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Reminders:

Tornado siren means go to lowest floor of a solid building, away
from windows.

For receipts in a currency other than USD$, write the conversion
to USD$ and write the conversion rate on the receipt.

Keep all meal receipts and turn them in.
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Outline:

1. The Lie Group SU(2)

2. Representations of SU(2)

3. Tensor products of representations

4. Spin waves in the Heisenberg ferromagnet
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Lie Group SU(2)

SU(2) = {U € My(C) : U*U =1, det(U) =1}

. 0 —i| . 0 -1 —i 0
Deflnen—[_i 0],j—[1 0],and]k—[0 i]'

_|a B
U[7 5]:>
. la]? + [y @B+~ 10
= — — ::ﬂ_:
vty [6@—1—(57 18] + |52 0 1|°
«

and det(U) =
(v) =

?‘ =af—py =1

This implies § =@, v = —f§ and |a|? + |3]? = 1.

So U = xi+ yj + zk + t1 with (x,y,z,t) € S C R*.
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Motivation from SO(3)

Consider for example, the problem from QM

ih E(?t V(x, t) = <—2hm A+ V(x)> V(x,t), (1)

for V(x) = v(|x|) for some nice function v : [0,00) — R.
SO(3) = {R e Ms(R) : RTR =1, det(R) = 1}

For any R € SO(3),
if W solves (1),
and if ®(x,t) = W(Rx, t),

then @ also solves (1).
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For any R € SO(3) the operators H and Ug commute,
where

1
H=-——"—A+V
5 A+ V()

and
UrV¥(x) = V(Rx).

1 0 0 1d

cost —sint 0
where Ry = |sint cost O0].
0 0 1

Ly and L, defined symmetrically: derivatives of rotations around x and y.
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Commutation relations

The commutator is [A, B] = AB — BA.

1 0 0
[Lx,Ly] = [i <y82_28y> )

0 .
[Ls,L,)] = —ya—l-x@ =il,.

And, similarly, [L,,L,] =Ly and [L,,L ] =il
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Back to SU(2):

. 0 —i| . (0 -1 —i 0
i= % o=l o] eme= 4 Y

The multiplication formulas for the quaternions are

ij =k, jk = i, ki = j,

and
ji = -k, kj = —1, ik = —j,.

So [1,j] = 2k, etc.

S$X = 115}’—23 52—5

S = [1(/)2 1(/)2] Y= [i?Z _6/2] 7= [1é2 —:?/2]
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Relation between SU(2) and SO(3)

SU(2) is the set of unit quaternions
U=xi+yj+zk + tl with x> + y?2 + 22 + > = 1.

A “pure imaginary” quaternion is
Q = ai + bj + ck, (a, b, c) € R3.

Given a pure imaginary quaternion, UQU* is also pure imaginary.

By multiplicativity of the £?-norm, Q@ — UQU* is an isometry.

If U+# =1, let Q = (xi+ yj+ zk)/\/x% + y? + 22
Let R and S be pure imaginary unit quaternions such that QR = S.
Then UQU* =  and setting cosf = t,

URU* = cos(20)R +5sin(20)S, USU" = cos(20)S —sin(20)R .

If U= =£1 then UQU* = Q for all Q = ai + bj + ck.
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Irreducible representations




Representations of SU(2)

A representation of SU(2) is a vector space V
along with operators J*, J¥ and J? on V such that

[P =%, [W, 127 =i, [JA 7] =i.
The representation is finite dimensional if V is.

A finite dimensional representation is unitary if V is a Hilbert
space and J*, J¥ and J? are Hermitian.

Fact: Every finite dimensional representation may be equipped
with an inner-product to make the representation unitary.

Let j be the largest eigenvalue of 5%. Let ¥); € V be an
eigenvector.
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Define the spin-raising and lowering operators J™ and J~ as
JE= L0

Then [JZ, JE] = [J7, X] £ i[J7, Y] = i + J* = +JF.

Hence,
JZJJ%/JJ- = [JZ,J+]¢j+J+Jzz/JJ-
= J+¢j + J+j1/1j
= (j+1)J1y;.
So J+1/Jj =0.

Similarly, for any k € {1,2,...}, we have (J7)X1; is an
eigenvector of JZ with eigenvalue j — k, unless (J7)*y; = 0.

Let k. be the smallest k such that (J~)*y; = 0.
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For k=0,...,k —1, let ¢ = (J7)k;/||(J7)<e]l.

We will prove by induction on k € {0,..., k. — 1} that for
m=j—k

J_¢m = \/J(J + 1) - m(m - 1) Ql)mfl )
where 0t;_y, is interpreted as 0.

For k = 0, which is m = j, it is by definition since

(J7)%) = I = ¥ = Yj—0.
For the induction step suppose that

S mir = Vil +1) = m(m + 1) .
Then since J* = (J7)*, we know

IS m = [+ 1) = m(m+ )]t .
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I m =[G +1) = m(m + 1]y
But it is easy to check the commutation relation [JT, J7] = 2J%.
So
I m = [JT, I [om + 205
= U +1) —m(m—1)]m.
So, 47 %ml* = +1) — m(m —1).
So this proves the claim for the formula.
In particular we deduce J™v¢_; =0¢_;_1 = 0.
So k. = 2j, meaning that we have 2j + 1 linearly independent

eigenvectors of J%, namely v;,v;_1,...,¢_;.
Soj€{0,3,1,3,2,...}.
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Irreducible representations of SU(2)

Define 7/ to be the finite dimensional Hilbert space C¥*! with
ortho-normal basis vectors v;,9;_1,...,9_;.
Then the representation of SU(2) on this vector space is given by

S55¢m = mpy,
STm = VJ(+1) — m(m—+1)Ymy1,
Sm = Vil +1) —m(m—1)¢m 1,
and $¥ = (St +57)/2, ¥ = (5F — §7)/(2i).

A finite dimensional representation of SU(2) is irreducible if it
admits no non-trivial sub-representations.

We have proved that D/, j = 0, %, 1, %, 2,... is the complete list of

finite dimensional irreps, modulo equivalence.
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Relation to the representations of SO(3)

Since SU(2) maps homomorphically onto SO(3) (2-to-1)
any representation of SO(3) may be considered to be a
representation of SU(2) by precomposing with this homomorphism.

But not all representations of SU(2) are representations of SO(3).
More specifically, for the spin-1/2 spin matrices

sz{o 1/2], Sy:[o —i/2]7 52:[1/2 o]

1/2 0 i/2 0 0 -1/2
we can see that exp(27iS%) = —1.
In DV, SZ¢pm = mipm for me {j,j—1,...,—j}.

So exp(27iS?)hm = €T Map .
But since {1, —1} are both mapped to the identity in SO(3), we
need e2™™ = 1. So j € {0,1,2} not in {%, %, S

Shannon Starr — UAB Tutorial on SU(2)



Tensor products




Just for motivation

We introduced a Schrodinger operator on L2(R3)
1
HWY(x) = (— SO+ V(x))w(x)

for a central potential V(x) = v(|x|).

A rotationally invariant Hamiltonian for two particles, ostensibly on
L2(R3 x R3), is

21 &2

H1’2W(X1,X2) = Z ( — 5 . 87)(? -+ V(X,’))‘U(Xl,XQ)
+ W(Xl - Xz)W(Xl, X2) .

If W(x) = w(|x|) for some nice w : [0,00) — R,

then if Hi oV = EV then Hy® = E® where
d(x1,x2) = V(Rx1, Rx2) for R € SO(3).
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As Hilbert spaces L?(R3 x R3) is equivalent to L2(R3) ® L2(R3).

If we consider the representation R € SO(3) maps to Ug on
L2(R3 x R3) such that UpW(x1,x2) = W(Rx1, Rx2)
then LZ . for example is given by

5 1d
LEsV(x1,x2) = Tdt

W(Rtxly Rtxz)
t=0

cost —sint 0
where Ry = |sint cost 0]. This leads to
0 0 1

2o M9 9N 10 0
tot — X1 EW Y1 Ox1 ; X2 By y2 o )

On L2(R3?) ® L?(IR3) this is equivalent to L7 @ | + | ® LZ.
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Tensor product of two fin. dim. irreps of SU(2)

On D/ @ D/ consider

St = ST @h+h®Sy, ...

Forme {j,...,—j} let @bf,}) € D/ be the eigenvector of 5§ with
eigenvalue m. Similarly for me {j/,...,—j'} and 1/15,3) el

Then Sfoti/fﬁrp ® w,(j,) =(m+ m')wr(r}) ® 1/1,(3,).

Note
J+

Qi+ +1) = > (2+1)
£=|j—j']
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5.4 =8+6+4+2

Let us prove the formula

it

DeD = B .
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For a representation of SU(2) the Casimir operator is the total spin
§? = (S +(8")* +(57)°.
Note that, for example,

[§%,8%] = [S%,(S™)* + ($)* +(57)%]
= [S%,5%5"] + 57,57 9Y]
= [5%,5%]S + SX[S%, §¥] + [S7, §Y]SY + SY[S%, V]
= (575X + SX(iSY) + (—i5¥)SY + §Y(—i5%)
= 0.

Using the raising and lowering operators we can also write
2 z\2 1 +c— 1. +
S° = (§%)° + 55 ST+ 55 ST,
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Consider /. Let 1) be the highest weight vector,
S*; = jy, 5+1/)j =0, and
ST = ViU+1) —il - D1 = V2

So
S2y; = [(SZ)2 + % Sts—+ %5—5+]¢j
=+ %(\@)2%‘ +0
= jU + 1)
Note that for any other m € {j,..., —j} and ¢, € T/,

we have ¥, = Cn(S™)Y ™. So
S%m = CuS*(STY ™ = Cn(STY"S%; = j(j + 1)Ym,

as well.
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Back to tensor products

Suppose j > j' and consider DJ @ DV

Then St @ v/ = (S + S50 @/ = (1 + /) @ /.
Also St @' = (S + S @/ = 0.

Therefore S2 0/ @ = (j+j)(j +J + 1) @ ¢

Now (S )¢ @ ¢/ is non-zero for k = 0,...,2(j 4 ;') — 1.
Calling the normalized vector Wi/, for m = j +j' — k,

S W = muit 2 W = (e )W

for { =j+ /.
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But the eigenspace of SZ, for eigenvalue m=j+; —1
has dimension 2 (assummgj > >0)

spanned by /"1 ®@ ¢/ and o/ @ ¢/ 1.

So there must be another vector W orthogonal to \Ifﬁj, 1
it sty i+ _
<\|J ' Stot > <St0tw_/+_/’ ’ W) =0

Jti

Since the eigenspace for SZ, with m=j +

W this means 5.7, W = 0.

is spanned by e

So W is a highest weight vector with SV = mV¥ for m = j 4’ — 1.
So S2 W =/({+ 1)V for{ =+ —1.

Call it W for £ =j +j' — 1. For me {,...,—£} call W, the
normalized version of (S, )¢~ MW
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Proceed inductively.

Let Hm"® denote the eigenspace of SZ, with eigenvalue m.

. ./ 1
Then, for example, as long as j > j > 3,

HEE = span{yf @ 2 W L 2 g}

J

So there is a (normalized) vector W

mag g+ JH =1y L
Ve 1 o Nispan{Wi ), o Wi o

J+i’ J+j'=1y _ 4 mag
But span{lllj+j,_1,\Uj+j,_1} = Hj+j,_1.

— L
So W e H\ , Nran(S)

So S;F W =0.

So W is a highest weight vector with SZ, W = mW for
m=j+j —2.

So S2 W =(({+ 1)V for £ = j+j —2.
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This works to give a copy of D! in D/ @ D/’ for
{=j+/.j+j —1,... until you get to a ¢ with
dim(H,"*®) < dim(H,7F).

But, assuming j > j/, we have

HI = span{y ¥ @yl WA ey Wy

That is the biggest subspace because for m = j — j/ — 1 we lose the
last vector since there is no ¢4 ~1 in /.

So
_ 3 J+s
DeD 2 ) D
L=j—j'|

But since the dimensions are equal, the spaces are equal.
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Spin Waves
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The Heisenberg Ferromagnet

Suppose &4 = (¥, &) is a finite graph.
Let {i1,...,in} be an enumeration of ¥
Let Hy = (C2)2N = (DV/2)®N,
Forae {x,y,z} and k € {1,..., N}, let
5 = (1e)** Ve s e (1e)"".

Then the Heisenberg Hamiltonian Hy is the operator on Hy,

Hy = Z hij,

{ijte&

1
hi=1-S'S -8 —SSf.
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Restricting attention to C? @ C?,

ho[t) = halld) = ho([T)) +141) = 0,
ha([1h) = [11) = 1) = [11).
Going back to ¥ = (¥, &), given X C 7 let

Vx = [Is1t--1.

ieX

Then 1
HyWx = 5 Z (Wx = Vx\giyugy) -
ieX
jexe
{ijtes
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Given fi,...,f, : ¥ — C, consider

n
Vig-of, = Z Z H Fr(iy (i)W x

X={i1,....in} TES, k=1
[ X|=n

Then

k=1

D SIS I 01 (X0 GO

X={i1,...,in} k=1 1<j<n weS$,
|X|:n {ij,ik}Eg

£k
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If one were to ignore the zero-mode and the problem of

neighboring particles,
then one might conclude that the model is comparable to the
quantum harmonic oscillator on G with zero-mode removed.

That would give free energy density

Intrle #H¥] ~ 1 Z In(1 — e PF)
did Eespec(—Ag)\{0}

1
Bl
In particular for ¢ = Tj’v the discrete torus

Z In(1 — o280 sin2(7r§,-/N))
€€TH\{0}

1
fn(B) ~ BNd
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1 . o
u(B) ~ =z > In(1— e 2Rasin(mE/N))

Nd
P ¢eTH\{0}
~ ; : In(1—e 28 > Si“2(”")) dxy -+ dxyq
0,1]¢
1 —28%0L sin(i)
B (2m)d g1+(d/2) /[0 2r31/2]d In(l—e ) dy - .

1 e
NW/Rdm(l_e I91R/2) dyy - dyg

This is ignoring important issues. But it is easy to see that it leads
to an upper bound in this limit: N — oo first and then 8 — cc.

Shannon Starr — UAB Tutorial on SU(2)



Correggi, Giuliani and Seiringer

Correggi, Giuliani and Seiringer recently showed how to obtain a
matching lower bounds in the limit, N — oo then § — co.

One of their ideas is this: Suppose that W is any eigenvector of
HT% and simultaneously of S2 . Then for eigenvalues E and

S(S + 1), respectively,

c 1

> —(=N9-9).
_N2(2N 3)

The proof of this relies on three facts:

h;; is a positive semidefinite operator,

a simple discrete Sobolev type inequality (closely related to
Poincaré's inequality),

and the formula for addition of angular momenta for SU(2).
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