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To the Instructor

This guide was written for a two semester senior level introductory course in group theory
at SUNY New Paltz. The first semester is required of all mathematics and mathematics
secondary education majors, with the second semester available as an elective. For most
students in these classes this is a first serious course requiring them to prove theorems
on their own. Students with prior experience would be likelyto move through it more
quickly. This guide was also used at a considerably more competitive university by another
instructor who completed it in one semester.

You will find here 105 problems and theorems which students dooutside of class and
present in class. I discuss each solution after it is presented, and ask all of the students
to write up a correct version of each in a neatly bound portfolio that must be complete by
the end of the semester. Scattered problems and theorems arenot presented in class, or not
presented in full, but are instead left for all students to doon their own. During the semester
students give me their portfolios to check as often as they like, and some require multiple
tries before they are able to do certain assignments correctly. I require the portfolios to be
completed and handed in at the end of each chapter. I check that it is complete and read
carefully only those few that were not done in class.

The first chapter offers students an opportunity to familiarize themselves with an as-
sortment of particular groups, finite and infinite, commutative and non-commutative. The
tables created in Problem 1 are valuable references throughout the course. Problems 2 and
3 provide a good reminder that a counterexample, and not a failed proof, is necessary to
show that a universal property does not hold. Problem 5 can bedone laboriously from
scratch, or efficiently for students who remember some basiclinear algebra.

Building on the first chapter, the second gives a sequence of elementary theorems of
abstract group theory. As much as I possibly can, I try to drawon experimental evidence
from our examples to get students to state conjectures and then prove them formally. Corol-
lary 11 is the first good example of this. For finite groups, Theorems 12, 14 and 15 are three
ways of saying that the rows and columns of a group table are permutations. Theorem 16
begins a central theme of characterizing groups of different finite orders, and foreshadows
the notions of equivalence relation and isomorphism.

In Chapter 3 we study cyclic groups. Lemma 22 is used in Problem 23 to give a bare
hands proof that every subgroup ofZn is cyclic whenn = 12. Imagining doing this rather
laborious computation for other values ofn helps my students appreciate the value of ab-
stract mathematics when later they prove Theorem 32. Problem 25 is another good example
of an empirical conjecture, and the correct answer to the last question appears to be ‘No’
until they reach the last theorem of the chapter.
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To the Instructor iv

In Chapter 4 we pull LaGrange’s Theorem out of some more concrete arguments. The-
orem 16 initiates the broad question as to which values ofn have the property that every
n–element group is cyclic, that is, for which finite cardinalities are the group axioms cate-
gorical. Theorems 36 and 37 say that this is the case for 5 and 7and lead to a conjecture in
Problem 40 that is later proven as Theorem 47. Meanwhile, thearguments of Theorems 36
and 37 suggest the idea of coset decomposition and LaGrange’s Theorem. Problem 39
foreshadows Theorem 48. The chapter ends by asking the students to try to answer the
opening question for numbers up to 60.

Chapter 5, Equivalence Relations, could be skipped if students come with a good
knowledge of this topic. I find that they rarely do, as it is often presented in elementary
courses before they have enough examples to draw from to makethe concept meaningful.
I only pursue the final question in the chapter if students choose to work on it.

The level of abstraction steps up in Chapter 6, where the emphasis is on isomorphism
rather than homomorphism. Theorem 65 now makes it possible to make precise the prob-
lem of classification of finite groups initiated in Theorem 16. This theme culminates in
Problem 81, which adds to the results of Problem 49. I count onChapter 7 to give an
entertaining introduction to quotient groups.

Rather than devising a superficial overview of groups, rings, fields and linear spaces, I
prefer to give my students an in depth experience with group theory alone. My belief is that
this will give them a much better sense of what algebra is about. To compensate for these
omissions, the final Chapter 8 introduces other algebraic systems with an indication as to
how the basic notions of subalgebra, isomorphism and homomorphism can be applied.

David Clark
clarkd@newpaltz.edu
April, 2005
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Chapter 1

Concrete Groups

A binary operation on a set G is a rule∗ which associates with every pair of elements
a andb of G a unique elementa∗b of G. More formally, a binary operation∗ on G is a
function∗ : G×G → G from the cartesian product

G×G := {(a,b) | a,b∈ G}

into G. Note that “:=” means that the expression on the left is being defined as an abbrevi-
ation for the expression on the right. We write “a∗b” to denote the image∗(a,b) of (a,b)
under∗. Abstract algebra has primarily grown out of the study of binary operations, and
of the features common to many familiar binary operations. Binary operations abound in
mathematics, as the examples below illustrate.

1. Addition +, subtraction − andmultiplication · are binary operations on the setR
of real numbers and, suitably restricted, on the setZ of integers. Notice thatdivision
÷ is not a binary operation on eitherR or Z sincea÷b is not defined whenb = 0.

2. LetSbe a set and letP(S) denote the collection of subsets ofS, called thepower set
of S. Thenintersection∩, union ∪, andset difference∼ are binary operations on
P(S). Another important binary operation onP(S) is thesymmetric difference, ⊕,
defined as

A⊕B := {x∈ S| x is in eitherA or B but not both.},
that is,A⊕B= (A∪B) ∼ (A∩B).

3. LetS3 denote the set ofpermutationsof the set{1,2,3}, that is, one-to-one and onto
functions from{1,2,3} to itself. Composition◦ forms a binary operation onS3 since
the composition of two permutations is again a permutation.The set{1,2,3} has
exactly 6 permutations, illustrated below as rigid motionsof an equilateral triangle.

u1
3 2

e=
(

1 2 3
1 2 3

)

u3
2 1

a =
(

1 2 3
2 3 1

)

u2
1 3

b =
(

1 2 3
3 1 2

)

1

2 3

c =
(

1 2 3
1 3 2

)

3

1 2

d =
(

1 2 3
3 2 1

)

2

3 1

f =
(

1 2 3
2 1 3

)

1



Concrete Groups 2

Here a permutationg is represented by putting cornerx in the g(x) position, for
x = 1,2,3. For example,a is achieved by starting in thee configuration and rotating
the triangle clockwise 120 degrees. The producta◦ f = d is realized by doingf
first and thena: we flip the triangle over the diagonal through corner 3 (f ), and then
rotate it clockwise 120 degrees (a), as we have

(a◦ f )(1) = a( f (1)) = a(2) = 3 = d(1)

(a◦ f )(2) = a( f (2)) = a(1) = 2 = d(2)

(a◦ f )(3) = a( f (3)) = a(3) = 1 = d(3).

4. The setZ12 = {0,1,2,3,4,5,6,7,8,9,10,11} denotes the numbers on a clock, where
0 replaces 12. We definea+12 b to be the hour that isb hours after houra. For
example, 10+127 = 5 since 7 hours after 10 o’clock is 5 o’clock.

5. Consider a 2× 2 “chess board” on which you are allowed to make four different
moves:

3 4

1 2
H :

-�

-�
V :

6

?

6

?
D : ���

��	
@@I

@@R
E :
r r

H move horizontally (1 to 2, 2 to 1, 3 to 4 or 4 to 3),

V move vertically (1 to 3, 3 to 1, 2 to 4 or 4 to 2),

D move diagonally (1 to 4, 4 to 1, 2 to 3 or 3 to 2), or

E stay in place.

Let K4 = {E,H,V,D} and letX ∗Y be the move achieved by doingY first and then
doingX.

6. Recall that thedeterminant of a 2×2 matrixA =
(

a
c

b
d

)

is the number|A| := ad−
bc. Let M1 be the set of 2×2 matrices with determinant 1 under the usual matrix
multiplication• defined by

(

a b
c d

)

•
(

p q
r s

)

=

(

ap+br aq+bs
cp+ds cq+ds

)

A binary systemconsists of a setG together with a binary operation∗ : G×G → G
on G. If G is a finite set withn elements, we can fully define a binary operation∗ with an
n-by-n table. We list the elements ofG as labels down the left side of the table and again
across the top. Then the entry in the row labeledx and column labeledy is the value of
x∗ y.

Constructing tables for a few sample finite binary systems provides a good opportu-
nity to build some concrete intuition about their behavior before we begin to study them
abstractly. We will make frequent reference to the examplesbelow in the future.

Problem 1. Using a separate sheet for each one, construct a table for thefollowing binary
systems:

(i) K4 = {E,H,V,D} with ∗,

David M. Clark www.jiblm.org



Concrete Groups 3

(ii) Z12 with +12, the clock arithmetic,

(iii) Pabc with ⊕, the system of 8 subsets of the set{a,b,c} under symmetric difference,
and

(iv) S3 with ◦, the rigid motions of an equilateral triangle.(It will help to use a real
triangle with a• on the top side!)

Many operations have special properties that enhance our ability to do computations
within them. A binary operation∗ is associativeif

a∗ (b∗ c) = (a∗b)∗ c for everya,b,c∈ G.

If a,b,c ∈ G, then the expression “a∗b∗ c” is in general ambiguous since it could mean
eithera∗ (b∗ c) or (a∗b)∗ c. When we know thatG is associative, we generally omit the
parentheses sincea∗b∗ c will have the same value whichever way we interpret it.

We say thatG is commutative if

a∗b= b∗a for everya,b∈ G.

An elemente∈ G is anidentity for ∗ if

e∗a = a∗e= a for everya∈ G.

If e is an identity for∗ anda∈ G, then aninversefor a is an elementb∈ G such that

a∗b= b∗a= e.

Our next definition isolates the most essential properties of binary systems.

Definition 1. A group is a binary systemG with ∗ for which

(i) ∗ is associative,

(ii) there is an identity element e∈ G for ∗, and

(iii) each element ofG has an inverse.

For example, we can check that each of the binary systems of Problem 1 is a group. We
call K4 theKlein 4-Group , Z12 thegroup of integers modulo 12andS3 thesymmetric
group on 3 elements. The fact thatPabc is associative is not obvious from the definition,
but is a straightforward exercise in elementary set theory.

It turns out that most of what we will want to do does not require the commutative prop-
erty. If the binary operation of a groupG is commutative, we say thatG is acommutative
group, or anabelian groupafter the Norwegian mathematician Niels Abel (1802-1829).

Problem 2. Which of the binary operations+,−, ·,∩,∪,∼,◦,+12,∗,• are associative?
For each one that is not, give a counterexample to show it is not.

Problem 3. Which of the binary operations+,−, ·,∩,∪,∼,◦,+12,∗,• are commutative?
For each one that is not, give a specific counterexample to show that it is not. Reviewing
Problem 1, how can you tell from looking at a table if an operation is commutative?

Problem 4. What is the identity of each of the groupsK4, Z12, Pabc and S3? List the
elements of each group and, under each element, list its inverse.

David M. Clark www.jiblm.org



Concrete Groups 4

Problem 5. Show that the product of two
members ofM1 is again a member ofM1,
and thatM1 forms a group under matrix
multiplication.

∗ 0 1 2 3 4

0 0 1 2 3 4
1 1 0 3 4 2
2 2 3 4 1 0
3 3 4 0 2 1
4 4 2 1 0 3Problem 6. Let L be the binary system on

the right. IsL commutative? Is it a group?

David M. Clark www.jiblm.org



Chapter 2

Consequences of the Axioms

What is truly fascinating about the three little axioms for agroup—associativity, identity
and inverses—is that together they imply so much. In this chapter we will look at a number
of different immediate consequences of these axioms. We will refer to a consequence of
these axioms as a “Lemma”, a “Theorem” or a “Corollary”. As you prove each of the
following consequences, specify each use of one of the axioms.

We begin with a fact that does not even depend on the group axioms. Is it possible
for a binary system to have two different identity elements?Try, for example, to fill in a
table for a binary operation∗ on a 3–element set{e1,e2,a} in which bothe1 ande2 are
identity elements. If you have difficulty, look at exactly what is causing the difficulty and
then prove the following theorem.

Theorem 7. A binary systemG with operation∗ can have at most one identity element.

Now try to fill in a table for a binary operation∗ on the 4–element set{e,a,b,c} in
which e is the (unique) identity andb andc are both inverses fora. This time you should
have no trouble, which tells you that any proof of the following theorem will necessarily
have to make use the group axioms.

Theorem 8. Let G be a group with identity e, and let a be an element ofG with inverse b.
If c ∈ G and either a∗ c= e or c∗a= e, then c= b. In particular, a has only one inverse.

Since the inverse of a group elementa is unique, we will normally denote it by “a−1”. In
this notation, Theorem 8 says that, if we already know that weare in a group, then we can
show thatb is the inverse ofa by verifying either thata∗b = e or b∗a = e; we don’t need
to verify both.

Corollary 9. If G is a group with identity e and a,b∈ G, then

(i) (a−1)−1 = a

(ii) (a∗b)−1 = b−1∗a−1.

Let G be a binary system. We say thee∈ G is aright identity if a∗e= a for all a∈ G.
An elementb∈ G is aright inverse for a (with respect toe) if a∗b= e. An elementf ∈ G
is anidempotent if f ∗ f = f .

5



Consequences of the Axioms 6

Theorem 10. Let G be an associative binary system with a right identity e such that each
element has a right inverse. ThenG is a group.

[Hint: You need to show thate is also a left identity and that a right inverse is also a left
inverse. Start by showing thate is the only idempotent inG.]

The examples of groups that we have computed will give us a laboratory to test hy-
potheses that might be true of groups in general. Notice thatthe two groupsK4 andPabc

have the unusual property that each element is its own inverse. These two are among the
commutative groups, but not every commutative group (for exampleZ12) has this property.

Corollary 11. Let G be a group in which every element is its own inverse. ThenG is
commutative.

Algebra in general grew out of the historical need to solve equations, and this need
led specifically to the development of group theory where certain kinds of equations can
always be solved.

Theorem 12. If G is a group, a,b ∈ G, then the equations a∗ x = b and y∗ a = b each
have a unique solution, namely, x= a−1∗b, and y= b∗a−1.

Cancellation is a technique that is often useful for solvingequations, but it must be
used judiciously. For example, in high school algebra we cannot conclude fromab= ac
that b = c without first checking thata 6= 0. In general, for a binary operation∗, we say
that

∗ is left cancellativeif a∗b= a∗ c impliesb = c, and

∗ is right cancellative if b∗a= c∗a impliesb = c

for every choice ofa,b,c.

Problem 13. Give examples to show that multiplication of2×2 matrices in general and
composition of functions in general are neither left nor right cancellative.

Theorem 14. Every group is both left and right cancellative.

If we examine the group tables that we constructed in Chapter1, we notice something
special about the rows and the columns. In each case, each rowand each column is a
permutation of the elements of the group. The rows and columns are precisely the functions
from the group into itself obtained by left and right multiplication by a single element.
What we have observed in these examples is true for all groups.

Theorem 15. If G is a group and a∈ G, then the two functions

ℓa(x) := a∗ x and ra(x) := x∗a

are both permutations of G.

An essential goal of group theory is to discover all possiblegroups of each finite size.
The theory we will develop later will help to do this, but we can already address a simple
case. The following theorem can be proven from the axioms, but you might be able to
apply what you have learned to give a simpler proof.

David M. Clark www.jiblm.org



Consequences of the Axioms 7

Theorem 16. In the following sense, there is essentially only one group with three ele-
ments.

(i) There is at most one way to fill in a table for the set{e,a,b}, using e as the identity,
which could possibly be a group.

(ii) The table of part(i) is in fact a group. (You will need several cases to establish
associativity.)

Associativity in groups allows us to unambiguously write down the producta∗ b∗ c
wherea,b,c are elements of a groupG. What about longer products such asa∗b∗c∗d∗ f ?
This expression has quite a number of possible interpretations, for example,((a∗b)∗ (c∗
d))∗ f anda∗ ((b∗ c)∗ (d∗ f )). Do these both represent the same element? They do, but
this fact requires four applications of the associative property to prove:

((a∗b)∗ (c∗d))∗ f = (a∗b)∗ ((c∗d)∗ f )= (a∗b)∗ (c∗ (d∗ f ))

= a∗ (b∗ (c∗ (d∗ f ))) = a∗ ((b∗ c)∗ (d∗ f )).

If we could devise a similar argument for every pair of 5–element products, we would then
be able to unambiguously writea∗b∗ c∗d∗ f .

More generally, is it possible to prove that the producta1a2a3 . . .an is unambiguous?
This task sounds rather daunting, as the number of possible products will grow rapidly
as the number of factors extends beyond five. It turns out thatit is nevertheless true, and
that mathematical induction provides a simple proof. We first define theleft associated
product of a1,a2,a3, . . . ,an to be

(. . . ((a1 ∗a2)∗a3)∗ . . .)∗an.

Theorem 17.LetG be an associative binary system, and choose elements a1,a2,a3, . . . ,an∈
G. Then every product of the elements a1,a2,a3, . . . ,an, in that order, is equal to the
left associated product. In particular, we can unambiguously write down the product
a1∗a2∗a3∗ · · · ∗an.

Real number exponents satisfy two important rules:

aman = am+n and (am)n = amn

wherem andn are positive integers. Ifa is an element of a groupG andn∈ Z+ (the set of
positive integers), we recursively define theexponentan as

a1 := a and an+1 := an∗a.

Applying the above associativity theorem, we see thatan := a∗a∗ · · ·∗a, the product ofn
a’s. It is easy to check that the same rules of exponents hold with this definition.

We would like to extend the definition of exponents to give a meaning to “a0” and “a−n”
in such a way that the rules of exponents will continue to hold. There is only one way that
we could possibly do this. Ifa0 ∗a1 = a0+1, then we havea0 ∗a = a so that, by Theorem
4, we must define

a0 := e, the identity.

Similarly, if a−n∗an = a−n+n, then we havea−n ∗an = e so that, by Theorem 2, we have
no choice but to define

a−n := (an)−1, the inverse ofan.

David M. Clark www.jiblm.org



Consequences of the Axioms 8

Lemma 18. If G = 〈G,∗〉 is a group, a∈ G and n∈ Z+, then a−n = (a−1)n.

The proof of the following theorem requires examining a number of cases.

Theorem 19. Let G = 〈G,∗〉 be a group, a∈ G, and m,n∈ Z. Then

(i) am∗an = am+n and

(ii) (am)n = amn.

For another familiar source of groups, recall that the axioms for a linear space require
that vector addition be commutative and associative, and that there be a zero vector which
is an additive identity. The other axioms imply that, for each pointP of a linear space, the
point (−1)P is an additive inverse ofP. Thus every linear space is a commutative group
under addition.

The group operation in a vector space is normally denoted by the addition symbol +.
For example, the vector space of all functions from the real numbers into the real numbers
forms a commutative groupF[R,R] where the sum of functionsf andg is defined by

( f +g)(x) = f (x)+g(x).

aa
cc

e
e

eeaa !!%
%

%%
##

f

!!!##
##

!! aa g
aa

cc
e
eaa!!##

##
%

%
%%

!! f +g

When we refer to a commutative group whose operation is denoted by +, such as the
additive group ofR of real numbers, the additive group ofn-by-mmatrices, or the additive
groupF[R,R], it is rather awkward to use the multiplicative notation that we have been
using for general groups. Instead, we introduce theadditive notation for groups as follows.

Multiplicative Additive

product; sum a∗b or ab a+b

identity ea= ae= a 0+a= a+0= a

inverse a−1 −a

exponent an na

quotient; difference ab−1 a−b

In additive notation, for example, Theorem 19 says that, forall a,b∈ G andm,n∈ Z, we
have

(i) ma+na= (m+n)a

(ii) n(ma) = (nm)a.

While this may look at first glance like the distributive and associative properties, they are
in fact the properties of exponents written in additive notation.

David M. Clark www.jiblm.org



Chapter 3

Cyclic Groups

Let G be a group with operation∗ and letH be a subset ofG. We say thatH is closed
under ∗ if

a,b∈ H implies a∗b∈ H.

If H is closed under∗, thenH also forms a binary system. IfH turns out to be a group,
we call it asubgroup of G. Notice that ifH is closed under∗, thenH is automatically
associative. ThusH is a subgroup ofG if and only if

(i) H is closed under∗,

(ii) the identitye of G is in H and

(iii) for each elementb of H, the inverseb−1 is in H.

For example, the subgroups of the additive groupR of real numbers include the addi-
tive groupQ of rational numbers and the additive groupZ of integers. Familiar sub-
groups of the additive groupF(R,R) include the group ofcontinuous real valued func-
tions C(R,R), the group ofdifferentiable real valued functions D(R,R) and the group
of polynomial functions P(R,R):

P(R,R) ⊆ D(R,R) ⊆ C(R,R) ⊆ F(R,R).

Our next lemma gives a simple way to find a multitude of subgroups.

Lemma 20. Let b be an element of the groupG. Then the set{bn | n∈ Z} [the set{nb |
n∈ Z} in additive notation] of all powers[multiples] of b forms a subgroup ofG.

We use the notation
sg(b) := {bn | n∈ Z}

and call this thecyclic subgroup of G generated byb. If G = sg(b) for some element
b∈ G, we say thatG is acyclic group and thatb is acyclic generatorof G. For example,
the additive groupZ of integers is cyclic since every integer is a multiple of 1, that is,
Z = sg(1).

Lemma 21. Every cyclic group is commutative.

9



Cyclic Groups 10

Thus, for example,S3 andM1 arenotcyclic groups. Notice that each element of every
group generates a cyclic subgroup. We will see that different elements can generate the
same cyclic subgroup.

Lemma 22. If H is a subgroup ofG and b∈ H, thensg(b) ⊆ H.

Problem 23. Find the cyclic subgroup ofZ12 generated by each of its elements. Show that
Z12 is itself a cyclic group. Is there a subgroupH of Z12 that is not cyclic?

We have seen a small number of different finite groups. How many different finite
groups are there? For example, is there a group with 17 elements? a group with 64,539
elements? Looking closely at the groupZ12 suggests some answers. Letn be an arbitrary
positive integer and consider the set{0,1,2,3, . . . ,n−1} of all possible remainders when
we divide byn. Following the example ofZ12 we define+n on this set by

a+n b :=

{

a+b if a+b< n;

a+b−n if a+b≥ n.

Clearly 0 is an identity for+n andn−b is an inverse forb. Moreover,+n is associative
since botha+n (b+n c) and(a+n b)+n c are the number we get by addinga+ b+ c and
then subtractingn until we get a number less thann. Thus

Zn := 〈{0,1,2, . . . ,n−1};+n〉

is a (commutative) group which we call thegroup of integers modulon. This gives us at
least onen-element group foreverypositive integern.

Problem 24. Show thatZ5 is cyclic. Exactly which elements ofZ5 are cyclic generators
of Z5?

Problem 25. Show that the groupZn is cyclic for each n∈ Z+. Looking at the examples
of Z5 andZ12, which elements ofZn do you think are the cyclic generators ofZn? State
your answer as a conjecture. Can you prove it?

The cyclic groupZ5 can be illustrated by the following diagram.

r r
rr r

�B
BM

��> ZZ~

�
�

... = 8 ·1= 3

... = 9 ·1= 4

2 = 7 ·1 = ...

1 = 6 ·1 = ...

0 = 5 ·1= ...

+1Z5:

This diagram certainly does support our choice of the term “cyclic” for this kind of group.
We would like to show that every finite cyclic group looks likethis. If a cyclic group has
generatorb, then it consists of all the powers

. . .b−3,b−2,b−1,b0 = e,b,b2,b3,b4, . . .

of the elementb. If the group happens to be finite, then this list must be highly redundant
as it is inZ5. We will see that this redundancy must follow the above “cyclic” pattern.

David M. Clark www.jiblm.org



Cyclic Groups 11

Lemma 26. Let b be an element of a groupG, and let n∈ Z+. Assume that the powers
e= b0,b = b1,b2,b3,b4, . . . ,bn are not all distinct, that is, there are integers i, j such that
bi = b j where0≤ i < j ≤ n. Then there is a positive integer k≤ n such that bk = e.

We say thatbhasinfinite order if all of the non-negativepowerse= b0,b= b1,b2,b3,b4, . . .
are distinct. Otherwise, we say thatb hasfinite order and we define theorder of b, written
◦(b), to be the smallest positive integerk such thatbk = e [additively,kb= 0]. For example,
each element of the additive groupZ has infinite order while each element of a finite group
must, according to Lemma 26, have finite order.

Problem 27. Find the order of the following elements of the groupM1 :

(i) A =

(

0 −1
1 0

)

(ii) B =

(

3 5
4 7

)

(iii ) C =

(

− 1
2 −

√
3

2√
3

2 − 1
2

)

Lemma 26 leads to several useful results. Recall thatH ⊆ G is a subgroup ofG pro-
vided that it is closed, contains the identity and contains inverses. These criteria can be
simplified for finite groups.

Theorem 28. Let H be a finite non-empty subset of a groupG. ThenH is a subgroup ofG
provided only that it is closed.

Corollary 29. If G is a finite group and let a∈G, then the subgroup generated by a consists
of all positive powers of a:

sg(a) = {ak | k∈ Z+}.

We can now prove two important theorems about cyclic groups.We will need the
following fundamental fact about the integers, which we will not prove here.

Long Division Lemma Let m be an integer and letd (thedivisor) be a positive integer.
Then there are unique integersq (thequotient) and r (theremainder) such that

m= qd+ r with 0≤ r < d.

Let m,d ∈ Z. We say thatd divides m, written d|m, if there is aq∈ Z such thatm= qd.
We generally use Long Division to find out ifd|m by dividing m by d and seeing if the
remainder is 0. Use this strategy to prove the following lemma.

Lemma 30. Assume b∈ G has finite order, and let m, i, j ∈ Z. Then

(i) bm = e if and only if◦(b)|m, and

(ii) bi = b j if and only if ◦(b)|i − j.

Theorem 31. Let b be an element of a groupG, and assume that b has finite order k. Then
the cyclic subgroup ofG generated by b has exactly k distinct elements, namely,

sg(b) = {e,b,b2,b3, . . . ,bk−1} with bk = e.

David M. Clark www.jiblm.org



Cyclic Groups 12

This theorem tells us that a finite cyclic group is accuratelydescribed by the adjective
“cyclic”. Using this information, we can fill in the entire group table forsg(b). Thus every
group element of orderk generates a cyclic group that look exactly like the cyclic group
Zk. The next theorem tells us that what we discovered aboutZ12 in Problem 23 is true of
every cyclic group.

Theorem 32. Every subgroup of a cyclic group is cyclic.

Proof: (Hint) Let G = sg(b) be cyclic, and letH be a subgroup ofG. Choose an integern
for which you believe thatH = sg(bn). Then show thatsg(bn) ⊆ H and thatH ⊆ sg(bn).

u

u

uu

@
@

@
@@R

�
�

�
��	@

@
@

@@I

�
�

�
���

r r r

r r
r

rrr

rr
r

-
@@R

@@R

?

?

��	
��	��@@I

@@I

6

6

���
���

-e

b8

b4b12

b

b2

b3

b5

b6

b7

b15

b14

b13

b11

b10

b9

The fact thatZ is a cyclic group leads to some useful properties of the integers. For
example, we know that, for each non-negative integern, the multiples ofn form a cyclic
subgroup ofZ. Theorem 32 tells us that these are theonly subgroups ofZ. Let m,n ∈ Z
wherem andn are not both 0. We say thatd is thegreatest common divisorof m andn,
writtend = gcd(m,n), if d is the largest positive integer that divides bothm andn.

Lemma 33. Assume m,n ∈ Z where m and n are not both 0. Then d:= gcd(m,n) is the
smallest positive integer that can be expressed in the form mx+ny where x,y∈ Z.

Proof: (Outline) Show thatH := {mx+ny | x,y∈ Z} is a subgroup ofZ and apply Theo-
rem 32.

We say thatm,n∈ Z arerelatively prime if gcd(m,n) = 1.

Theorem 34. Integers m,n∈ Z are relatively prime if and only if there are integers x,y∈ Z
such that mx+ny= 1.

We now have the machinery we need to prove the conjecture of Problem 25.

Theorem 35. Let G = sg(b) be a finite cyclic group where◦(b) = k. Then bm is a cyclic
generator ofG if and only if m and k are relatively prime.
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Chapter 4

LaGrange’s Theorem

By theorder of a finite groupG, written◦(G), we mean the number of elements inG. In
this chapter we will see how numerical properties of◦(G) imply algebraic properties of the
groupG itself.

Theorem 31 tells us that a cyclic group of orderk consists of the firstk powers of the
generator, where the operation is done by adding the powers modulo k. Thus all finite
cyclic groups of the same order have virtually identical tables. Theorem 16 tells us that all
groups of order 3 are cyclic, and therefore look alike. Clearly the same is true for groups
of order 1 or 2. On the other hand,K4 is a non-cyclic group of order 4. These observations
raise the following question.

QuestionFor which positive integersn is it true that every group of ordern is cyclic?

The smallest value ofn for which we do not yet have an answer isn = 5.

Theorem 36. Every groupG of order 5 is cyclic, and therefore looks exactly likeZ5.

Proof: (Outline) Letb be any element ofG other than the identity. Explain why◦(b) must
be either 2,3,4 or 5.

(i) Show that if◦(b) = 4, thenG would have at least 8 elements. [Fill in the first 4
rows of the table listing the elements ase,b,b2,b3. Then add a 5th column for a new
elementc and explain whyc, d := b∗ c, f := b2∗ c, g := b3∗ c would be 4 distinct
new elements.]

(ii) Show that if◦(b) = 3, thenG would have at least 6 elements. [Fill in the first 3 rows
of the table listing the elements ase,b,b2. Then add a 4th column for a new element
c and explain whyc, d := b∗ c, f := b2∗ c would be 3 distinct new elements.]

(iii) Show that if◦(b) = 2, thenG would have at least 6 elements. [Fill in the first 2 rows
of the table listing the elements ase,b. Then add a 3rd column for a new elementc
and explain whyc, d := b∗ c would be 2 distinct new elements. Add columns forc
andd and fill in the 2 columns below them. Now letf be the 5th element and explain
why f , g := b∗ f would again be 2 distinct new elements.]

13



LaGrange’s Theorem 14

Theorem 37. Every groupG of order 7 is cyclic, and therefore looks exactly likeZ7.

Proof: (Outline) Follow the strategy of Theorem 36, adding the necessary additional cases.

What about groups of order 9? Here is a helpful observation. The Cartesian planeR2,
viewed as an additive group, is obtained by taking ordered pairs (a,b) from the additive
group of real numbersR and defining the operation ofR2 by applying the operation ofR
in each coordinate:

(a1,b1)+ (a2,b2) := (a1 +a2, b1 +b2).

The same idea works with any pair of groupsH = 〈H;∗H〉 andK = 〈K;∗K〉. We define the
Cartesian product of H andK to be the group

H ×K = 〈H ×K;∗〉
whose elements are ordered pairs(h,k), whereh∈ H andk ∈ K, and whose operation is
done by applying the operations ofH andK in each coordinate:

(h1,k1)∗ (h2,k2) = (h1∗H h2, k1∗K k2).

Theorem 38. If H andK are groups, thenH ×K is a group. If they are both finite, then
H ×K is finite and◦(H ×K) = ◦(H) · ◦(K).

Problem 39. Use the Cartesian product to construct a group of order 9 thatis not cyclic.

Problem 40. For exactly which of the values n= 1,2,3,4,5,6,7,8,9 is it true that every
group of order n is cyclic? Make a conjecture as to when in general it is true that every
group of order n is cyclic.

We will settle this question by proving a more general theorem about finite groups due
to J. L. LaGrange (1736-1813). First we need some more empirical data. Use Theorem 28
to find all of the subgroups of the four groups in the table below, and list each of their
orders. What does this table suggest about the relationshipbetween the order of a finite
finite group and the orders of its subgroups?

G ◦(G) ◦(H) for subgroupsH of G

S3

Z12

Pabc

K4

To see why this relationship might hold in general, considerthe subgroupH := {0,4,8}
of Z12. We can generate new elements ofZ12 from H by applying the operation. If we start
with 1 /∈ H, then{0+1,4+1,8+1}= {1,5,9} gives us 3 new elements ofZ12. Choosing
2 /∈ {0,4,8,1,5,9}, we obtain 3 more new elements{0+2,4+2,8+2}= {2,6,10}. Doing
the same thing with 3/∈ {1,4,8,1,5,9,2,6,10}will give us the last 3 elements ofZ12. What
we find is thatZ12 is the disjoint union of 4 sets, each having the same number ofelements
asH:

Z12 = {0,4,8}∪{1,5,9}∪{2,6,10}∪{3,7,11}.
Thus◦(Z12) = 4(◦(H)) and therefore◦(H)| ◦ (Z12).

In general we say that a collectionP of subsets of a setA is apartition of A if every
element ofA is in exactly one of these sets, that is,
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LaGrange’s Theorem 15

• each element ofA is in some set ofP (in symbols,
⋃

P = A) and

• two different setsX andY in P have empty intersection. (We sayX andY are
disjoint .)

We will now see that every subgroup of every group produces a partition like the one we
have seen inZ12.

Let H be a subgroup of a groupG. For each elementb∈ G we define theright coset
generated byb to be the set

H ∗b := {h∗b | h∈ H}.

+ 0 4 8 1 5 9 2 6 10 3 7 11

0 0 4 8 1 5 9 2 6 10 3 7 11
4 4 8 0 5 9 1 6 10 2 7 11 3
8 8 0 4 9 1 5 10 2 6 11 3 7

In the above example, the right cosets ofH := {0,4,8} form a partition ofZ12. The right
coset generated by each element occurs immediately below itin the table forZ12.

We would like to know if the collectionP of right cosets of an arbitrary subgroupH
of an arbitrary groupG form a partition like the one we have seen inZ12. At the moment,
all we know about the right cosets ofH is that they are a collection of subsets ofG. One
coset isH = H ∗e itself. This might be illustrated as follows.

H

"!
# 

H∗b

�
��

Q
QQ

Q
QQ

�
��

H∗c
H∗d ��
��
H∗ f

The next two lemmas tell us that this picture is not very accurate.

Lemma 41. If b ∈G, then b is in the right cosetH ∗b that it generates. In particular, every
element ofG is in some right coset.

Lemma 42. Let b,c∈ G.

(i) If c ∈ H ∗b, thenH ∗ c= H ∗b.

(ii) If c /∈ H ∗b, then(H ∗ c)∩ (H ∗b)= ∅.

Together, the above two lemmas tell us that the right cosets of a subgroupH form a
partition of the groupG, as is illustrated in the more accurate illustration below.
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LaGrange’s Theorem 16

H
H∗c

H∗b

H∗d
H∗ f

H∗k

H∗g

Using additional group properties, we can see that each right coset ofH look, as a set,
just likeH.

Lemma 43. If b∈G, then rb : H →H ∗b (defined as rb(x) := x∗b) is one-to-one and onto.
In particular, if H is finite, then every right coset ofH has the same number of elements as
H.

This leads us to a yet more accurate picture, which tells us exactly why the order ofH
should divide the order ofG. If the number of right cosets ofH in G is finite, we call this
number theindex of H in G and denote it by[G : H].

H H∗b H∗c H∗d H∗ f H∗g H∗k

Lagrange’s Theorem 44. If G is a finite group andH is a subgroup ofG, then◦(G) =
[G : H] · ◦(H). In particular,◦(H)| ◦ (G), and[G : H] is also the number of left cosets ofH
in G.

Corollary 45. If G is a finite group and b∈ G, then◦(b)| ◦ (G).

Corollary 46. If G is a finite group of order n and b∈ G, then bn = e.

We can now see why it was true that every 5 or 7 element group must be cyclic and,
with no additional effort, why the same must be true for everygroup of prime order.

Theorem 47. Every group of prime order is cyclic.

In contrast to Theorem 47, we can use the idea of Problem 39 to exhibit non-cyclic
groups of ordern for many non-prime values ofn. (Hint: Show that ifn = p2q wherep is
a prime, thenZp×Zpq is not cyclic.)

Theorem 48. If every group of order n> 1 is cyclic, then n is either prime or a product of
distinct primes.

Problem 49. Partition the numbers from 1 to 60 into three sets as follows.

A := {n | You can prove that every group of order n is cyclic.},

B := {n | You can exhibit a group of order n that is not cyclic.}

C := {n | Neither of the above is true.}
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Chapter 5

Equivalence Relations

Assume that you go to buy a new car. You examine the possible choices, and gradually
narrow the scope of your search. You are concerned about the particular make and model
of a car, its particular assortment of added features and perhaps even its particular color.
But among all the cars that are presently for sale, you will consider ones of the same make,
model, features and color to be “equivalent” since they are,for you, totally indistinguish-
able. Auto companies produce thousands of individual cars every year, but only a handful
of essentially different kinds. Fortunately you only need to choose among the handful of
different kinds, not among the thousands of different individual cars. Once you choose a
particular class of “equivalent” cars (for example, blue Subaru Foresters with manual trans-
mission that have no extra added features), you will be happywith whichever member of
that “equivalence class” that you can buy at an acceptable price.

In this chapter we will examine what it means for two things tobe in some useful sense
“equivalent”. This notion turns out to have important applications in mathematics and sci-
ence, and particularly in group theory. There are many occasions when we want to describe
certain objects as being “equivalent”. For example, two equations in variablesx andy can
be thought of as equivalent if they have the same sets of solutions. Thusy = 3x+ 4 and
6x = 2y−8 are equivalent. Two computer programs might be thought of as “equivalent” if
they always produce the same output from the same input. In a different context, we might
think of two compound sentences in propositional logic to be“equivalent” if they have
the same truth tables. For example, the truth table below shows that every implication is

p q p→ q ¬q→¬p
0 0 1 1
0 1 1 1
1 0 0 0
1 1 1 1

Table 5.1: 1 is True; 0 is False

equivalent to its contrapositive.

The significance of truth table equivalence can be easily seen if we limit our attention
to the set of compound sentences with a single variablep. There are still infinitely many

17



Equivalence Relations 18

different compound sentences that we can write down, for example,

((p∨ p)∧ (¬p =⇒ (p∧ p))) =⇒ ((¬p∨ p)∧ p).

But there are only four possible different truth tables, given by the four compound sentences
p,¬p, p∨¬p andp∧¬p. Thus every compound sentence with one variablep is equivalent

p p ¬p p∨¬p p∧¬p
0 0 1 1 0
1 1 0 1 0

to one of these four.

All of the above notions of “equivalent” have something in common. In each case there
is a set (cars, equations, programs, compound propositional sentences) which is broken up
into disjoint bunches so that two members are “equivalent” exactly when they are in the
same bunch. In each case the bunches form a partition of the underlying set.

A partition of a setA, which consists of a set of subsets ofA, is often a rather awkward
thing to talk about. It is usually much more convenient to talk about the associated relation
of being “equivalent” among certain pairs of elements ofA. In order to discuss this idea,
we define abinary relation on a setA to be a subset≡ of A×A. For x,y ∈ A we often
write “x≡ y” to mean that(x,y) ∈ ≡. For example, the less than or equal to relation≤ on
the setR of real numbers is formally defined as

≤= {(x,y) | x is less than or equal toy}.

We normally prefer to write “3≤ 7” instead of the rather strange looking, but formally
correct, “(3,7) ∈ ≤”. The equality relation= on A is defined asa = b if a andb represent
the same element ofA.

Associated with any partitionP of A is a relation≡P of “equivalence” onA: elements
x andy of A are “equivalent”, that is,x≡P y, if x andy are in the same member ofP. A
relation≡P that arises out of a partitionP in this way is called anequivalence relation
onA. In this case the member ofP containing an elementx∈ A is called theequivalence
classof x.

Consider, for example, the setA of children in the elementary schools. For certain
purposes it is helpful to think of two children as being equivalent if they were born in
the same year. We then have one grade for each equivalence class. If Charlie is in the
fourth grade, his equivalence class is the fourth grade class. Or we might think of two
children as equivalent if they are working at the same grade level in mathematics. We could
then partition the children into different math classes, each working at a different level.
Alternately, we could think of two children as equivalent ifthey have the same favorite
hobby, and then partition them into clubs that each consist of children with a particular
hobby. But sometimes we just need to realize that each child is unique, and focus on the
partition with a single child in each equivalence class. These are all different partitions,
or equivalence relations, on the same setA. There is no right meaning of “equivalence”;
rather, each notion of equivalence is useful in a different context.

We would like to determine when a binary relation≡ is the equivalence relation asso-
ciated with some partition. For example, is the relation≤ on the numbers is an equivalence
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Equivalence Relations 19

relation? It is easy to see that every equivalence relation on A must have three simple
properties: a relation≡ onA is

• reflexive if x≡ x for anyx∈ A;

• symmetric if y≡ x wheneverx≡ y;

• transitive if x≡ zwheneverx≡ y andy≡ z.

If ≡ is the equivalence relation≡P for some partitionP, then it will certainly have these
properties. The relation≤, for example, is clearly not symmetric since 4≤ 9 but 9� 4.
Thus≤ is not an equivalence relation.

Conveniently, it turns out that every binary relation≡ on A which has these three sim-
ple properties is the equivalence relation associated withsome partition. To see this, we
define—for a binary relation≡ onA and an elementx∈ A—the≡–classof x to be the set

[x] = {y | y∈ A andx≡ y}.

A P

x≡ y

x

y

x

y

Equivalence Relation TheoremLet ≡ be a binary relation on the setA. If ≡ is reflexive,
symmetric and transitive, then the setP of ≡–classes is a partition ofA and≡ is the
equivalence relation≡P associated withP.

In the first four problems, verify that the relation is an equivalence relation and then
describe its equivalence classes, which should form a partition of A.

Problem 50. A is the set of points(x,y) in the plane.(x,y) ≡ (x′,y′) if (x,y) and (x′,y′)
are the same distance from the origin.

Problem 51. x≡ y if x and y are integers and x−y is a multiple of3.

Problem 52. x≡ y if x and y are integers and x+y is even.

Problem 53. Let S= {a,b,c,d,e, f ,g,h}, let T = {a,b,c} and let A be the set of all(28)
subsets ofS. For X,Y ∈ A, we define X≡Y if X and Y have the same intersection withT.

Problem 54. Let A= {0,1}5 be the set of 32 different five-tuples of 0s and 1s, that is, all
sequences(a,b,c,d,e) where a,b,c,d,e∈ {0,1}. For x,y∈ A, define x≡ y to mean that x
and y have the same number of 1s. Show that≡ is an equivalence relation and write down
all the members of each of the different≡–classes.
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Every function f : A → B induces a natural equivalence relation on its domain. For
x,y∈ A, we say thatx is f –equivalent toy if f (x) = f (y). The classes of this equivalence
relation are calledf -classesof A. For example, the equivalence classes of Problem 50 are
exactly thef -classes wheref (x,y) :=

√

x2 +y2.

Problem 55. For each equivalence relation≡ above, define a function f on A so that the
≡-classes are exactly the f -classes.

Let G be a group and letH be a subgroup ofG. We have seen that the right (and left)
cosets ofH (both) partitionG. These partitions can be described as equivalence relations
thatH induces onG. Fora,b∈ G, we define

a∼H b iff ab−1 ∈ H and aH∼ b iff a−1b∈ H.

Theorem 56. If H is a subgroup ofG, then

(i) ∼H is an equivalence relation onG, and the∼H–classes are exactly the right cosets
of H, i.e., a∼H b ⇔ Ha = Hb;

(ii) H∼ is an equivalence relation onG, and theH∼–classes are exactly the left cosets
of H, i.e., aH∼ b ⇔ aH = bH.

There is a standard and important notion of equivalence between sets. LetA denote
the collection of all sets. ForX,Y ∈ A, we say thatX andY are thesame sizeif there is a
bijection (one-to-one and onto function)f : X →Y from X to Y. Thus finite setsX andY
are the same size if and only if they have the same number of elements, but in general they
need not be finite.

Lemma 57. Let X, Y and Z be sets.

(i) The identity function iX : X → X, with iX(x) = x, is a bijection.

(ii) If f : X →Y is a bijection, then f−1 : Y → X is a bijection.

(iii) If f : X →Y and g: Y → Z are bijections, then g◦ f : X → Z is a bijection.

Theorem 58. If X is a set, the setSX of all bijections from X to itself (called thepermu-
tations of X) is a group under composition.

Theorem 59. Being the same size is an equivalence relation on the class ofall sets.

What are the equivalence classes of sets in Theorem 59?
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Chapter 6

Isomorphic Groups

There is a very natural and important equivalence relation on the class of all groups, that
is, a natural sense in which we can view two groups as being “equivalent”. Recall that we
proved in Chapter 4 that every 7–element groupG is cyclic, and interpreted this to say that
G “looks exactly likeZ7.” Thus any two 7–element groups look exactly like each other
and, in this sense, can be thought of as equivalent. We would like to give a precise meaning
to the assertion that two groups “look exactly alike”.

As another example, consider the groupK4 and the 4–element subgroupH := {∅,a,c,ac}
of the groupPabc.

∗ E H V D

E E H V D
H H E D V
V V D E H
D D V H E

K4
∅ a c ac

∅ ∅ a c ac
a a ∅ ac c
c c ac ∅ a
ac ac c a ∅

⊕

H

We see here is that, although the elements of the two groups are totally different kinds of
objects (chess board moves and sets of letters), the tables of the groups look alike. Notice
that, if we were to change the order the the elements are listed in the tables, they would no
longer look alike. So the equivalence in question has to do with a particular way of pairing
the elements:

E 7→ ∅, H 7→ a, V 7→ c, D 7→ ac.

Let us call this functionh. Thenh : K4 → H is a bijection, that is, a one-to-one and onto
function. Moreover, underh the two tables match in the following sense. If X,Y,Z∈ K4

and X∗Y = Z, thenh(X)
⊕

h(Y) = h(Z).
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Isomorphic Groups 22

◮

H

Z

Y

X

∗K4

◮

H

h(Z)

h(Y)

h(X)

⊕

H

These ideas can be applied to any groups. LetG be a group with operation∗ and let
G′ be a group with operation◦. A homomorphism from G to G′ is a functionh : G → G′

with the property that, for allx,y,z∈ G,

x∗ y= z implies h(x)◦h(y) = h(z).

A functionh : G →G′ is called anisomorphism if it is a homomorphism that is a bijection.
We say that groupsG andG′ areisomorphic if there is an isomorphism fromG ontoG′,
and we express this in symbols asG ∼= G′.

Lemma 60. A function h: G → G′ is a homomorphism if and only if, for all x,y∈ G, we
have

h(x∗ y) = h(x)◦h(y).

Lemma 30 will be useful for proving the following fact.

Lemma 61. Two finite cyclic groups of the same order are isomorphic.

Logarithms were invented by John Napier in order to exploit aspecial isomorphism
between two familiar and important groups:

Lemma 62. LetR+ denote the group of all real numbers under addition, and letR× denote
the group of all positive real numbers under multiplication. ThenR× ∼= R+.

Homomorphisms, and therefore also isomorphisms, preservemore than just the binary
operation.

Theorem 63. LetG andG′ be groups with identities e∈ G and e′ ∈ G′, and let h: G →G′

be a homomorphism. Then

(i) h(e) = e′,

(ii) h(x−1) = h(x)−1 for each x∈ G,

(iii) if H is a subgroup ofG, then h(H) is a subgroup ofG′.

(iv) if K is a subgroup ofG′, then h−1(K) := {a∈ G | h(a) ∈ K} is a subgroup ofG.

As a special case of part (iv), the subgrouph−1({e′}) of G is called thekernel of h and
is denoted byKh. This subgroup is useful for recognizing when a homomorphism is an
isomorphism. Applying part (i) we see that, ifh happens to be one-to-one, thenKh = {e}.
The converse is also true.
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Lemma 64. Let h : G → G′ be a homomorphism. Then h is one-to-one if and only if
Kh = {e}.

Theorem 65. Isomorphism is an equivalence relation on the class of all groups, that is,
for all groupsG, G′ andG′′,

(i) G ∼= G,

(ii) G ∼= G′ impliesG′ ∼= G, and

(iii) G ∼= G′ andG′ ∼= G′′ impliesG ∼= G′′.

. . .

We will now digress briefly to present an important class of finite non-commutative
groups. For a positive integern≥ 3, thedihedral n-group Dn consists of the rigid motions
of a regularn-sided polygon. Since the regularn-gon hasn top side orientations andn
bottom side orientations, the order ofDn is 2n. In casen = 3, the groupD3 is the familiar
6-element groupS3. The 8-element dihedral 4-group,D4, is illustrated below:

d
r

f
r

gr hr
e u r a u r b ur c ur

Notice that the 4 top side orientations are obtained by successive rotations of the square,
while the 4 bottom side orientations can be realized by flipd followed by successive clock-
wise rotations. In algebraic language, this says that the set {a,d} generates D4, as we
have

b = a2, c = a3, e= a4; f = ad, g = a2d, h = a3d.

Instead of listing the elements ofD4 as

D4 = {e,a,b,c,d, f ,g,h},

we find that the listing
D4 = {e,a,a2,a3,d,ad,a2d,a3d}

provides much more informative names for the elements.

In fact, these names allow us to give a complete description of the group if we remember
a small bit of additional information. Clearly,a has order 4 andd has order 2. Going back
to the square itself, we can compute the productda= h = a3d. Thus we can describeD4

by givinggeneratorsanddefining relationsas

D4 = sg{a,d | a4 = e= d2, da= a3d}. (⋆)

This means thatD4 consists of all products ofa’s andd’s subject only to the constraints
implied by the defining relations. From this information we can deduce thatD4 has the 8
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elements listed, and we can fill in the complete table forD4. For example, to compute the
product ofa3d anda2d, we have

(a3d)(a2d) = a3(da)ad = a3(a3d)ad = a6(da)d

= a6(a3d)d = a9d2 = a(a4)(a4)(d2) = aeee= a

The strategy here is to useda= a3d to express the product as a power ofa times a power of
d, and then to usea4 = e= d2 to reduce the exponents. Similarly, for any positive integer
n, we can describeDn as

Dn = sg{a,d | an = e= d2, da= an−1d}.

wherea has ordern andb as order 2, andba= an−1b.

Problem 66. Using(⋆), fill out a table forD4 without referring to the square itself.

Problem 67. Using the description

S3 = sg{a,c | a3 = e= c2, ca= a2c},

list the distinct elements ofS3 and fill out its table without referring to the triangle.

. . .

The notion of isomorphism allows us to articulate a fundamental goal of group theory.
Given a propertyP that a group may or may not have, we seek arepresentation theorem
for this property. What this means is that we would like to finda set of specific well
understood groups that have propertyP, and then prove that every group with propertyP
is isomorphic to a group in our set. For example, letP be the property of having prime
order p. A well understood group of orderp is the groupZp. If G has propertyP, then
G is cyclic by Theorem 47 and consequentlyG ∼= Zp by Lemma 61. This gives us a nice
representation theorem.

TheoremEvery group of prime orderp is isomorphic toZp.

In order to prove the following representation theorems, you will need to spend some time
examining elements of the group, considering their possible orders, and looking at the
subgroups they generate. Recall that, ifp andq are both prime, then the only divisors of
pqare 1, p,q andpq.

Theorem 68. Let p and q be distinct primes. Then every commutative group of order pq
is cyclic and is therefore isomorphic toZpq.

Lemma 69. Let p be a prime. Then every commutative group of order p2 is isomorphic to
either the cyclic groupZp2 or to the direct productZp×Zp.

It turns out that there is a beautiful representation theoryfor all finite commutativegroups
which extends the three previous results. The final theorem,which we won’t prove here,
states thatevery finite commutative group is isomorphic to a direct product of cyclic groups.

Representation of non-commutative groups is a fascinatingsubject that proves to be
much more difficult. In fact, a full description of all finite groups is not yet known. A well
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known representation theorem for all groups was first discovered by Sir Arthur Cayley
(1821-1895). In Theorem 15 we saw that the left multiplication functionℓ associates each
elementa of a groupG with a permutationℓa of G. Thusℓ : G → SG. In fact, ℓ is a
one-to-one homomorphism:

Cayley Representation Theorem 70.Every groupG is isomorphic to a subgroup of the
permutation groupSX for some set X, namely, for X= G.

In the remainder of this chapter we will prove two important theorems which, together
with what we have, will provide a full description of finite groups of many small orders.
Our next theorem extends Theorem 68 to all groups in the case that p = 2.

Theorem 71. Let q be a prime. Then every group of order2q is isomorphic to either the
cyclic groupZ2q or to the dihedral groupDq.

The Lemma 69 is called a “lemma” because, as we will now see, itcan be extended to
all groups by utilizing some new techniques. Elementsa andb of a groupG are said to be
conjugate if there is an elementx ∈ G such thatb = x−1ax. In this case we writea≡c b
and say thata is conjugate tob.

Theorem 72. For a groupG, the relation≡c is an equivalence relation.

Theorem 73. For a groupG,

(i) Conjugacy is the equality relation if and only ifG is commutative.

(ii) Conjugate elements ofG have the same order.

Problem 74. Find all of the conjugate classes ofS3.

The≡c–classes ofG are called theconjugate classesof G.

If a is an element of the groupG, thenormalizer of a is defined to be the set

Na := {x∈ G | xa= ax}

of elements that commute witha.

Lemma 75. The normalizer of an element of a group is a subgroup.

Lemma 76. Let G be a group with a,x,y ∈ G. ThenNax = Nay if and only if x−1ax =
y−1ay. [In words, two elements are in the same right coset of the normalizer of a if and
only if they produce the same conjugate of a.]

Recall that ifH is a subgroup of a finite groupG, then theindex of H in G is the
number[G : H] of right (or left) cosets ofH in G. LaGrange’s Theorem now tells us
something important about conjugate classes.

Lemma 77. Let G be a finite group with a∈ G. Then the order of the conjugate class of
a is equal to the index of the normalizer of a, that is,◦([a]≡c) = [G : Na]. In particular,
◦([a]≡c)| ◦ (G).
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(Show that the set of conjugates ofa and the set of right cosets ofNa are thesame size.)

A subgroup always contains at least one element, the identity, and the conjugate class
of a always contains at least the one elementa. If one of these sets contains only this one
element it is said to betrivial ; otherwise it isnon-trivial . The center of a groupG is
defined as

Z(G) := {b∈ G | ba= ab for all a∈ G},
the elementsb of G that commute with every element ofG. In other words,Z(G) in the
intersection of all of the normalizers of elements ofG.

Lemma 78. The center Z(G) is a subgroup ofG which is exactly the union of the trivial
conjugate classes of G.

Now let G be a finite group and leta1,a2, . . . ,am ∈ G be a list of representatives of
the distinct non-trivial conjugate classes ofG. Then we can partitionG into its trivial and
non-trivial conjugate classes as

G = Z(G)∪ [a1]≡c ∪ [a2]≡c ∪·· ·∪ [am]≡c.

It follows that the order ofG is the sum of the number of elements in each piece of this
partition. This assertion yields an important numerical property of a group that is called
theClass Equationof G:

◦(G) = ◦(Z(G))+◦([a1]≡c)+◦([a2]≡c)+ · · ·+◦([am]≡c).

Lemma 79. If the order of a group is a power of a prime, then the group has anon-trivial
center.

Theorem 80. Let p be a prime. Then every group of order p2 is commutative, and is
therefore isomorphic to either the cyclic groupZp2 or to the direct productZp×Zp.

Problem 81. For which of the numbers n from1 to 25do you now know, up to isomorphism,
all of the groups of order n? Make a list which gives, for each such number n, all of the
non-isomorphic n–element groups.
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Chapter 7

Normal Subgroups & Quotients

Imagine that you arrive late to algebra class one day, somewhat more tired than usual,
and you sit down in back where you hope not to be noticed. You see the professor up
front holding a square with a black dot in the center of one side and talking about a new
groupD4. But, in your present state and location, you don’t see the little dot in the corner.
To you the elements of the subgroupN := {e,a,a2,a3} all appear to be equivalent and
indistinguishable, as do also the elements of the right coset Nd = {d,ad,a2d,a3d}. To you
it appears that the professor is presenting a 2-element group G = {N,Nd}. When asked to
fill out a table for the group, you quickly whip out the a nice little group table below. It has
N as its identity and is isomorphic toZ2.

∗ N Nd

N N Nd
Nd Nd N

It is only after a few idle minutes while your fellow studentscontinue hard at work that
you look over at what they are doing and discover your error. But wait a minute. Haven’t
you just found a neat way to make a new group from the right cosets of a subgroup?!

Let G be any group with a subgroupN, and letG/N denote the set of right cosets of
N in G. [We use this notation because thenumberof right cosets ofN in G is ◦(G)/ ◦ (N)
whenG is finite.] Define a binary operation· onG/N by

Nx ·Ny := Nxy for all x,y∈ G. (⋆⋆)

In words, the product of the right coset ofx and the right coset ofy is the right coset ofxy.
Notice thatG/N inherits group properties fromG:

• · is associative sinceNx· (Ny·Nz) = Nx·Nyz= Nx(yz) = N(xy)z= Nxy·Nz= (Nx·
Ny) ·Nz,

• Ne·Nx= Nex= Nx = Nxe= Nx ·Ne, soN = Ne is an identity,

• Nx ·Nx−1 = Nxx−1 = Ne= Nx−1x = Nx−1 ·Nx, soNx−1 is the inverse ofNx.

By gum,G/N is a group! We callG/N thequotient group of G modulo N (or G mod N
for short).

27



Normal Subgroups & Quotients 28

Problem 82. List the distinct right cosets of the subgroupN := {7n | n ∈ Z} of Z and
construct a table for the quotient groupZ/N (theintegers modulo7).

Problem 83. List the distinct right cosets of the subgroupN := {0,3,6,9} of Z12 and
construct a table for the quotient groupZ12/N.

Problem 84. List the distinct right cosets of the subgroupN := {e,c} of S3 and construct
a table for the quotient groupS3/N.

Now, if you were careful you should have run into some difficulty with the last quotient
group S3/N. What, for example, is the product of the right cosetsNa = {a,a2c} and
Na2 = {a2,ac}? On the one hand, we have

Na ·Na2 = Na3 = Ne= N.

On the other hand,Na = Na2c andNa2 = Nac, so that

Na ·Na2 = Na2c ·Nac= N(a2c)(ac) = Na 6= N!

It appears that the “product” of the cosetsNa andNa2 changes depending on which names
(representatives) we choose for these cosets. In a case likethis we say here that the “oper-
ation” · onS3/N is not well defined, that is, it is simply nonsense.

Definition A subgroupN of a groupG is called anormal subgroup of G if the represen-
tative operation· onG/N given by(⋆⋆) is well defined, that is,

if Nx1 = Nx2 and Ny1 = Ny2, then Nx1y1 = Nx2y2

for all x1,x2,y1,y2 ∈ G.

Problem 85. Verify thatN := {e,a,a2,a3} is a normal subgroup ofD4.

We can now stop to summarize what we have found.

Theorem Let N be a subgroup of the groupG. If N is a normal subgroup, thenG/N is
a group with operation· defined by(⋆⋆). If N is not normal, then(⋆⋆) does not define a
binary operation at all.

What we need to know, then, is how to tell whether or not a subgroup N is normal.
There are several different ways to do this.

Theorem 86. For a groupG and a subgroupN, these are equivalent.

(i) N is a normal subgroup ofG.

(ii) Nx = xN for all x ∈ G (every right coset is a left coset).

(iii) For all x ∈ G and a∈ N, the conjugate x−1ax is inN.

Corollary 87. Every subgroup of a commutative group is normal.

Corollary 88. Every subgroup of a group of index two is normal.

Corollary 89. The center of every group is a normal subgroup.
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Corollary 90. The kernel of every homomorphism is a normal subgroup.

When we form the quotientG/N of G by a normal subgroupN, we think of collapsing,
and thereby eliminating, the elements ofN. It is sometimes possible to start with a group
that is in some sense “bad”, then gather the “bad” elements into a normal subgroup. By
dividing out this normal subgroup, we get a quotient group that is “good” since it has no
“bad” elements left.

For example, being commutative is surely a “good” property for a group. IfG is a
group anda,b∈ G, thecommutator of a andb is defined as

[a,b] := a−1b−1ab.

Lemma 91. For elements a,b,x in a groupG,

(i) [a,b] = e if and only if a and b commute.

(ii) [a,b]−1 = [b,a] (The inverse of a commutator is a commutator.),

(iii) x−1[a,b]x= [x−1ax,x−1bx] (The conjugate of a commutator is the commutator of the
conjugates.)

If you prefer commutative groups, then you have to think of commutators (other thane)
as “bad” elements. Let[G,G] denote the set of all commutators and finite products of
commutators of elements ofG.

Lemma 92. If G is a group, then[G,G] is a normal subgroup ofG (called thecommutator
subgroupof G).

Because each commutator different frome witnesses the failure of two elements to
commute, the size of the commutator subgroup is a measure of how non-commutativeG
is. Thus, by (i),[G,G] = {e} if and only if G is commutative, and a larger commutator
subgroup indicates more non-commuting elements. When we form the quotient group
G/[G,G], we collapse all of the witnesses of failure of commutativity to the identity. The
result is a group with no witnesses to failure of commutativity.

Theorem 93. For every groupG, the quotientG/[G,G] of G by its commutator subgroup
is a commutative group.

Another illustration of quotient groups comes from an extension of Problem 53 and
the groupPabc with operation⊕. Let S= {a,b,c,d,e, f ,g,h}, T = {a,b,c} andU =
{d,e, f ,g,h}. Problem 53 asks us to think ofT as the “important” elements ofS, and
think of U as the “unimportant” elements ofS. We then think of two members ofPS as
being equivalent if they contain the same important elements.

Like Pabc, the collection of subsetsPS of S, subsetsPT of T and subsetsPU of U each
form a group under symmetric difference⊕.

Problem 94. Define f: PS→PT by f(X) := X∩T. Thus f(X) consists of the “important”
elements of X.

(i) Show that f is a homomorphism fromPS onto PT . (This says that the sum of the
important elements in X and the important elements in Y is exactly the important
elements in X⊕Y.)
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(ii) Show thatPU is the kernel of f .

(iii) For X,Y ∈ PS, show that f(X) = f (Y) if and only if X and Y are in the same coset
of PU .

(iv) Show thePS/PU
∼= PT . (Be sure that your isomorphism is well defined.)

We will see that the conclusion of Problem 94 is quite general. A groupG′ is said to be
ahomomorphic imageof a groupG if there is a homomorphismf : G → G′ from G onto
G′.

Theorem 95. Every quotient of a groupG is a homomorphic image ofG. More specif-
ically, if N is a normal subgroup ofG, then thenatural homomorphism h : G → G/N,
given by h(x) := Nx, is a homomorphism fromG ontoG/N.

Lemma 96. Let f : G → G′ be a homomorphism, x,y∈ G. Then f(x) = f (y) if and only if
K f x = K f y.

We can now prove that every homomorphic image of a group is isomorphic to a quotient
of that group.

The Isomorphism Theorem 97. If f : G → G′ is an onto homomorphism, thenG/K f
∼=

G′.

s
s
s
s
s

s
s
s
s
s

G′G/K f
∼=

w

z

y

x

e

d

c

b

a

e′

K f w = f−1(d)

K f z= f−1(c)

K f y = f−1(b)

K f x = f−1(a)

K f = K f e= f−1(e′) ◮

f

(For example, ifxy= w, thenK f x ·K f y = K f w andab= d.)

Wow – quotient groups – what a great idea! And in the end, they turn out to be exactly
the same as homomorphic images. But just as you are thinking this, there is an unsettling
disturbance.

“You – yes, you in the back there! Can you come up to the board and show us your
table forD4?”

“Well, no Professor, I’m sorry – I can’t. But I’ve just found areally neat way to patch
together a whole bunch of new groups! Can I put that up instead?”
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Chapter 8

Other Algebras

A slightly more sophisticated way to view agroup G is to think of it as consisting of a
setG together with a binary operation∗ : G×G→ G, a unary operation−1 : G→ G and a
constante∈ G,

G = 〈G;∗,−1,e〉,
where∗ is associative,e is an identity, andx−1 is an inverse ofx for eachx∈ G. It turns
out that there are many different familiar algebraic systems that are similar to groups and
can be studied in much the same way that we have studied groups. An algebra

A = 〈A;◦,∗,+, . . . ,−1,α,¬, . . . ,e,0,1, . . .〉

consists of a setA, a collection◦,∗,+, . . . of binary operations onA, a collection−1,α,¬, . . .
of unary operations onA, and a sete,0,1, . . . of distinguished constants fromA.

Many central notions from group theory extend to all algebras. For example, an algebra

B = 〈B;◦,∗,+, . . . ,−1,α,¬, . . . ,e,0,1, . . . 〉

is asubalgebraof A if it is closed under each of the operations ofA, that is,

• if x,y∈ B and∗ is a binary operation ofA, thenx∗ y∈ B;

• if x∈ B and′ is a unary operation ofA, thenx′ ∈ B, and

• if e is a constant ofA, thene∈ B.

Notice that a subset of a group forms a subgroup in the usual sense if and only if it is a
subalgebra in this sense.

Similarly, a functionh from an algebraA to an algebraB is a homomorphism if it
preserves each of the operations, that is,

• h(x∗ y) = h(x)∗h(y) for each binary operation∗ and allx,y∈ A;

• h(x′) = h(x)′ for each unary operation′ and allx∈ A;

• h(eA) = eB whereeA is a constant ofA andeB is the corresponding constant ofB.
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AlgebrasA andB areisomorphic if there is a bijectionh : A → B which is a homomor-
phism.

As we did with groups, we like to study classes of algebras with a fixed type of opera-
tions satisfying a fixed set of axioms. In this chapter we willintroduce three such examples.

RINGS

Our childhood experience with mathematics begins with the arithmetic of the integers
and the rational numbers. These are two of many familiar examples of another kind of
algebra. Aring with identity is an algebraR = 〈R;+, ·,−,0,1〉 with two binary operations
+, ·, a unary operation− and two constants 0 and 1 such that

1. 〈R;+,−,0〉 is a commutative group,

2. for all x,y,z∈ R,

• x · (y ·z) = (x ·y) ·z,
• 1 ·x= x = x ·1,

• x · (y+z) = x ·y+x ·zand(y+z) ·x= y ·x+z·x.

The third condition is expressed in words by saying that, “The operation· distributes over
+.” Note that since· may not be commutative, we must verify both distributive properties.

Lemma 98. If R is a ring with identity and x∈ R, then x·0 = 0 = 0·x and−x = (−1) ·x.

Problem 99. Assume thatR+·, the real numbers with the usual operations, is a ring with
identity. Show that each of the following is a ring with identity. (In each case you will need
to tell what0 and1 are.)

Z, the set of integers with the usual operations.

C, the set of complex numbers with the usual operations,(a+bi)+ (c+di) := (a+c)+
(b+d)i and (a+bi) · (c+di) := (ac−bd)+ (bc+ad)i.

M , the set of 2-by-2 matrices overZ with the usual matrix addition and multiplication.

PS := 〈PS;⊕,∩,−,∅〉 where S is a set,PS is the collection of subsets of S, and−X := X
for X ∈ PS.

F, the set of real valued functions defined on the set of real numbers, with the usual
addition and multiplication,( f +g)(x) := f (x)+g(x) and( f ·g)(x) := f (x)g(x).

Problem 100. Show thatZ is a subring ofR+· which is a subring ofC.

Problem 101. Let a be a real number, and define ha : F → R+· by ha( f ) := f (a). Show
that ha is a ring homomorphism.

Problem 102. Let T be a subset of a set S and define h: PS→ PT by h(X) := X∩T. Show
that h is a ring homomorphism. Show that the multiplication operation∩ is well defined
on the set of cosetsPS/Kh, and thatPS/Kh is itself a ring with identity that is isomorphic
to PT .
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LINEAR SPACES

In a college Linear Algebra course we learn about systems called “linear spaces”. Alin-
ear spaceis an algebraL = 〈L;+,−,0,a〉a∈R with a binary operation+, a unary operation
−, and a unary operationa for each real numbera∈ R such that

1. 〈L;+,−,0〉 is a commutative group,

2. for all X,Y ∈ L anda,b∈ R,

• a(X +Y) = aX+aY,

• (a+b)X = aX+bX,

• a(bX) = (ab)X and

• aX = 0 if and only if a = 0 orX = 0.

The study of linear spaces is calledlinear algebra. There are many familiar linear spaces:
the Euclidean planeR2, Euclidean 3-spaceR3, Euclideann-spaceRn, the space of real
valued functions on any fixed domain, the space of solutions to a homogeneous differential
equation, the space ofn-by-mmatrices, etc.

A subalgebra of a linear spaceL is called asubspace. The smallest subalgebra ofL
containing a setS⊆ L is called thespanof S, written Span(S). A generating set forL is
called aspanning set. A homomorphism from one linear space to another is called alinear
transformation .

Theorem 103. Let L be a linear space, letM be any subspace ofL , and letL/M be the
set of right cosets ofM (which forms a group under+ sinceM is a normal subgroup).
Then scalar multiplication is always well defined onL/M as

a(M +X) := M +aX,

and〈L/M ;+,−,0,a〉a∈R is itself a linear space(called thequotient space).

BOOLEAN ALGEBRA

Modern algebra became a viable subject beyond group theory in the 1850’s when
George Boole showed how the laws of logical inference can be codified into an algebraic
system in which the elements are statements. What we have come to call aBoolean al-
gebra is an algebraB = 〈B;∨,∧,′ ,0,1〉 with two binary operationsjoin ∨ andmeet∧, a
unary operation ofcomplementation′, and constants 0 and 1 such that, for allx,y∈ B,

1. ∨ and∧ are both commutative and associative, and each distributesover the other,

2. x∨x = x andx∧x = x,

3. x∨ (y∧x) = x andx∧ (y∨x) = x,

4. x∨1 = 1 andx∧0 = 0,

5. x∨x′ = 1 andx∧x′ = 0.

There are two important and familiar examples of Boolean algebras.
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Let Sbe a set and letP(S) denote the collection of all subsets ofS. Then∪ and∩ are
binary operations onP(S), complementation∼ is a unary operation onP(S), and∅ and
Sare special elements ofP(S). The proof of the following theorem has many parts, all of
which are normally done in a foundations course in mathematics.

Theorem 104. If S is a set, thenP(S) := 〈P(S);∪,∩,∼,∅,S〉 is a Boolean algebra.

Formulating propositional logic as a Boolean algebra requires an extra step that we
draw from our experience with quotient groups. Consider anyfixed set of propositional
variablesp, q, r,. . . , each representing a fixed statement. If we use∨ for “or”, ∧ for “and”,
′ for “not”, 0 for “False” and 1 for “True”, we can combine propositional variables to for
compound sentences such as

((p∨1)∧ r)′∨ (q′∧ (p∨ r)).

If C denotes the set of all compound sentences, then∨ and∧ are binary operations onC
while ′ is a unary operation and 0 and 1 are constants inC. This gives us an algebra

C := 〈C;∨,∧,′ ,0,1〉.

Is C a Boolean algebra? For example, is∧ commutative? We have(q∨ r), p∈C so, for
commutativity, we would need to know that

(q∨ r)∧ p = p∧ (q∨ r).

Is this the case? While these two compound sentences seem to make the same assertion
(“ p is true and eitherq or r is true.”), they are not really the same member ofC. So∧ is
not commutative. But the two compound sentences are equivalent in a natural sense: they
have the same true tables.

These observations lead us to the following construction. For x,y∈C, we say thatx≡ y
if x andy have the same truth tables. We check that≡ is an equivalence relation and define

B = C/≡ = {[x] | x∈C}

to be the set of equivalence classes ofC.

Theorem 105.The representative operations∨,∧ and′ are well defined on B by[x]∨ [y] :=
[x∨y], [x]∧ [y] := [x∧y] and[x]′ := [x′], and the quotient algebra

B := 〈B;∨,∧,′ , [0], [1]〉

is a Boolean algebra.

These operations on the equivalence classes are well definedin exactly the same sense that
a group operation is well defined on the cosets of a normal subgroup. The resulting Boolean
algebraB is called theLindenbaum-Tarski algebra for propositional logic. It allows us
to understand mathematical logic through algebra.
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