c̄0:

Tc(i+1) = 4(xc(i),xc(i+1), v0,yc(i+1), zc(i+1)).

Then Tc(i+1) lies between Tc(i) and c̄0. The Rules and inductive assumptions
determine the next few locations of the triple. We call Tc(i) the forcing triple
and Tc(i+1) the current triple (this applies to their images too).
(f) By the Rules on the next step the current triple Tc(i+1)+1 is contained in
the arc (xc(i)+1, yc(i)+1), and for some time the triples Tc(i+1)+j are contained
inside the xy-arcs of the images of the forcing triple. The containment holds
at least until, at the crucial moment h5(i), the crucial event of h5-type takes
place for the forcing triple. However since the xy-arc of the forcing triple
then is not exposed to 1

2
, we see that yet for a while the current triple stays

inside the the xy-arcs of the forcing triple and remains minimal. In fact, it
remains minimal until, at the crucial moment h4(i), the i-th crucial event of
type h4 takes place for the forcing triple. Then the location of the current
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triple with respect to B′ and existing triples is not fully determined because
the xy-arc of the forcing triple is “exposed” to 1

2
for the first time. Choose

this to be the crucial moment h5(i+ 1) for our current triple. Then

h5(i+ 1) = c(i+ 1) + h4(i+ 1)− c(i) (4)
(g) At the crucial moment h5(i + 1) the triple Th5(i+1) is a down triple
closest to 1

2
and contained in the strip S(d̄−mi+1

, c̄−mi+1+1):

Th5(i+1) = 5(u−mi+1+1,xh5(i+1),yh5(i+1), t−mi+1
, zh5(i+1))

.
(h) We set d(i + 2) = h5(i + 1) + mi+1 (see (2)). Between the crucial
moments h5(i + 1) and d(i + 2) the locations of the triples are almost
completely determined by the Rules. For each 1 ≤ j ≤ mi+1 − 1 we have

Th5(i+1)+j = 5(u−mi+1+j+1,xh5(i+1)+j,yh5(i+1)+j, t−mi+1+j, zh5(i+1)+j)

if the triple Th5(i+1)+j is the first triple entering the corresponding strip.
If this triple enters a strip of type S(d̄−r, c̄−r+1) already containing other
triples, then we locate it to be a down triple closest to d̄−r.

This concludes the induction. It is easy to check that the time between
two consecutive crucial events grows to infinity. Let us check if these exam-
ples generate an uncountable family of cubic WT-laminations with pairwise
non-conjugate induced maps.

Lemma 6. The function g|A is σ-extendable of degree 3 (here A = ∪∞i=1Ti).

Proof. It is easy to see that the degree of g is 3. By Theorem 5 we need to
check that for a 6= b ∈ A there exists n ≥ 0 such that g([gn(a), gn(b)]A) 6⊂
[gn+1(a), gn+1(b)]. This is obvious if (a, b) ⊃ [s0, u0], or (a, b) ⊃ [u0, v0],
or (a, b) ⊃ [v0, t0], or (a, b) ⊃ [t0, s0]. Suppose first that a and b are in the
same triangle Ti. If a = xi, b = yi, and the next crucial moment of c-type
is c(j), then the arc (f c(j)−i(xi), f

c(j)−i(yi)) contains (u0, v0) as desired. If
a = yi, b = zi, and the next crucial moment of d-type is d(l), then the arc
(gd(l)−i(yi), g

d(l)−i(zi)) contains (u0, v0) as desired. Now, let a = zi and
b = xi. Then if Ti is located to the left of d̄0, then (a, b) ⊃ (t0, s0) and we
are done. Otherwise it follows from the construction that Ti+1 is located to
the left of d̄0, and we are done too. Now assume that a ∈ Tp and b ∈ Tq

with p < q. Since q − p is finite and mi → ∞, we may assume that there
exist k and i with h5(i) ≤ p+k < q+k < d(i+1) and both Tp+k and Tq+k

are down triples located in the arc (u0, v0). Then [s0, u0] ∪ [v0, t0] separates
the points gd(i+1)−q(b) and gd(i+1)−q(a), and the result follows. �

By Lemma 6 from now on we assume that T1, T2, . . . is the σ-orbit of a
triple T1 with the order among points of A = ∪∞i=1Ti exactly as before.
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Lemma 7. Let ŝ0 = limi→∞ yd(i), t̂0 = limi→∞ zd(i), û0 = limi→∞ xc(i) and
t̂0 = limi→∞ yc(i). Then the points ŝ0, û0, v̂0, t̂0 are all distinct, σ(ŝ0) =

σ(t̂0) and σ(û0) = σ(v̂0).

Proof. The limits in the lemma are well defined and for every i there are
points of A in the arcs (yd(i), xc(i)), (xc(i), yc(i)), (yc(i), zd(i)), (zd(i), yd(i)).
Hence the points ŝ0, û0, v̂0, t̂0 are all distinct. To see that σ(ŝ0) = σ(t̂0)
we show that α = limi→∞ yd(i)+1 and β = limi→∞ zd(i)+1 are the same.
Indeed, otherwise the arc [α, β] is non-degenerate and there exists the least
l ≥ 0 such that σl[α, β] = [σl(α), σl(β)] = I is an arc of length at least 1/3.
The chord connecting the endpoints of I is the limit of chords connecting
yd(i)+1+l, zd(i)+1+l ∈ Td(i)+1+l, and the endpoints of Td(i)+1+l are outside I .
Let us show that A ∩ I = ∅. Suppose otherwise. Then there is a triple
Tk ⊂ I because if a point of Tk is in I then Tk ⊂ I (if Tk 6⊂ I then a chord
connecting points of Tk intersects chords connecting yd(i)+1+l and zd(i)+1+l

with large i, a contradiction). Now we choose a big i so that d(i)+ l+1 > k
is between the crucial moments d(i) and h4(i). Then the triple Td(i)+l+1

must be minimal among the already existing triples, a contradiction with
Tk ⊂ I . So, I contains no points of A which contradicts the fact that g|A is
of degree 3 and implies that σ(ŝ0) = σ(t̂0). Similarly, σ(û0) = σ(v̂0). �

Let c̄0 be the chord connecting ŝ0 with t̂0, d̄0 be the chord connecting v̂0

with û0. To associate a lamination to Ξ = {c̄0, d̄0} we rely on Kiwi [14].
A collection Θ = {X1, . . . , Xd−1} of pairwise disjoint σd-critical chords
(whose endpoints form a set R = RΘ) is called a critical portrait (e.g., Ξ
is a critical portrait). The chords X1, . . . , Xd−1 divide D into components
B1, . . . , Bd whose intersections with S1 are finite unions of open arcs with
endpoints in R. Given t ∈ S1, its itinerary i(t) is the sequence I0, I1, . . .
of sets B1, . . . , Bd, R with σn

d (t) ∈ In(n ≥ 0). A critical portrait Θ such
that i(t), t ∈ RΘ is not preperiodic is said to have a non-periodic kneading.
Denote the family of all critical portraits with non-periodic kneadings by
Yd. A lamination ∼ is Θ-compatible if the endpoints of every chord from
Θ are ∼-equivalent. Theorem 8 is a particular case of Proposition 4.7 [13].

Theorem 8. To each Θ ∈ Yd one can associate a Θ-compatible lamination
∼ such that all ∼-classes are finite, J∼ is a dendrite, and the following
holds: (1) any two points with the same itinerary, which does not contain
R, are ∼-equivalent; (2) any two points whose itineraries are different at
infinitely many places are not ∼-equivalent.

Denote the family of laminations from Theorem 8 by Kd.

Lemma 9. We have Ξ ∈ Y3. There is a lamination ∼ from K3 compatible
with Ξ such that T1 forms a ∼-class, and c̄0, d̄0 are the ∼-critical leaves.
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Proof. We prove that ŝ0, û0, v̂0, t̂0 have non-preperiodic itineraries and never
map into one another. We have σl(ŝ0) ∈ (û0, v̂0), h4(i) ≤ l ≤ ci − 1. Since
ci − h4(i) → ∞, the only way i(ŝ0) can be preperiodic is if ŝ0 eventually
stays in (û0, v̂0) forever, a contradiction to the construction. Assume that ŝ0

maps into v̂0 by σr. Choose j with h4(j) − d(j) > r. Then the triangle
Td(j)+r intersects c̄0, a contradiction to the construction. The claim for ŝ0 is
proven; the claims for other points of RΞ can be proven similarly.

By Theorem 8 there exists a lamination∼ inK3 compatible with Ξ; since
points in any Ti have the same itinerary avoidingRΞ, they are∼-equivalent.
Let us show that {û0, v̂0} is a ∼-class. Indeed, otherwise the ∼-class of
σ(û0) is non-degenerate, hence it includes all triples Tc(j)+1 with big enough
j and is infinite, a contradiction with Theorem 8. Similarly, {ŝ0, t̂0} is a ∼-
class, and these are the only two critical ∼-classes. It follows that T1 is
a ∼-class. Indeed, otherwise T1 is a proper subset of a ∼-class Q. Then
Q contains more than 3 points. Hence by Theorem 1 - or by [12] - Q
is preperiodic or precritical. If for some i ≥ 0 the class f i(Q) is periodic,
then, since the triple T1 is wandering, f i(Q) must be infinite, a contradiction
to Theorem 8. If for some minimal i ≥ 0 the class f i(Q) is critical then it
has to consist of |Q| > 3 elements, a contradiction to the above. �

By Lemma 9 for a sequence T = n1 < m1 < . . . we construct a WT-
lamination ∼ in K3; the family W of all such laminations is uncountable.

Theorem 10. Laminations ∼ in W have pairwise non-conjugate induced
maps f∼|J∼ .

Proof. Let sequences T = n1 < m1 < . . . , T ′ = n′1 < m′
1 < . . . be dis-

tinct,∼ and∼′ be the corresponding laminations from Lemma 9, p and p′ be
the corresponding quotient maps, and the topological Julia sets with induced
maps be f : J → J and f ′ : J ′ → J ′, resp. All the points and leaves from
our construction are denoted as before for f (e.g., û0, v̂0, . . . , c̄0, d̄0, . . . )
while in the case of f ′ we add ′ to the notation (û′0, v̂

′
0, . . . ).

Assume that a homeomorphism ϕ : J → J ′ conjugates f and f ′. The
critical points p(û0) = C, p(ŝ0) = D ∈ J of f are cutpoints each of which
cuts J into 2 pieces. Moreover, the set J\(C∪D) consists of 3 components:
L = p((û0, v̂0)),M = p((ŝ0, û0) ∪ (v̂0, t̂0)) and R = p((t̂0, ŝ0)). Similarly,
the critical points p′(û′0) = C ′, p′(ŝ′0) = D′ ∈ J ′ of f ′ are cutpoints each
of which cuts J ′ into 2 pieces. Moreover, the set J ′ \ (C ′ ∪ D′) consists
of 3 components: L′ = p′((û′0, v̂

′
0)),M

′ = p′((ŝ′0, û
′
0) ∪ (v̂′0, t̂

′
0)) and R′ =

p′((t̂′0, ŝ
′
0)). Clearly, ϕ maps points C,D onto points C ′, D′.

For a ∼-class g the point p(g) ∈ J divides J into |g| components (the
same holds for ∼′). Let us show that the ∼-class of 0 is {0}. Indeed, no
point outside (t̂0, ŝ0) can be∼-equivalent to 0 because the leaf d̄0 cuts them
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off 0. Since all points of (t̂0, ŝ0) but 0 eventually leave (t̂0, ŝ0) then no point
not equal to 0 can be ∼-equivalent to 0. Similarly, {0} is a ∼′-class, and
{1

2
} is a∼-class and a∼′-class. Hence a = p(1

2
), b = p(0) are non-dividing

f -fixed points, and a′ = p′(1
2
), b′ = p′(0) are non-dividing f ′-fixed points.

These are all the non-dividing fixed points, so ϕmaps points a, b onto points
a′, b′. By the construction a is the only non-dividing f -fixed belonging to
the limit sets of f -critical points, and a′ is the unique non-dividing f ′-fixed
point belonging to the limit sets of the f ′-critical points. Hence ϕ(a) = a′

which implies that ϕ(b) = b′, and therefore ϕ(C) = C ′, ϕ(D) = D′. Thus,
ϕ(L) = L, ϕ(M) = M ′, ϕ(R) = R′.

Assume that the first time the sequences T , T ′ are different is ni > n′i.
Then h4(i) = h′4(i) = h, and up until that moment all corresponding cru-
cial moments for the two laminations are equal: d(r) = d′(r), h4(r) =
h′4(r), c(r) = c′(r), h5(r) = h′5(r)(0 ≤ r ≤ i− 1), and d(i) = d′(i)). Be-
fore the crucial moment h the behavior of the triples relative to the chords
c̄0, d̄0 (resp. c̄′0, d̄

′
0) is the same. Consider the triple Td(i) (the closest ap-

proach to d̄0 preceding h), and the corresponding triple T ′d′(i). Then the
dynamics of Td(i) (T ′d′(i)) forces the same dynamics on d̄0 (d̄′0) until Td(i)

(T ′d′(i)) maps onto Tc(i) (T ′c′(i)). Hence σh−d(i)+n′i(ŝ′0) already belongs to the
arc (v̂′0, t̂

′
0) while σh−d(i)+ni(ŝ0) still belongs to the arc (1

2
, v̂0). Therefore

fh−d(i)+n′i(D) ∈ L whereas (f)′h−d(i)+n′i(D′) ∈ M . Since ϕ(D) = D′ and
ϕ(M) = M ′ we get a contradiction which shows that ϕ does not exist and
the maps f |J and f ′|J ′ are not conjugate. �

4. TCE-POLYNOMIALS WITH WANDERING BRANCH POINTS

In Section 4 we show that there exists an uncountable family of TCE-
polynomials P whose induced laminations ∼P are WT-laminations (since
by [19] the Julia set of a TCE-polynomial is locally connected then the poly-
nomial on its Julia set and the induced map on the corresponding topological
Julia set are conjugate). The Topological Collet-Eckmann (TCE) condition
is studied in a number of papers (e.g., [10, 19, 20, 21, 22]; a list of refer-
ences can be found in a nice recent paper [20]). It is considered a form of
non-uniform (weak) hyperbolicity. By [20] several standard conditions of
non-uniform hyperbolicity of rational maps, including the TCE-condition,
are equivalent. By Proposition 5.2 [19] (see also [10, 21]) the Julia set
of a TCE polynomial is Hölder (i.e., the Riemann map extends over the
boundary as Hölder), hence locally connected. Non-uniformly hyperbolic
dynamics was introduced by Ya. G. Sinai in the context of billiards; we deal
with this notion in the context of 1-dimensional complex dynamics.



WANDERING GAPS FOR WEAKLY HYPERBOLIC POLYNOMIALS 17

The plan is to construct WT-laminations ∼ from W corresponding to
specific sequences T whose induced maps f∼|J∼ satisfy the TCE condition
(the definitions are below). Since W ⊂ K3, by the results of Kiwi [13, 14]
to each such lamination ∼ a polynomial P∼ is associated, and P∼|JP∼

is
monotonically semiconjugate to the induced map f∼|J∼ . This implies that
P∼ satisfies the TCE condition, by [19] its Julia set is locally connected
(actually Hölder) and P∼|JP∼

is in fact conjugate to f∼ : J∼ → J∼.
A continuum K ⊂ S2 is unshielded if it is the boundary of one of its

complementary domains (see, e.g., [4]). Below K is either S2 or a locally
connected unshielded continuum in S2 (then we choose a metric in K such
that all balls are connected; the existence of such a metric is proven in
[1], see also [17]). Given a set A ⊂ K and a point z ∈ A we denote by
CompzA the component of A containing z. Consider a branched covering
map f : K → K (in the case when K = S2 we assume that f is a rational
function). Then the set of critical points, Crf , is finite.

Take a point x ∈ K and the ball B(fn(x), r). For each i, 0 ≤ i ≤ n, con-
sider Compf i(x)f

−(n−i)(B(fn(x), r)) and call it a pull-back of B(fn(x), r)

(along the orbit of x). Denote by ∆f (x, r, n) all the moments i such that
Compf i(x)f

−(n−i)(B(fn(x), r)) ∩ Crf 6= ∅. A map f : K → K is said to
satisfy the TCE condition (or to be a TCE map, or just TCE) iff there are
M > 0, P > 1 and r > 0 such that for every x ∈ K (if K = S2 then we
consider every x ∈ Jf ) there is an increasing sequence nj ≤ Pj of num-
bers with ∆f (x, r, nj) ≤ M . Therefore if a map is not TCE then for any
M > 0, P > 1 and r > 0 there exist x ∈ K (if K = S2 then we consider
every x ∈ Jf ) and N > 0 with

|{n ∈ [0, N ] | ∆f (x, r, n) > M}|
N + 1

> 1− 1

P

A continuous map f : X → X of a metric space is backward stable
at x ∈ X if for any δ there is ε such that for any connected set K ⊂
B(x, ε), any n ≥ 0 and any component M of f−n(K), diam(M) ≤ δ; f is
backward stable if it is backward stable at all points. IfX is compact then f
is backward stable iff for any δ there is ε such that for any continuum T with
diam(T ) ≤ ε, any n ≥ 0 and any component M of f−n(T ), diam(M) ≤ δ.
Essentially, the notion is due to Fatou. Classic results (see, e.g., Fatou, [8])
imply that R is backward stable outside the critical limit sets and is not
backward stable at parabolic or attracting periodic points. In an important
paper [16] Levin showed that polynomials with one critical point and locally
connected Julia set are backward stable on their Julia sets. Later [4] this
result was extended to all induced maps on their topological Julia set.
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Orbit segments {z, f(z), . . . , fn(z)} and {y, f(y), . . . , fn(y)} δ-shadow
(each other) if d(f i(z), f i(y)) ≤ δ for 0 ≤ i ≤ n. Denote the orbit of z by
orb(z); an ([i, j]-)segment of orb(z) is the set {f i(z), . . . , f j(z)}. Given a
point z, an integer n and an ε > 0, say that fn(z) is critically ε-shadowed
of order k if there are precisely k distinct pairs (each pair consists of a
critical point u and an iteration s) such that f s(z), . . . , fn(z) is ε-shadowed
by u, . . . , fn−s(u). If so, we call n a critical ε-shadowing time of order k
(for z). Lemma 11 is inspired by Lemma 2.2 of the paper [22] by Smirnov.

Lemma 11. Suppose that f : K → K is a branched covering, backward
stable map, and there exist ε′ > 0, s′ and τ ′ > 0 such that for any critical
point u and any integer N > 0 there are more than τ ′(N + 1) critically
ε′-shadowed times of order less than s′ in [0, N ] for u. Then f satisfies the
TCE condition.

Proof. We prove that if f is not TCE condition then for any given ε > 0,
s and τ > 0, there is N > 0 and a critical point u such that there are less
than τ(N + 1) critically ε-shadowed times of order less than s in [0, N ] for
u. Since f is not TCE, for any P > 1, r > 0,M > 0 there exist x ∈ K and
N > 0 such that for a set H of more than (P−1)(N+1)

P
integers l ∈ [0, N ] we

have ∆f (x, r, l) > M . Let the distance between any two critical points be
more than R > 0 and choose M > sP

(P−1)τ
. Since f is backward stable, we

can find δ < min{ε/2, R/2} and r > 0 so that any pull back of an r-ball is
of diameter less than δ. For x ∈ K let c(x) be a closest to x critical point.

Define a collection I of intervals of integers. For an integer j, 0 ≤ j ≤ N
define (if possible) the largest number k = kj, j ≤ k ≤ N with

Compfj(x)f
−(k−j)(B(fk(x), r)) ∩ Crf 6= ∅.

Let A be the set of all j for which kj exists, and I be the family of all
intervals of integers {[j, kj] : j ∈ A}. The [j, kj]-segment of orb(x) is
δ-shadowed by the [0, kj − j]-segment of the critical point c(f j(x)). If a
critical point belongs to the pullback U = Compf i(x)f

−(l−i)(B(f l(x), r)) of
B(f l(x), r) along the orbit of x then i ∈ A and l ∈ [i, ki]. Hence, if l ∈ H
then more than M intervals from I contain l. Since |H| ≥ (P−1)(N+1)

P
then∑

I∈I

|I| ≥ (P − 1)(N + 1)M

P
>
s(N + 1)

τ
.

Let i, j ∈ A, u = c(f i(x)), v = c(f j(x)). If j ≥ i and [i, ki] ∩ [j, kj] =
[j, l] (l = ki or l = kj) then the [j− i, l− i]-segment of orb(u) and [0, l− j]-
segment of orb(v) 2δ-shadow each other. Since 2δ < ε then if t ∈ [i, ki] is
covered by at least s intervals of the form [j, kj] ∈ I with i ≤ j then f t−i(u)
is critically ε-shadowed of order at least s. Let us show that in some interval
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I = [i, ki] ∈ I there are h > (1 − τ)|I| integers t1, . . . , th covered by at
least s intervals of the form [j, kj] ∈ I with i ≤ j.

Let us show that such an interval [i, ki] ∈ I exists. Indeed, otherwise
in each interval I = [i, ki] ∈ I at most (1 − τ)|I| points are covered by
s intervals of the form [j, kj] ∈ I with i ≤ j. Let us call a pair (I, l)
admissible if I ∈ I, l ∈ I and there are at least s intervals [j, kj] ∈ I with
i ≤ j ≤ l ≤ kj . Denote the number of all admissible pairs by L and count
it in two ways: over intervals I from I, and over points l. If we count L
over intervals from I then, since by the assumption each interval I ∈ I
contains at most (1− τ)|I| numbers l such that (I, l) is admissible, we see
that L ≤ (1 − τ)

∑
I∈I |I|. For each l ∈ [0, N ] let m(l) be the number of

intervals from I containing l. Then
∑

I∈I |I| =
∑
m(l). Define two sets

A ⊂ [0, N ], B ⊂ [0, N ] as follows: A is the set of all integers l ∈ [0, N ]
with m(l) ≤ s− 1, and B is the set of all integers l ∈ [0, N ] with m(l) ≥ s.
Then it is easy to see that L =

∑
l∈B(m(l)− s+ 1). Hence

∑
I∈I

|I| =
N∑

l=0

m(l) = (s− 1)|B|+
∑
l∈B

[m(l)− s+ 1] +
∑
l∈A

m(l) =

= (s− 1)|B|+ L+
∑
l∈A

m(l)

Since L ≤ (1− τ)
∑

I∈I |I| and m(l) ≤ s− 1 for l ∈ A then

∑
I∈I

|I| ≤ (s−1)(|B|+|A|)+(1−τ)
∑
I∈I

|I| = (s−1)(N+1)+(1−τ)
∑
I∈I

|I|

which implies that

∑
I∈I

|I| ≤ (s− 1)(N + 1)

τ
,

a contradiction. Hence there exists an interval I = [i, ki] ∈ I with h > (1−
τ)|I| integers t1, . . . , th covered by at least s intervals of the form [j, kj] ∈ I
with i ≤ j. SetN = ki−i; then h integers t1−i ∈ [0, N ], . . . , th−i ∈ [0, N ]
are critically ε-shadowing times of order at least s for u. Hence there are
less than N + 1 − h < τ(N + 1) integers in [0, N ] which are critically
ε-shadowing times of order less than s for u. Doing this for ε = ε′, s =
s′, τ = τ ′ from the lemma, we get a contradiction to the assumptions of the
lemma and complete its proof. �

Let ∼ be a lamination constructed as in Section 3 for a sequence T =
n1 < m1 < . . . , and let f |J be its induced map. Let us state some facts



20 ALEXANDER BLOKH AND LEX OVERSTEEGEN

about the construction in terms of the map f . Let p : S1 → J be the cor-
responding quotient map and I ⊂ J be the arc connecting p(1/2) = b and
p(0) = a. A ∼-class g contains points of the upper semicircle UP and the
lower one LO iff p(g) ∈ I . Put p(Ti) = ti, p(û0) = C, p(d̂0) = D, f i(C) =
Ci and f i(D) = Di. Assume that J ⊂ C and that the orientation of J fits
into that on the unit circle. Visualize I as a subsegment of the x-axis such
that b is the “leftmost” point of the entire J (its x-coordinate is the least),
a is the “rightmost” point of J (its x-coordinate is the greatest), the points
of J corresponding to angles from UP belong the upper half-plane, and the
points of J corresponding to angles from LO belong the lower half-plane.

By the construction d(0) = 1, h4(0) = 2, c(0) = 3, h5(0) = 5, d(1) =
7. The crucial moments d(i), h4(i), c(i), h5(i) are the moments of the
closest approach of images of t1 (or just the closest approaches of t1) to
D, b, C, b, . . . in this order. To explain the term “closer” we need the fol-
lowing notation: if m,n ∈ J then S(m,n) is the component of J \ {m,n}
which contains the unique arc in J connecting m and n. Say that a point
x ∈ J is closer to a point w ∈ J than a point y ∈ J if y 6∈ S(x,w) (this
notion is specific to the closest approaches of t1 to C,D, b taking place on
I). We distinguish between two types of closest approach to b depending on
which critical point is approached next (equivalently, depending on the type
of the triangle which approaches 1/2). Thus, h4(i) is a closest approach to
b after which t1 will have the next closest approach to C (h4(i) is the i-th
such closest approach to b). Similarly, h5(i) is a closest approach to b after
which t1 will have the next closest approach to D (h5(i) is the i-th such
closest approach to b).

We apply Lemma 11 to f choosing T appropriately. The behavior of
C,D is forced by that of t1. The three germs of J at t1 corresponding to
the arcs (x1, y1), (y1, z1) and (z1, x1) in S1 are denoted X, Y, Z; call their
images X-germs, Y -germs, or Z-germs resp. (at tk). The dynamics of the
arcs is reflected by the behavior of the germs, and helps one see where in
J images of C,D are located. We use terms “the X-germ (at tk) points
up”, “the Y -germ (at tk) points to the left” etc which are self-explanatory
if tk ∈ I . To the X-, Y -, and Z-germs at tk correspond the components
CX(tk), CY (tk), CZ(tk) of J \ tk containing the corresponding germs at tk;
the components are called the X-, Y -, Z-components (of J at tk) resp.

For tk ∈ I the Z-germ at tk always points to the right, so we only talk
aboutX- and Y -germs at points tk ∈ I . At the moment d(i) the point td(i) ∈
I is to the right of D in S(D, td(i−1)), its X-germ points up, and its Y -germ
points to the left. Then it leaves I , and between the moments d(i) + 1 and
h4(i)− 1 all its images avoid I ∪S(D, td(i))∪S(C, tc(i−1))∪S(b, th5(i−1))
(its images are farther away from D,C, b than the three previous closest
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approaches to these points). The next crucial moment is h4(i) when t1
maps into I ∩ S(b, th5(i−1)) (so it is the next closest approach to b), its
X-germ points to the left, and its Y -germ points down. The map locally
“rotates” J : the X-germ, which was pointing up, now points to the left,
and the Y -germ, which was pointing to the left, now points down. Thus, D
(which belongs to the Y -component at td(i)) maps by fh4(i)−d(i) inside the
Y -component at th4(i) (Dh4(i)−d(i) and th4(i) are very close).

For the next ni steps t1 stays in I while being repelled from b to the right
with no “rotation” (the X-germ points to the left, the Y -germ points down).
For these ni steps the images of t1 and D stay close while being repelled
“together” from b. At the next crucial moment c(i) = h4(i)+ni the images
of t1 and D map inside S(C, tc(i−1)) (this is the next closest approach of t1
and to C), and the process is repeated with obvious changes.

At the moment c(i) the point tc(i) ∈ I is to the right of C in S(c, tc(i−1)),
its X-germ points to the left, and its Y -germ points down. Then it leaves
I , and between the moments c(i) + 1 and h5(i) − 1 all its images avoid
I ∪ S(D, td(i)) ∪ S(C, tc(i)) ∪ S(b, th4(i)) (its images are farther away from
D,C, b than the three previous closest approaches to these points). The next
crucial moment is h5(i) when t1 maps into I ∩S(b, th4(i)) (so it is the next
closest approach to b), its X-germ points up, and its Y -germ points to the
left. The map locally “rotates” J : the X-germ, which pointed to the left,
now points up, and the Y -germ, which pointed down, now points to the left.

Thus, Dc(i)−d(i) (which belongs to the Y -component at tc(i)) maps by
fh5(i)−c(i) inside the Y -component at th5(i), and all the points from the
appropriate segments of the orbits of t1 and D are very close. Now the
behaviors of t1 and D differ. In terms of t1, for the next mi steps th5(i)

stays in I while being repelled from b to the right with no rotation (the X-
germ points up, the Y -germ points to the left). At the next crucial moment
d(i + 1) = h5(i) + mi the point t1 maps inside S(D, td(i)) (this is the
next closest approach to D), and the process for t1 is repeated inductively
(the segments of the constructed orbit repeat the same structure as the one
described above). However the dynamics of D is more important.

The pointDh5(i)−d(i) corresponds to the point th5(i). Since by (3) h5(i)−
d(i) = h4(i + 1) − d(i + 1) = q then Dq belongs to the Y -component at
th4(i+1). Now the next segment of the orbit ofD begins which includes ni+1

steps when D is repelled away from b on I , and then h5(i + 1) − c(i + 1)
steps when D is shadowed by the orbit of C. So, the orbit of D can be
divided into countably many pairs of segments described below.
(d1) SegmentD′

i from h4(i)−d(i) = h5(i−1)−d(i−1)-th to c(i)−d(i)−
1-th iteration of D of length ni when D is repelled from b with the images
th4(i), . . . , tc(i)−1 of t1 so that the images of D belong to the Y -components
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of the appropriate images of t1 which belong to I and stay to the left of C
while the images of D are below the images of t1.
(d2) Segment D′′

i from c(i) − d(i)-th to h5(i) − d(i) − 1 = h4(i + 1) −
d(i+1)−1-th iteration ofD of length h5(i)−c(i) = h4(i)−c(i−1) when
D is closely shadowed by the orbit of C and has no closest approaches to
b, C,D; h5(i)− c(i) = h4(i)− c(i− 1) by (4).

Since the construction is symmetric with respect to D and C, the orbit of
C can be divided into countably many pairs of segments described below.
(c1) Segment C ′i from h5(i) − c(i) = h4(i) − c(i − 1)-th to d(i + 1) −
c(i) − 1-th iteration of C of length mi when C is repelled from b with the
images th5(i), . . . , td(i+1)−1 of t1 so that the images of C belong to the X-
components of the appropriate images of t1 which belong to I and stay to
the left of C while the images of C are above the images of t1.
(c2) Segment C ′′i from d(i+1)−c(i)-th to h5(i+1)−c(i+1)−1 = h4(i+
1)− c(i)−1-th iteration of C of length h4(i+1)−d(i+1) = h5(i)−d(i)
when C is closely shadowed by the orbit of D and no closest approaches to
b, C,D.

By (c1) the segment C ′i begins at h5(i)− c(i) = h4(i)− c(i− 1); since
c(i − 1) < d(i) then h4(i) − d(i) < h4(i) − c(i − 1) and the segment
C ′i begins after the segment D′

i does. By (d1) the segment D′
i+1 begins at

h4(i+ 1)− d(i+ 1) = h5(i)− d(i); since d(i) < c(i) then h5(i)− c(i) <
h5(i)− d(i) and the segment D′

i+1 begins after the segment C ′i does.
The length of the segment D′′

i does not depend on ni,mi. Indeed, the
length of D′′

i is h5(i) − c(i) = h4(i) − c(i − 1) by (4). However both
h4(i) and c(i − 1) are defined before ni,mi need to be defined. Likewise,
the length of C ′′i equals h4(i+ 1)− d(i+ 1) = h5(i)− d(i), see (3). Since
both h5(i), d(i) are defined before mi, ni+1 need to be defined, the length
of the segment C ′′i does not depend on mi and ni+1.

Lemma 12. Suppose that T = n1 < m1 < . . . is such that ni > 9h4(i)
and mi > 9h5(i). Then the corresponding map f is TCE.

Proof. By Lemma 11 we need to show that there exist ε > 0, s and τ < 1
such that for any N and any critical point u there are more than τ(N + 1)
critically ε-shadowed times of order less than s in [0, N ] for u. Set τ = .4
and s = 2; ε will be chosen later.

The segment D′
i+1 begins at h5(i) − d(i) while the segment C ′i ends at

mi +(h5(i)− c(i))−1; since mi > 9h5(i) then C ′i ends after D′
i+1 begins.

The segment C ′i+1 begins at h4(i+ 1)− c(i) while the segment D′
i+1 ends

at ni+1 + (h5(i) − d(i)) − 1; since ni+1 > 9h4(i + 1) then D′
i+1 ends

after C ′i+1 begins. Thus, C ′i ends inside D′
i+1. Likewise, D′

i ends inside
C ′i. All these segments form a “linked” sequence in which (1) each D′-
segment begins and ends inside the appropriate consecutive C ′ segments,
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(2) each C ′-segment begins and ends inside the appropriate consecutiveD′-
segments, (3) D′′

i ⊂ C ′i, and (4) C ′′i ⊂ D′
i+1

The segment D′
i is at least 9 times longer than any segment D′′

q , q ≤ i-
segment (the length of D′′

i is h4(i) − c(i − 1) and the length of D′
i is ni);

D′
i is also at least 9 times longer than any segment C ′′q , q < i since all these

segments are shorter than h4(i) by the construction. Similarly, the segment
C ′i is at least 9 times longer than any C ′′-segment before it and the segment
C ′′i (the length of C ′′i is h5(i)− d(i) and the length of C ′i is mi); C ′i is also
at least 9 times longer than any segment D′′

q , q ≤ i since all these segments
are shorter than h5(i) by the construction.

It is easy to check that the construction and the choice of the constants
imply the following. Let u = C or u = D. Each D′′-segment begins when
the image ofD is to the right of C close to C, and ends also when the image
of D is to the right of C close to a preimage of b not equal to b. Each C ′′-
segment begins when the image of C is to the right of C close to D, and
ends also when the image of C is to the right of C close to a preimage of b
not equal to b. Within segmentsD′

i and C ′i critical points are repelled from b
while staying to the left of C. In the beginning of a segment the appropriate
image of a critical point is close to b while on the first step after the end of a
segment it maps very close to either C or D. Hence there exists ε > 0 such
that within any segment D′

i, C
′
i the images of critical points are more than

3ε-distant from the closure of the component of J \{C} located to the right
of C, in particular from both critical points. Assume also that 3ε is less than
the distance between any two points from the set {C,D, f(C), f(D)}. This
completes the choice of constants.

Consider the critical point D and show that all times in the subsegment
Ei = [h4(i) − d(i) + ni−1, c(i) − d(i) − 1] of D′

i = [h4(i) − d(i), c(i) −
d(i)− 1] are critically ε-shadowed of order at most 2. One such shadowing
is trivial - the point D shadows itself. Let show that there is no more than
1 non-trivial shadowing for the described above times. Choose t ∈ Ei.
Suppose that for some q and a critical point u the [q, t]-segment of orb(D)
is shadowed by the [0, t − q]-segment of u. Then f q(D) is ε-close to u.
Hence 1 ≤ q < h4(i)− d(i) by the choice of ε. Thus, u stays to the left of
C for t− [h4(i)−d(i)]+1 > ni−1 consecutive iterations of f as it shadows
fh4(i)−d(i)(D), . . . , f t(D) within the [h4(i)−d(i)− q, t− q]-segment Q of
its orbit. The segment Q begins before the segment D′

i, consists of images
of u located to the left of C, and is at least ni−1 + 1 long. Hence it must
be contained in a segment of one of the four listed above types of length at
least ni−1 + 1. There is only one such segment, namely the C ′i−1-segment
of the orbit of C, and so u = C and Q ⊂ C ′i−1.
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Let us show that q = c(i − 1) − d(i − 1) coincides with the beginning
of D′′

i−1. If q < c(i − 1) − d(i − 1) then, as the orbit of C ε-shadows
the orbit of f q(D), an iteration of C from the C ′i−1-segment of the orbit
of C will correspond to the last iteration of D in the segment D′′

i−1 which
is impossible since this image of D is to the right of C and is therefore
more than ε-distant from any image of C from C ′i−1. On the other hand, if
q > c(i−1)−d(i−1) then, as the orbit of C ε-shadows the orbit of f q(D),
the last iteration of C in the segment C ′′i−2 of the orbit of C will correspond
to an iteration of D from D′

i, a contradiction because this iteration of C
is to the right of C and is therefore more than ε-distant from any image
of D from D′

i. Thus, the only non-trivial critical ε-shadowing which may
take place for a time t ∈ Ei is by the orbit of C which ε-shadows the
[f c(i−1)−d(i−1), t]-segment of the orbit of D, and so any t ∈ Ei is critically
ε-shadowed of order at most 2.

Let us estimate which part of any segment [0, N ] is occupied by the times
which are critically ε-shadowed of order at most 2 for D. Assume that N
belongs to Fi = [h4(i)−d(i)+ni−1, h4(i+1)−d(i+1)+ni−1] for some i.
The segment Ei lies in the beginning of Fi and forms a significant portion
of Fi. Indeed, ni−1 < h4(i) < 9h4(i) < ni. Hence |Ei| > 8

9
ni. After

Ei the segment D′′
i ⊂ Fi follows, and by (d2) we have |D′′

i | < h4(i) <
ni

9
. Finally, the last part of Fi is occupied by ni − 1 initial times from

D′
i+1. Hence, |Ei|

|Fi| >
4
9

which implies that the times which are critically
ε-shadowed of order at most 2 for D form at least 4

9
of the entire number of

times in [0, N ]. Similar arguments show that the times which are critically
ε-shadowed of order at most 2 for C form at least 4

9
of the entire number of

times in [0, N ]. By Lemma 11 this implies that f is TCE as desired. �

So far we have dealt with the dynamics of induced maps f = f∼ of lam-
inations ∼. However our goal is to establish corresponding facts concern-
ing polynomials. To “translate” our results from the language of induced
maps of laminations into that of polynomials we need an important result
of Kiwi [13, 14]. In Section 3 we define the family Yd of collections of σd-
critical chords whose endpoints have non-preperiodic itineraries, and the
corresponding family Kd of laminations whose properties are described in
[13, 14] (see Theorem 8 in Section 3). The following theorem is a version
of results of Kiwi [13, 14] which is sufficient for our purpose.

Theorem 13. Let∼ be a lamination fromKd; then there exists a polynomial
P of degree d such that its Julia set JP is a non-separating continuum on
the plane and P |JP

is monotonically semiconjugate to f∼|J∼ by a map ψP .
Moreover, J∼ is a dendrite, ψP -images of critical points of P are critical
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points of f∼, ψP -preimages of preperiodic points of f∼ are points, and JP

is locally connected at all its preperiodic points.

We combine Lemma 12 and Theorem 13 to prove Theorem 2.

Proof of Theorem 2. Let a sequence T satisfy conditions of Lemma 12.
By Lemma 12 the induced map f∼ = f of the corresponding lamination ∼
is TCE. The lamination ∼ belongs to W ⊂ K3, hence by Theorem 13 there
is a polynomial P such that the Julia set JP is a non-separating continuum
on the plane and P |JP

is monotonically semiconjugate to f |J∼ by a map ψP .
Let M ≥ 0, L ≥ 1, r′ > 0 be constants for which f exhibits TCE-property,
i.e. such that for every x ∈ J∼ and every positive integer N we have

|{n ∈ [0, N ] | ∆f (x, r
′, n) ≤M}|

N + 1
≥ 1

L
Clearly, for some r > 0 and any point z ∈ JP we have ψP (B(z, r)) ⊂

B(ψP (z), r′). Let z ∈ JP . To estimate the number of integers n ∈ [0, N ]
with ∆P (z, r, n) ≤M , take x = ψP (z). The number of integers n ∈ [0, N ]
with ∆f (x, r

′, n) ≤M is at least (N +1)/L. Let n be one of such numbers
and estimate ∆P (z, r, n). Observe that if Compf i(x)f

−(n−i)(B(fn(x), r′))∩
Crf = ∅, then CompP i(z)P

−(n−i)(B(fn(z), r)) ∩ CrP = ∅ because ψP

maps critical points of P to critical points of f . Hence ∆P (z, r, n) ≤
∆f (x, r

′, n) ≤M , and there are at least (N+1)/L numbers n ∈ [0, N ] with
∆P (z, r, n) ≤ M . So, P is TCE, and by Proposition 5.2 [19] (cf [10, 21])
it follows that the Julia set of P is Hölder and hence locally connected.

By the Carathéodory theory it means that for any sequence T satisfy-
ing the conditions of Lemma 12 and the corresponding lamination ∼ there
exists a TCE-polynomial P such that JP and J∼ are homeomorphic and
P |Jp and f∼|J∼ are topologically conjugate. It is easy to see that there
are uncountably many sequences T inductively constructed so that ni >
9h4(i),mi > 9h5(i), i.e. satisfying conditions of Lemma 12. This com-
pletes the proof of Theorem 2. �
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