Tutorial on SU(2) and Spin Waves

Shannon Starr

University of Alabama at Birmingham

June 16, 2014

Reminders:

Tornado siren means go to lowest floor of a solid building, away from windows.

For receipts in a currency other than USD\$, write the conversion to USD\$ and write the conversion rate on the receipt.

Keep all meal receipts and turn them in. (5.7) (5.7)

 Ω

Outline:

- 1. The Lie Group SU(2)
- 2. Representations of SU(2)
- 3. Tensor products of representations
- 4. Spin waves in the Heisenberg ferromagnet

∽≏ດ

Lie Group SU(2)

$$
SU(2) = \{U \in M_2(\mathbb{C}) : U^*U = \mathbb{1}, \det(U) = 1\}
$$

Define $\mathbf{i} = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}$, $\mathbf{j} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, and $\mathbf{k} = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}$.

$$
U = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \Rightarrow
$$

$$
U^*U = \begin{bmatrix} |\alpha|^2 + |\gamma|^2 & \overline{\alpha}\beta + \overline{\gamma}\delta \\ \overline{\beta}\alpha + \overline{\delta}\gamma & |\beta|^2 + |\delta|^2 \end{bmatrix} = \mathbb{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},
$$
and
$$
\det(U) = \begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix} = \alpha\delta - \beta\gamma = 1
$$

This implies $\delta = \overline{\alpha}$, $\gamma = -\overline{\beta}$ and $|\alpha|^2 + |\beta|^2 = 1$.

So $U = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} + t\mathbf{l}$ with $(x, y, z, t) \in \mathbb{S}^3 \subset \mathbb{R}^4$.

メ御き メミメ メミメー

重

Consider for example, the problem from QM

$$
i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t) = \left(-\frac{\hbar^2}{2m} \Delta + V(\mathbf{x})\right) \Psi(\mathbf{x}, t), \qquad (1)
$$

for $V(\mathbf{x}) = v(|\mathbf{x}|)$ for some nice function $v : [0, \infty) \to \mathbb{R}$.

$$
SO(3) = \{ R \in M_3(\mathbb{R}) : R^T R = I, det(R) = 1 \}
$$

For any $R \in SO(3)$, if Ψ solves [\(1\)](#page-3-0), and if $\Phi(\mathbf{x},t) = \Psi(R\mathbf{x},t)$, then Φ also solves (1) .

∢ 伊 ≯ ∢ 唐 ≯

つくい

For any $R \in SO(3)$ the operators H and U_R commute, where 4

$$
H = -\frac{1}{2m}\Delta + V(\mathbf{x})
$$

and

$$
U_R \Psi(\mathbf{x}) = \Psi(R\mathbf{x}).
$$

$$
L_z \Psi(\mathbf{x}) = \frac{1}{i} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \Psi(\mathbf{x}) = \frac{1}{i} \frac{d}{dt} \Big|_{t=0} \Psi(R_t \mathbf{x}),
$$

where $R_t = \begin{bmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

 L_x and L_y defined symmetrically: derivatives of rotations around x and y.

 \leftarrow \Box \rightarrow

メタメメ ミメメ ミメ

重

Commutation relations

The commutator is $[A, B] = AB - BA$.

$$
[L_x, L_y] = \left[\frac{1}{i}\left(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y}\right), \frac{1}{i}\left(z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z}\right)\right]
$$

$$
= -\left[y\frac{\partial}{\partial z}, z\frac{\partial}{\partial x}\right] - \left[z\frac{\partial}{\partial y}, x\frac{\partial}{\partial z}\right]
$$

But $\frac{\partial}{\partial z}(z\Psi(\mathbf{x})) - z\frac{\partial}{\partial z}\Psi(\mathbf{x}) = \Psi(\mathbf{x})$. So

$$
[L_x, L_y] = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} = iL_z.
$$

And, similarly, $[L_v, L_z] = iL_x$ and $[L_z, L_x] = iL_v$.

メ御き メミメ メミド

 $2Q$

目

Back to $\overline{{\rm SU}}(2)$:

$$
\dot{\mathbb{I}} = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}, \ \dot{\mathbb{J}} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \text{ and } \mathbb{I} = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}.
$$

The multiplication formulas for the quaternions are

$$
\; i \; j \; = \; \Bbbk \; , \; j \, \Bbbk \; = \; i \; , \; \Bbbk i \; = \; j \; ,
$$

and

$$
\text{ j} \, \text { i } = \, - \, \Bbbk \, , \, \, \mathbb{k} \, \text { j } = \, - \, \text { i } \, , \, \, \text { i } \, \Bbbk \, = \, - \, \text { j } \, , \, .
$$

So $[i, j] = 2k$, etc.

$$
S^x = \frac{i}{2} \mathbf{i}, \ S^y = \frac{i}{2} \mathbf{j}, \ S^z = \frac{i}{2} \mathbf{k}.
$$

$$
S^x = \begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix}, \quad S^y = \begin{bmatrix} 0 & -i/2 \\ i/2 & 0 \end{bmatrix}, \quad S^z = \begin{bmatrix} 1/2 & 0 \\ 0 & -1/2 \end{bmatrix}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

 299

Relation between $SU(2)$ and $SO(3)$

 $SU(2)$ is the set of unit quaternions $U = x\text{i} + y\text{j} + z\text{k} + t\text{l}$ with $x^2 + y^2 + z^2 + t^2 = 1$.

A "pure imaginary" quaternion is $Q = a\text{i} + b\text{j} + c\text{k}$, $(a, b, c) \in \mathbb{R}^3$.

Given a pure imaginary quaternion, UQU^* is also pure imaginary.

By multiplicativity of the ℓ^2 -norm, $Q \mapsto UQU^*$ is an isometry.

If $U \neq \pm \mathbb{1}$, let $Q = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})/\sqrt{x^2 + y^2 + z^2}$. Let R and S be pure imaginary unit quaternions such that $QR = S$. Then $UQU^* = Q$ and setting $\cos \theta = t$,

$$
URU^* = \cos(2\theta)R + \sin(2\theta)S, \text{ } USU^* = \cos(2\theta)S - \sin(2\theta)R.
$$

 Ω

If $U = \pm 1$ then $UQU^* = Q$ for all $Q = ai + bi + ck$ $Q = ai + bi + ck$ [.](#page-0-0)

Irreducible representations

Shannon Starr – UAB [Tutorial on](#page-0-0) $SU(2)$

 $2Q$

扂

A representation of $SU(2)$ is a vector space V along with operators J^{\times} , J^{\times} and J^z on V such that

$$
[J^x, J^y] = iJ^z, \quad [J^y, J^z] = iJ^x, \quad [J^z, J^x] = iJ^y.
$$

The representation is finite dimensional if V is.

A finite dimensional representation is unitary if V is a Hilbert space and J^{\times} , J^{\times} and J^z are Hermitian.

Fact: Every finite dimensional representation may be equipped with an inner-product to make the representation unitary.

Let j be the largest eigenvalue of S^z . Let $\psi_j \in V$ be an eigenvector.

Define the spin-raising and lowering operators J^+ and J^- as $J^{\pm} = J^{\times} \pm iJ^{\times}$.

Then
$$
[J^z, J^{\pm}] = [J^z, J^x] \pm i[J^z, J^y] = iJ^y \pm J^x = \pm J^{\pm}
$$
.

Hence,

$$
JzJ+\psi_j = [Jz, J+]\psi_j + J+Jz\psi_j
$$

= J⁺\psi_j + J⁺j\psi_j
= (j + 1)J⁺\psi_j.

So $J^+\psi_j=0$.

Similarly, for any $k \in \{1,2,\dots\}$, we have $(J^-)^k \psi_j$ is an eigenvector of J^z with eigenvalue $j-k$, unless $(J^-)^k\psi_j=0.$

Let k_* be the smallest k such that $(J^-)^k \psi_j = 0$.

メ御 メメ ヨ メ ミ メー

For
$$
k = 0, ..., k_* - 1
$$
, let $\psi_{j-k} = (J^-)^k \psi_j / ||(J^-)^k \psi_j||$.

We will prove by induction on $k \in \{0, \ldots, k_{*} - 1\}$ that for $m = j - k$

$$
J^{-}\psi_{m} = \sqrt{j(j+1) - m(m-1)}\,\psi_{m-1}\,,
$$

where 0 ψ_{j-k_*} is interpreted as 0.

For
$$
k = 0
$$
, which is $m = j$, it is by definition since

$$
(J^{-})^0 \psi_j = I \psi_j = \psi_j = \psi_{j-0}.
$$

For the induction step suppose that

$$
J^{-}\psi_{m+1} = \sqrt{j(j+1) - m(m+1)} \psi_m.
$$

Then since $J^+ = (J^-)^*$, we know

$$
J^{-}J^{+}\psi_{m} = [j(j+1) - m(m+1)]\psi_{m}.
$$

 \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B}

不同 医

 $2Q$

目

$$
J^{-}J^{+}\psi_{m} = [j(j+1) - m(m+1)]\psi_{m}.
$$

But it is easy to check the commutation relation $[J^+,J^-]=2J^z$.

So

$$
J^{+}J^{-}\psi_{m} = [J^{+}, J^{-}]\psi_{m} + 2J^{z}\psi_{m}
$$

=
$$
[j(j+1) - m(m+1)]\psi_{m} + 2m\psi_{m}
$$

=
$$
[j(j+1) - m(m-1)]\psi_{m}.
$$

So, $||J^{-}\psi_{m}||^{2} = j(j + 1) - m(m - 1).$

So this proves the claim for the formula. In particular we deduce $J^-\psi_{-j} = 0\psi_{-j-1} = 0$. So $k_* = 2i$, meaning that we have $2i + 1$ linearly independent eigenvectors of J^z , namely $\psi_j, \psi_{j-1}, \dots, \psi_{-j}$. So $j\in\{0,\frac{1}{2}$ $\frac{1}{2}$, 1, $\frac{3}{2}$ $\frac{3}{2}, 2, \ldots \}.$

メタト メミト メミト

Irreducible representations of SU(2)

Define \mathcal{D}^j to be the finite dimensional Hilbert space \mathbb{C}^{2j+1} with ortho-normal basis vectors $\psi_j, \psi_{j-1}, \ldots, \psi_{-j}.$

Then the representation of $SU(2)$ on this vector space is given by

$$
S^z\psi_m = m\psi_m,
$$

$$
S^{+}\psi_{m} = \sqrt{j(j+1) - m(m+1)} \psi_{m+1},
$$

$$
S^{-}\psi_{m} = \sqrt{j(j+1) - m(m-1)} \psi_{m-1},
$$

and $S^x=(S^++S^-)/2$, $S^y=(S^+-S^-)/(2i)$.

A finite dimensional representation of $SU(2)$ is irreducible if it admits no non-trivial sub-representations.

We have proved that \mathcal{D}^j , $j=0,\frac{1}{2}$ $\frac{1}{2}$, 1, $\frac{3}{2}$ $\frac{3}{2}$, 2, . . . is the complete list of finite dimensional irreps, modulo equivalenc[e.](#page-12-0)

Since $SU(2)$ maps homomorphically onto $SO(3)$ (2-to-1) any representation of $SO(3)$ may be considered to be a representation of SU(2) by precomposing with this homomorphism.

But not all representations of $SU(2)$ are representations of $SO(3)$. More specifically, for the spin-1/2 spin matrices

$$
S^x = \begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix}, \quad S^y = \begin{bmatrix} 0 & -i/2 \\ i/2 & 0 \end{bmatrix}, \quad S^z = \begin{bmatrix} 1/2 & 0 \\ 0 & -1/2 \end{bmatrix}
$$

we can see that $\exp(2\pi i S^z) = -\mathbb{1}$. In \mathcal{D}^j , $S^z \psi_m = m \psi_m$ for $m \in \{j, j-1, \ldots, -j\}$. So exp $(2\pi iS^z)\psi_m = e^{2\pi im}\psi_m$. But since $\{1, -1\}$ are both mapped to the identity in SO(3), we need $e^{2\pi i m} = 1$. So $j \in \{0, 1, 2\}$ not in $\{\frac{1}{2}, \frac{1}{2}\}$ $\frac{1}{2}$, $\frac{3}{2}$ $\frac{3}{2}, \ldots \}.$

K 御 ▶ K 唐 ▶ K 唐 ▶

Tensor products

Shannon Starr – UAB [Tutorial on](#page-0-0) $SU(2)$

K ロ ▶ K 伊 ▶ K 글

重

€ \sim 299

Just for motivation

We introduced a Schrödinger operator on $L^2(\mathbb{R}^3)$

$$
H\Psi(\mathbf{x})\,=\,\Big(-\frac{1}{2}\,\Delta+V(\mathbf{x})\Big)\Psi(\mathbf{x})
$$

for a central potential $V(\mathbf{x}) = v(|\mathbf{x}|)$.

A rotationally invariant Hamiltonian for two particles, ostensibly on $L^2(\mathbb{R}^3\times\mathbb{R}^3)$, is

$$
H_{1,2}\Psi(\mathbf{x}_1,\mathbf{x}_2) = \sum_{i=1}^2 \Big(-\frac{1}{2}\cdot\frac{\partial^2}{\partial \mathbf{x}_i^2} + V(\mathbf{x}_i)\Big)\Psi(\mathbf{x}_1,\mathbf{x}_2) + W(\mathbf{x}_1-\mathbf{x}_2)\Psi(\mathbf{x}_1,\mathbf{x}_2).
$$

If $W(\mathbf{x}) = w(|\mathbf{x}|)$ for some nice $w : [0, \infty) \to \mathbb{R}$, then if $H_{1,2}\Psi = E\Psi$ then $H_{1,2}\Phi = E\Phi$ where $\Phi(\mathbf{x}_1, \mathbf{x}_2) = \Psi(R\mathbf{x}_1, R\mathbf{x}_2)$ for $R \in SO(3)$. 290 As Hilbert spaces $L^2(\mathbb{R}^3\times\mathbb{R}^3)$ is equivalent to $L^2(\mathbb{R}^3)\otimes L^2(\mathbb{R}^3).$

If we consider the representation $R \in SO(3)$ maps to U_R on $L^2(\mathbb{R}^3\times\mathbb{R}^3)$ such that $U_R \Psi(\mathbf{x}_1,\mathbf{x}_2) = \Psi(R\mathbf{x}_1,R\mathbf{x}_2)$ then $L_{\rm tot}^z$ for example is given by

$$
L_{\text{tot}}^z \Psi(\mathbf{x}_1, \mathbf{x}_2) = \frac{1}{i} \frac{d}{dt} \bigg|_{t=0} \Psi(R_t \mathbf{x}_1, R_t \mathbf{x}_2)
$$

where
$$
R_t = \begin{bmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$
. This leads to

$$
L_{\text{tot}}^z = \frac{1}{i} \left(x_1 \frac{\partial}{\partial y_1} - y_1 \frac{\partial}{\partial x_1} \right) + \frac{1}{i} \left(x_2 \frac{\partial}{\partial y_2} - y_2 \frac{\partial}{\partial x_2} \right).
$$

On $L^2(\mathbb{R}^3)\otimes L^2(\mathbb{R}^3)$ this is equivalent to $L^2\otimes I+I\otimes L^2$.

Tensor product of two fin. dim. irreps of $SU(2)$

On $\mathcal{D}^j\otimes\mathcal{D}^{j'}$ consider

$$
\mathcal{S}^x_{\rm tot}\ =\ \mathcal{S}^x_1\otimes I_2+\mathit{l}_1\otimes \mathcal{S}^x_2\ ,\ \ldots
$$

For $m \in \{j,\ldots,-j\}$ let $\psi_m^{(1)} \in \mathcal{D}^j$ be the eigenvector of S_1^{\times} with eigenvalue m . Similarly for $m \in \{j', \ldots, -j'\}$ and $\psi^{(2)}_m \in \mathcal{D}^{j'}$.

Then
$$
S_{\text{tot}}^z \psi_m^{(1)} \otimes \psi_{m'}^{(2)} = (m + m') \psi_m^{(1)} \otimes \psi_{m'}^{(2)}
$$
.

Note

$$
(2j+1)(2j'+1) = \sum_{\ell=|j-j'|}^{j+j'} (2\ell+1)\,.
$$

∽≏ດ

$$
5 \cdot 4 \, = \, 8 + 6 + 4 + 2
$$

Let us prove the formula

$$
\mathcal{D}^j\otimes\mathcal{D}^{j'}\,=\,\bigoplus_{\ell=|j-j'|}^{j+j'}\mathcal{D}^\ell\,.
$$

 \leftarrow \Box ∢母

 \sim

∍

扂

 299

Total spin

For a representation of $SU(2)$ the Casimir operator is the total spin

$$
S^2 = (S^x)^2 + (S^y)^2 + (S^z)^2.
$$

Note that, for example,

$$
[S^z, \mathbf{S}^2] = [S^z, (S^x)^2 + (S^y)^2 + (S^z)^2]
$$

= $[S^z, S^xS^x] + [S^z, S^yS^y]$
= $[S^z, S^x]S^x + S^x[S^z, S^x] + [S^z, S^y]S^y + S^y[S^z, S^y]$
= $iS^yS^x + S^x(iS^y) + (-iS^x)S^y + S^y(-iS^x)$
= 0.

Using the raising and lowering operators we can also write

$$
\mathbf{S}^2 = (S^z)^2 + \frac{1}{2} S^+ S^- + \frac{1}{2} S^- S^+.
$$

 \leftarrow \Box

Consider \mathcal{D}^j . Let ψ_j be the highest weight vector,

$$
S^{z}\psi_{j} = j\psi_{j}, \quad S^{+}\psi_{j} = 0, \text{ and}
$$

$$
S^{-}\psi_{j} = \sqrt{j(j+1) - j(j-1)}\psi_{j-1} = \sqrt{2j}\psi_{j-1}.
$$

$$
\mathbf{S}^2 \psi_j = \left[(S^z)^2 + \frac{1}{2} S^+ S^- + \frac{1}{2} S^- S^+ \right] \psi_j
$$

= $j^2 \psi^j + \frac{1}{2} (\sqrt{2j})^2 \psi_j + 0$
= $j(j+1) \psi^j$

Note that for any other $m\in\{j,\ldots,-j\}$ and $\psi_m\in\mathcal{D}^j$, we have $\psi_{\bm m} = \mathcal{C}_{\bm m} (\mathcal{S}^-)^{j-m} \psi_j$. So

$$
\mathbf{S}^2 \psi_m = C_m \mathbf{S}^2 (S^-)^{j-m} \psi_j = C_m (S^-)^{j-m} \mathbf{S}^2 \psi_j = j(j+1) \psi_m,
$$

 $2Q$

扂

as well.

So

Back to tensor products

Suppose $j\geq j'$ and consider $\mathcal{D}^{j}\otimes\mathcal{D}^{j'}.$

Then $S^z_{\text{tot}} \psi^j \otimes \psi^{j'} = (S^z_1 + S^z_2) \psi^j \otimes \psi^{j'} = (j + j') \psi^j \otimes \psi^{j'}.$

Also $S_{\rm tot}^{+}\psi^{j}\otimes\psi^{j'}=(S_{1}^{+}+S_{2}^{+})\psi^{j}\otimes\psi^{j'}=0.$

Therefore ${\sf S}_{\rm tot}^2\psi^j\otimes\psi^{j^\prime}=(j+j^\prime)(j+j^\prime+1)\psi^j\otimes\psi^{j^\prime}.$

Now $(S_{\text{tot}}^-)^k \psi^j \otimes \psi^{j'}$ is non-zero for $k = 0, \ldots, 2(j + j') - 1$. Calling the normalized vector $\Psi_m^{j+j'}$, for $m = j + j' - k$,

$$
S_{\rm tot}^z \Psi_m^{j+j'} = m \Psi_m^{j+j'}, \qquad S_{\rm tot}^2 \Psi_m^{j+j'} = \ell(\ell+1) \Psi_m^{j+j'},
$$

for $\ell = j + j'.$

K 何 ▶ K 重 ▶ K 重 ▶ 「重 」 約 9,09

But the eigenspace of S_{tot}^z for eigenvalue $m = j + j' - 1$ has dimension 2 (assuming $j\geq j'>0)$ spanned by $\psi^{j-1}\otimes\psi^{j'}$ and $\psi^j\otimes\psi^{j'-1}.$

So there must be another vector Ψ orthogonal to $\Psi_{i+i'}^{j+j'}$ _{J+j′−1},
j+j′−1,

$$
\langle \Psi_{j+j'}^{j+j'}\,,\,\, S_{\rm tot}^+\Psi\rangle\,=\,\langle S_{\rm tot}^-\Psi_{j+j'}^{j+j'}\,,\,\,\Psi\rangle\,=\,0
$$

Since the eigenspace for S_{tot}^z with $m = j + j'$ is spanned by $\Psi_{i+i'}^{j+j'}$ $j^{++j'}_{j+j'}$, this means $S^+_\text{tot}\Psi=0.$

So Ψ is a highest weight vector with $S^z \Psi = m \Psi$ for $m = j + j' - 1$.

So
$$
\mathbf{S}_{\text{tot}}^2 \Psi = \ell(\ell+1)\Psi
$$
 for $\ell = j + j' - 1$.

Call it Ψ_ℓ^ℓ for $\ell = j + j' - 1$. For $m \in \{\ell, \ldots, -\ell\}$ call Ψ_m^ℓ the normalized version of $(S_{\mathrm{tot}}^{-})^{\ell-m}\Psi_{\ell}^{\ell}.$

Proceed inductively.

Let $\mathcal{H}^{\rm mag}_{m}$ denote the eigenspace of $S^z_{\rm tot}$ with eigenvalue m .

Then, for example, as long as $j \geq j' > \frac{1}{2}$ $\frac{1}{2}$,

$$
\mathcal{H}^{\rm mag}_{j+j'-2} \,=\, \text{span}\{ \psi^j\otimes\psi^{j'-2}\,,\,\, \psi^{j-1}\otimes\psi^{j'-1}\,,\,\, \psi^{j-2}\otimes\psi^{j'}\}\,.
$$

So there is a (normalized) vector Ψ

$$
\Psi\in\mathcal{H}^{\mathrm{mag}}_{j+j'-2}\cap\mathrm{span}\{\Psi^{j+j'}_{j+j'-2},\Psi^{j+j'-1}_{j+j'-2}\}^\perp\,.
$$

But
$$
\text{span}\{\Psi_{j+j'-1}^{j+j'}, \Psi_{j+j'-1}^{j+j'-1}\} = \mathcal{H}_{j+j'-1}^{\text{mag}}.
$$

So $\Psi \in \mathcal{H}_{j+j'-2}^{\text{mag}} \cap \text{ran}(S_{\text{tot}}^{-})^{\perp}.$
So $S_{\text{tot}}^{+} \Psi = 0.$

So Ψ is a highest weight vector with $S_{\text{tot}}^{z}\Psi = m\Psi$ for $m = j + j' - 2$.

So
$$
S_{\text{tot}}^2 \Psi = \ell(\ell+1)\Psi
$$
 for $\ell = j + j' - 2$.
Shannon Starr – UAB Tutorial on SU(2)

This works to give a copy of \mathcal{D}^{ℓ} in $\mathcal{D}^{j} \otimes \mathcal{D}^{j'}$ for $\ell = j + j', j + j' - 1, \ldots \,$ until you get to a ℓ with $\mathsf{dim} (\mathcal{H}_{\ell}^{\text{mag}})$ $\binom{\text{mag}}{\ell} \leq \text{\sf dim}(\mathcal{H}_{\ell+1}^{\text{mag}}).$

But, assuming $j \geq j'$, we have

$$
\mathcal{H}^{\mathrm{mag}}_{j-j'}\,=\,\mathsf{span}\{\psi^{j-2j'}\otimes\psi^{j'}\,,\,\,\psi^{j-2j'+1}\otimes\psi^{j'}\,,\,\,\ldots\,,\,\,\psi^{j}\otimes\psi^{-j'}\}
$$

That is the biggest subspace because for $m = j - j' - 1$ we lose the last vector since there is no $\psi^{-j'-1}$ in $\mathcal{D}^{j'}$.

So

$$
\mathcal{D}^j\otimes \mathcal{D}^{j'}\supseteq \bigotimes_{\ell=|j-j'|}^{j+j'} \mathcal{D}^\ell\,.
$$

But since the dimensions are equal, the spaces are equal.

Spin Waves

Shannon Starr – UAB [Tutorial on](#page-0-0) $SU(2)$

K ロ ▶ K 御 ▶ K 君 ▶

 \rightarrow \equiv \rightarrow

È

 299

The Heisenberg Ferromagnet

Suppose $\mathscr{G} = (\mathscr{V}, \mathscr{E})$ is a finite graph.

Let $\{i_1, \ldots, i_N\}$ be an enumeration of $\mathcal V$.

Let
$$
\mathcal{H}_{\mathscr{V}} = (\mathbb{C}^2)^{\otimes N} = (\mathcal{D}^{1/2})^{\otimes N}
$$
.

For
$$
a \in \{x, y, z\}
$$
 and $k \in \{1, ..., N\}$, let

$$
S_{i_k}^a = (\mathbb{1}_{\mathbb{C}^2})^{\otimes (k-1)} \otimes S^a \otimes (\mathbb{1}_{\mathbb{C}^2})^{n-k}
$$

Then the Heisenberg Hamiltonian $H_{\mathscr{G}}$ is the operator on $\mathcal{H}_{\mathscr{V}}$,

$$
H_{\mathscr{G}} = \sum_{\{i,j\} \in \mathscr{E}} h_{i,j},
$$

$$
h_{i,j} = \frac{1}{4} \mathbb{1} - S_i^x S_j^x - S_i^y S_j^y - S_i^z S_j^z.
$$

.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Restricting attention to $\mathbb{C}^2\otimes\mathbb{C}^2$,

$$
h_{1,2}|\!\uparrow\uparrow\rangle = h_{12}|\!\downarrow\downarrow\rangle = h_{12}(|\!\uparrow\downarrow\rangle + |\!\downarrow\uparrow\rangle) = 0,
$$

$$
h_{12}(|\!\uparrow\downarrow\rangle - |\!\downarrow\uparrow\rangle) = |\!\uparrow\downarrow\rangle - |\!\downarrow\uparrow\rangle.
$$

Going back to $\mathscr{G} = (\mathscr{V}, \mathscr{E})$, given $X \subseteq \mathscr{V}$ let

$$
\Psi_X \,=\, \prod_{\mathbf{i}\in X} S_{\mathbf{i}}^- | \! \uparrow \cdots \uparrow \rangle \,.
$$

Then

$$
H_{\mathscr{G}}\Psi_X\,=\,\frac{1}{2}\,\sum_{\substack{\mathbf{i}\in X\\ \mathbf{j}\in X^c\\ \{\mathbf{i},\mathbf{j}\}\in\mathscr{E}}}\,\left(\Psi_X-\Psi_{X\setminus\{\mathbf{i}\}\cup\{\mathbf{j}\}}\right).
$$

メロメ メ御 メメ きょ メモメ

重

Given $f_1, \ldots, f_n : \mathscr{V} \to \mathbb{C}$, consider

$$
\Psi_{f_1 \otimes \cdots \otimes f_n} = \sum_{\substack{X = \{\mathbf{i}_1, \dots, \mathbf{i}_n\} \\ |X| = n}} \sum_{\pi \in S_n} \prod_{k=1}^n f_{\pi(k)}(\mathbf{i}_k) \Psi_X
$$

Then

$$
\mathit{H}_{\mathscr{G}}\Psi_{f_1\otimes\cdots\otimes f_n}=\sum_{k=1}^n\Psi_{f_1\otimes\cdots\otimes(-\Delta_{\mathscr{G}}f_k)\otimes\cdots f_n}
$$

$$
-\frac{1}{2}\sum_{\substack{X=\{i_1,\ldots,i_n\}\\|X|=n}}\sum_{k=1}^n\sum_{\substack{1\leq j\leq n\\ \{i_j,i_k\}\in\mathscr{E}}}\sum_{\pi\in\mathcal{S}_n}\bigg(\prod_{\ell\neq k}f_{\pi(\ell)}(\mathbf{i}_\ell)\bigg)[f_{\pi(k)}(\mathbf{i}_k)-f_{\pi(k)}(\mathbf{i}_j)]\Psi_X.
$$

メロメ メタメ メミメ メミメー

目

 299

If one were to ignore the zero-mode and the problem of neighboring particles,

then one might conclude that the model is comparable to the quantum harmonic oscillator on G with zero-mode removed.

That would give free energy density

$$
-\frac{1}{\beta |\mathscr{V}|}\, \ln \text{tr}[e^{-\beta H_\mathscr{G}}] \, \approx \, \frac{1}{\beta |\mathscr{V}|} \sum_{E \in \text{spec}(-\Delta_\mathscr{G}) \setminus \{0\}} \ln (1-e^{-\beta E})
$$

In particular for $\mathscr{G} = \mathbb{T}_\mathsf{N}^d$ the discrete torus

$$
f_N(\beta) \approx \frac{1}{\beta N^d} \sum_{\xi \in \mathbb{T}_N^d \setminus \{0\}} \ln(1 - e^{-2\beta \sum_{i=1}^d \sin^2(\pi \xi_i/N)})
$$

$$
f_N(\beta) \approx \frac{1}{\beta N^d} \sum_{\xi \in \mathbb{T}_N^d \setminus \{0\}} \ln(1 - e^{-2\beta \sum_{i=1}^d \sin^2(\pi \xi_i/N)})
$$

\$\sim \frac{1}{\beta} \int_{[0,1]^d} \ln(1 - e^{-2\beta \sum_{i=1}^d \sin^2(\pi x_i)}) dx_1 \cdots dx_d\$
=
$$
\frac{1}{(2\pi)^d \beta^{1+(d/2)}} \int_{[0,2\pi \beta^{1/2}]^d} \ln(1 - e^{-2\beta \sum_{i=1}^d \sin^2(\frac{y_i}{2\beta^{1/2}})}) dy_1 \cdots dy_d
$$

\$\sim \frac{1}{\pi^d \beta^{(2d+1)/2}} \int_{\mathbb{R}^d} \ln(1 - e^{-||y||^2/2}) dy_1 \cdots dy_d\$

This is ignoring important issues. But it is easy to see that it leads to an upper bound in this limit: $N \to \infty$ first and then $\beta \to \infty$.

a mills.

4 A 6 4 F 6

K 로)

扂

Correggi, Giuliani and Seiringer recently showed how to obtain a matching lower bounds in the limit, $N \to \infty$ then $\beta \to \infty$.

One of their ideas is this: Suppose that Ψ is any eigenvector of $H_{\mathbb{T}_M^d}$ and simultaneously of $\mathbf{S}^2_{\text{tot}}$. Then for eigenvalues E and $S (\overset{\circ}{S} + 1)$, respectively,

$$
E \geq \frac{C}{N^2} \left(\frac{1}{2} N^d - S\right).
$$

The proof of this relies on three facts:

 $h_{\mathbf{i},\mathbf{j}}$ is a positive semidefinite operator,

a simple discrete Sobolev type inequality (closely related to Poincaré's inequality),

and the formula for addition of angular momenta for $SU(2)$.