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Reminders:

Tornado siren means go to lowest floor of a solid building, away
from windows.

For receipts in a currency other than USD$, write the conversion
to USD$ and write the conversion rate on the receipt.

Keep all meal receipts and turn them in.
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Outline:

1. The Lie Group SU(2)

2. Representations of SU(2)

3. Tensor products of representations

4. Spin waves in the Heisenberg ferromagnet
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Lie Group SU(2)

SU(2) = {U ∈ M2(C) : U∗U = 1 , det(U) = 1}

Define i =

[
0 −i
−i 0

]
, j =

[
0 −1
1 0

]
, and k =

[
−i 0
0 i

]
.

U =

[
α β
γ δ

]
⇒

. U∗U =

[
|α|2 + |γ|2 αβ + γδ

βα + δγ |β|2 + |δ|2
]

= 1 =

[
1 0
0 1

]
,

. and det(U) =

∣∣∣∣α β
γ δ

∣∣∣∣ = αδ − βγ = 1

This implies δ = α, γ = −β and |α|2 + |β|2 = 1.

So U = xi + yj + zk + t1 with (x , y , z , t) ∈ S3 ⊂ R4.

Shannon Starr – UAB Tutorial on SU(2)



Motivation from SO(3)

Consider for example, the problem from QM

i~
∂

∂t
Ψ(x, t) =

(
− ~2

2m
∆ + V (x)

)
Ψ(x, t) , (1)

for V (x) = v(|x|) for some nice function v : [0,∞)→ R.

SO(3) = {R ∈ M3(R) : RTR = I , det(R) = 1}

For any R ∈ SO(3),

. if Ψ solves (1),

. and if Φ(x, t) = Ψ(Rx, t),

. then Φ also solves (1).
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For any R ∈ SO(3) the operators H and UR commute,
where

H = − 1

2m
∆ + V (x)

and
URΨ(x) = Ψ(Rx) .

LzΨ(x) =
1

i

(
x
∂

∂y
− y

∂

∂x

)
Ψ(x) =

1

i

d

dt

∣∣∣∣∣
t=0

Ψ(Rtx) ,

where Rt =

cos t − sin t 0
sin t cos t 0

0 0 1

.

Lx and Ly defined symmetrically: derivatives of rotations around x and y .
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Commutation relations

The commutator is [A,B] = AB − BA.

[Lx , Ly ] =

[
1

i

(
y
∂

∂z
− z

∂

∂y

)
,

1

i

(
z
∂

∂x
− x

∂

∂z

)]

= −

[
y
∂

∂z
, z

∂

∂x

]
−

[
z
∂

∂y
, x

∂

∂z

]

But ∂
∂z

(
zΨ(x)

)
− z ∂

∂z Ψ(x) = Ψ(x). So

[Lx , Ly ] = −y ∂

∂x
+ x

∂

∂y
= iLz .

And, similarly, [Ly , Lz ] = iLx and [Lz , Lx ] = iLy .
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Back to SU(2):

i =

[
0 −i
−i 0

]
, j =

[
0 −1
1 0

]
, and k =

[
−i 0
0 i

]
.

The multiplication formulas for the quaternions are

ij = k , jk = i , ki = j ,

and
ji = −k , kj = −i , ik = −j , .

So [i, j] = 2k, etc.

Sx = i
2 i, S

y = i
2 j, S

z = i
2 k.

Sx =

[
0 1/2

1/2 0

]
, Sy =

[
0 −i/2
i/2 0

]
, Sz =

[
1/2 0

0 −1/2

]
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Relation between SU(2) and SO(3)

SU(2) is the set of unit quaternions
U = xi + yj + zk + t1 with x2 + y2 + z2 + t2 = 1.

A “pure imaginary” quaternion is
Q = ai + bj + ck, (a, b, c) ∈ R3.

Given a pure imaginary quaternion, UQU∗ is also pure imaginary.

By multiplicativity of the `2-norm, Q 7→ UQU∗ is an isometry.

If U 6= ±1, let Q = (xi + yj + zk)/
√
x2 + y2 + z2.

Let R and S be pure imaginary unit quaternions such that QR = S .
Then UQU∗ = Q and setting cos θ = t,

URU∗ = cos(2θ)R + sin(2θ)S , USU∗ = cos(2θ)S − sin(2θ)R .

If U = ±1 then UQU∗ = Q for all Q = ai + bj + ck.
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Irreducible representations
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Representations of SU(2)

A representation of SU(2) is a vector space V
along with operators Jx , Jy and Jz on V such that

[Jx , Jy ] = iJz , [Jy , Jz ] = iJx , [Jz , Jx ] = iJy .

The representation is finite dimensional if V is.

A finite dimensional representation is unitary if V is a Hilbert
space and Jx , Jy and Jz are Hermitian.

Fact: Every finite dimensional representation may be equipped
with an inner-product to make the representation unitary.

Let j be the largest eigenvalue of Sz . Let ψj ∈ V be an
eigenvector.
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Define the spin-raising and lowering operators J+ and J− as
J± = Jx ± iJy .

Then [Jz , J±] = [Jz , Jx ]± i [Jz , Jy ] = iJy ± Jx = ±J±.

Hence,

JzJ+ψj = [Jz , J+]ψj + J+Jzψj

= J+ψj + J+jψj

= (j + 1)J+ψj .

So J+ψj = 0.

Similarly, for any k ∈ {1, 2, . . . }, we have (J−)kψj is an
eigenvector of Jz with eigenvalue j − k, unless (J−)kψj = 0.

Let k∗ be the smallest k such that (J−)kψj = 0.
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For k = 0, . . . , k∗ − 1, let ψj−k = (J−)kψj/‖(J−)kψj‖.

We will prove by induction on k ∈ {0, . . . , k∗ − 1} that for
m = j − k

J−ψm =
√

j(j + 1)−m(m − 1)ψm−1 ,

where 0ψj−k∗ is interpreted as 0.

For k = 0, which is m = j , it is by definition since
(J−)0ψj = Iψj = ψj = ψj−0.

For the induction step suppose that

J−ψm+1 =
√
j(j + 1)−m(m + 1)ψm .

Then since J+ = (J−)∗, we know

J−J+ψm = [j(j + 1)−m(m + 1)]ψm .
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J−J+ψm = [j(j + 1)−m(m + 1)]ψm .

But it is easy to check the commutation relation [J+, J−] = 2Jz .

So

J+J−ψm = [J+, J−]ψm + 2Jzψm

= [j(j + 1)−m(m + 1)]ψm + 2mψm

= [j(j + 1)−m(m − 1)]ψm .

So, ‖J−ψm‖2 = j(j + 1)−m(m − 1).

So this proves the claim for the formula.
In particular we deduce J−ψ−j = 0ψ−j−1 = 0.
So k∗ = 2j , meaning that we have 2j + 1 linearly independent
eigenvectors of Jz , namely ψj , ψj−1, . . . , ψ−j .
So j ∈ {0, 1

2 , 1,
3
2 , 2, . . . }.
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Irreducible representations of SU(2)

Define Dj to be the finite dimensional Hilbert space C2j+1 with
ortho-normal basis vectors ψj , ψj−1, . . . , ψ−j .
Then the representation of SU(2) on this vector space is given by

Szψm = mψm ,

S+ψm =
√
j(j + 1)−m(m + 1)ψm+1 ,

S−ψm =
√

j(j + 1)−m(m − 1)ψm−1 ,

and Sx = (S+ + S−)/2, Sy = (S+ − S−)/(2i).

A finite dimensional representation of SU(2) is irreducible if it
admits no non-trivial sub-representations.

We have proved that Dj , j = 0, 1
2 , 1,

3
2 , 2, . . . is the complete list of

finite dimensional irreps, modulo equivalence.
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Relation to the representations of SO(3)

Since SU(2) maps homomorphically onto SO(3) (2-to-1)
any representation of SO(3) may be considered to be a
representation of SU(2) by precomposing with this homomorphism.

But not all representations of SU(2) are representations of SO(3).
More specifically, for the spin-1/2 spin matrices

Sx =

[
0 1/2

1/2 0

]
, Sy =

[
0 −i/2
i/2 0

]
, Sz =

[
1/2 0

0 −1/2

]
we can see that exp(2πiSz) = −1.
In Dj , Szψm = mψm for m ∈ {j , j − 1, . . . ,−j}.
So exp(2πiSz)ψm = e2πimψm.
But since {1,−1} are both mapped to the identity in SO(3), we
need e2πim = 1. So j ∈ {0, 1, 2} not in {1

2 ,
3
2 , . . . }.
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Tensor products
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Just for motivation

We introduced a Schrödinger operator on L2(R3)

HΨ(x) =
(
− 1

2
∆ + V (x)

)
Ψ(x)

for a central potential V (x) = v(|x|).

A rotationally invariant Hamiltonian for two particles, ostensibly on
L2(R3 × R3), is

H1,2Ψ(x1, x2) =
2∑

i=1

(
− 1

2
· ∂

2

∂x2
i

+ V (xi )
)

Ψ(x1, x2)

+ W (x1 − x2)Ψ(x1, x2) .

If W (x) = w(|x|) for some nice w : [0,∞)→ R,
then if H1,2Ψ = EΨ then H1,2Φ = EΦ where
Φ(x1, x2) = Ψ(Rx1,Rx2) for R ∈ SO(3).
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As Hilbert spaces L2(R3 × R3) is equivalent to L2(R3)⊗ L2(R3).

If we consider the representation R ∈ SO(3) maps to UR on
L2(R3 × R3) such that URΨ(x1, x2) = Ψ(Rx1,Rx2)
then Lztot for example is given by

LztotΨ(x1, x2) =
1

i

d

dt

∣∣∣∣
t=0

Ψ(Rtx1,Rtx2)

where Rt =

cos t − sin t 0
sin t cos t 0

0 0 1

. This leads to

Lztot =
1

i

(
x1

∂

∂y1
− y1

∂

∂x1

)
+

1

i

(
x2

∂

∂y2
− y2

∂

∂x2

)
.

On L2(R3)⊗ L2(R3) this is equivalent to Lz ⊗ I + I ⊗ Lz .
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Tensor product of two fin. dim. irreps of SU(2)

On Dj ⊗Dj ′ consider

Sx
tot = Sx

1 ⊗ I2 + I1 ⊗ Sx
2 , . . .

For m ∈ {j , . . . ,−j} let ψ
(1)
m ∈ Dj be the eigenvector of Sx

1 with

eigenvalue m. Similarly for m ∈ {j ′, . . . ,−j ′} and ψ
(2)
m ∈ Dj ′ .

Then Sz
totψ

(1)
m ⊗ ψ(2)

m′ = (m + m′)ψ
(1)
m ⊗ ψ(2)

m′ .

Note

(2j + 1)(2j ′ + 1) =

j+j ′∑
`=|j−j ′|

(2`+ 1) .
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5 · 4 = 8 + 6 + 4 + 2

Let us prove the formula

Dj ⊗Dj ′ =

j+j ′⊕
`=|j−j ′|

D` .
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Total spin

For a representation of SU(2) the Casimir operator is the total spin

S2 = (Sx)2 + (Sy )2 + (Sz)2 .

Note that, for example,

[Sz ,S2] = [Sz , (Sx)2 + (Sy )2 + (Sz)2]

= [Sz ,SxSx ] + [Sz ,SySy ]

= [Sz ,Sx ]Sx + Sx [Sz , Sx ] + [Sz ,Sy ]Sy + Sy [Sz ,Sy ]

= iSySx + Sx(iSy ) + (−iSx)Sy + Sy (−iSx)

= 0 .

Using the raising and lowering operators we can also write

S2 = (Sz)2 +
1

2
S+S− +

1

2
S−S+ .
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Consider Dj . Let ψj be the highest weight vector,

Szψj = jψj , S+ψj = 0 , and

S−ψj =
√
j(j + 1)− j(j − 1)ψj−1 =

√
2j ψj−1 .

So

S2ψj =
[
(Sz)2 +

1

2
S+S− +

1

2
S−S+

]
ψj

= j2ψj +
1

2
(
√

2j)2ψj + 0

= j(j + 1)ψj

Note that for any other m ∈ {j , . . . ,−j} and ψm ∈ Dj ,
we have ψm = Cm(S−)j−mψj . So

S2ψm = CmS
2(S−)j−mψj = Cm(S−)j−mS2ψj = j(j + 1)ψm ,

as well.
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Back to tensor products

Suppose j ≥ j ′ and consider Dj ⊗Dj ′ .

Then Sz
totψ

j ⊗ ψj ′ = (Sz
1 + Sz

2 )ψj ⊗ ψj ′ = (j + j ′)ψj ⊗ ψj ′ .

Also S+
totψ

j ⊗ ψj ′ = (S+
1 + S+

2 )ψj ⊗ ψj ′ = 0.

Therefore S2
totψ

j ⊗ ψj ′ = (j + j ′)(j + j ′ + 1)ψj ⊗ ψj ′ .

Now (S−tot)
kψj ⊗ ψj ′ is non-zero for k = 0, . . . , 2(j + j ′)− 1.

Calling the normalized vector Ψj+j ′
m , for m = j + j ′ − k ,

Sz
totΨ

j+j ′
m = mΨj+j ′

m , S2
totΨ

j+j ′
m = `(`+ 1)Ψj+j ′

m ,

for ` = j + j ′.
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But the eigenspace of Sz
tot for eigenvalue m = j + j ′ − 1

has dimension 2 (assuming j ≥ j ′ > 0)
spanned by ψj−1 ⊗ ψj ′ and ψj ⊗ ψj ′−1.

So there must be another vector Ψ orthogonal to Ψj+j ′

j+j ′−1,

〈Ψj+j ′

j+j ′ , S
+
totΨ〉 = 〈S−totΨ

j+j ′

j+j ′ , Ψ〉 = 0

Since the eigenspace for Sz
tot with m = j + j ′

is spanned by Ψj+j ′

j+j ′ , this means S+
totΨ = 0.

So Ψ is a highest weight vector with SzΨ = mΨ for m = j + j ′− 1.

So S2
totΨ = `(`+ 1)Ψ for ` = j + j ′ − 1.

Call it Ψ`
` for ` = j + j ′ − 1. For m ∈ {`, . . . ,−`} call Ψ`

m the
normalized version of (S−tot)

`−mΨ`
`.
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Proceed inductively.

Let Hmag
m denote the eigenspace of Sz

tot with eigenvalue m.

Then, for example, as long as j ≥ j ′ > 1
2 ,

Hmag
j+j ′−2 = span{ψj ⊗ ψj ′−2 , ψj−1 ⊗ ψj ′−1 , ψj−2 ⊗ ψj ′} .

So there is a (normalized) vector Ψ

Ψ ∈ Hmag
j+j ′−2 ∩ span{Ψj+j ′

j+j ′−2,Ψ
j+j ′−1
j+j ′−2}

⊥ .

But span{Ψj+j ′

j+j ′−1,Ψ
j+j ′−1
j+j ′−1} = Hmag

j+j ′−1.

So Ψ ∈ Hmag
j+j ′−2 ∩ ran(S−tot)

⊥.

So S+
totΨ = 0.

So Ψ is a highest weight vector with Sz
totΨ = mΨ for

m = j + j ′ − 2.

So S2
totΨ = `(`+ 1)Ψ for ` = j + j ′ − 2.
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This works to give a copy of D` in Dj ⊗Dj ′ for
` = j + j ′, j + j ′ − 1, . . . until you get to a ` with
dim(Hmag

` ) ≤ dim(Hmag
`+1 ).

But, assuming j ≥ j ′, we have

Hmag
j−j ′ = span{ψj−2j ′ ⊗ ψj ′ , ψj−2j ′+1 ⊗ ψj ′ , . . . , ψj ⊗ ψ−j ′}

That is the biggest subspace because for m = j − j ′− 1 we lose the
last vector since there is no ψ−j

′−1 in Dj ′ .

So

Dj ⊗Dj ′ ⊇
j+j ′⊗

`=|j−j ′|

D` .

But since the dimensions are equal, the spaces are equal.
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Spin Waves
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The Heisenberg Ferromagnet

Suppose G = (V ,E ) is a finite graph.

Let {i1, . . . , iN} be an enumeration of V .

Let HV = (C2)⊗N = (D1/2)⊗N .

For a ∈ {x , y , z} and k ∈ {1, . . . ,N}, let

Sa
ik

= (1C2)⊗(k−1) ⊗ Sa ⊗ (1C2)n−k .

Then the Heisenberg Hamiltonian HG is the operator on HV ,

HG =
∑
{i,j}∈E

hi,j ,

hi,j =
1

4
1− Sx

i S
x
j − Sy

i S
y
j − Sz

i S
z
j .
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Magnons

Restricting attention to C2 ⊗ C2,

h1,2|↑↑〉 = h12|↓↓〉 = h12(|↑↓〉+ |↓↑〉) = 0 ,

h12(|↑↓〉 − |↓↑〉) = |↑↓〉 − |↓↑〉 .

Going back to G = (V ,E ), given X ⊆ V let

ΨX =
∏
i∈X

S−i |↑ · · · ↑〉 .

Then

HG ΨX =
1

2

∑
i∈X
j∈X c

{i,j}∈E

(ΨX −ΨX\{i}∪{j}) .
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Given f1, . . . , fn : V → C, consider

Ψf1⊗···⊗fn =
∑

X={i1,...,in}
|X |=n

∑
π∈Sn

n∏
k=1

fπ(k)(ik)ΨX

Then

HG Ψf1⊗···⊗fn =
n∑

k=1

Ψf1⊗···⊗(−∆G fk )⊗···fn

− 1

2

∑
X={i1,...,in}
|X |=n

n∑
k=1

∑
1≤j≤n
{ij ,ik}∈E

∑
π∈Sn

(∏
6̀=k

fπ(`)(i`)

)
[fπ(k)(ik)− fπ(k)(ij)]ΨX .
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If one were to ignore the zero-mode and the problem of
neighboring particles,
then one might conclude that the model is comparable to the
quantum harmonic oscillator on G with zero-mode removed.

That would give free energy density

− 1

β|V |
ln tr[e−βHG ] ≈ 1

β|V |
∑

E∈spec(−∆G )\{0}

ln(1− e−βE )

In particular for G = Td
N the discrete torus

fN(β) ≈ 1

βNd

∑
ξ∈Td

N\{0}

ln(1− e−2β
∑d

i=1 sin2(πξi/N))
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fN(β) ≈ 1

βNd

∑
ξ∈Td

N\{0}

ln(1− e−2β
∑d

i=1 sin2(πξi/N))

∼ 1

β

∫
[0,1]d

ln(1− e−2β
∑d

i=1 sin2(πxi )) dx1 · · · dxd

=
1

(2π)dβ1+(d/2)

∫
[0,2πβ1/2]d

ln(1− e
−2β

∑d
i=1 sin2(

yi

2β1/2
)
) dy1 · · · dyd

∼ 1

πdβ(2d+1)/2

∫
Rd

ln(1− e−‖y‖
2/2) dy1 · · · dyd

This is ignoring important issues. But it is easy to see that it leads
to an upper bound in this limit: N →∞ first and then β →∞.
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Correggi, Giuliani and Seiringer

Correggi, Giuliani and Seiringer recently showed how to obtain a
matching lower bounds in the limit, N →∞ then β →∞.

One of their ideas is this: Suppose that Ψ is any eigenvector of
HTd

N
and simultaneously of S2

tot. Then for eigenvalues E and

S(S + 1), respectively,

E ≥ C

N2
(

1

2
Nd − S) .

The proof of this relies on three facts:
hi,j is a positive semidefinite operator,
a simple discrete Sobolev type inequality (closely related to
Poincaré’s inequality),
and the formula for addition of angular momenta for SU(2).
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