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To the Instructor

This guide was written for a two semester senior level intaidry course in group theory
at SUNY New Paltz. The first semester is required of all mattés and mathematics
secondary education majors, with the second semesteablads an elective. For most
students in these classes this is a first serious courseriregjtiem to prove theorems
on their own. Students with prior experience would be likelymove through it more
quickly. This guide was also used at a considerably more etitiye university by another
instructor who completed it in one semester.

You will find here 105 problems and theorems which studentsudside of class and
present in class. | discuss each solution after it is preserand ask all of the students
to write up a correct version of each in a neatly bound pddfiiiat must be complete by
the end of the semester. Scattered problems and theorematgnesented in class, or not
presented in full, but are instead left for all students todoheir own. During the semester
students give me their portfolios to check as often as they And some require multiple
tries before they are able to do certain assignments cbrrécequire the portfolios to be
completed and handed in at the end of each chapter. | chetk th@omplete and read
carefully only those few that were not done in class.

The first chapter offers students an opportunity to fami@athemselves with an as-
sortment of particular groups, finite and infinite, commiveatind non-commutative. The
tables created in Problem 1 are valuable references thomti¢iie course. Problems 2 and
3 provide a good reminder that a counterexample, and noteadfproof, is necessary to
show that a universal property does not hold. Problem 5 cadobe laboriously from
scratch, or efficiently for students who remember some Brsar algebra.

Building on the first chapter, the second gives a sequencenfemtary theorems of
abstract group theory. As much as | possibly can, | try to dvavexperimental evidence
from our examples to get students to state conjectures angttove them formally. Corol-
lary 11 is the first good example of this. For finite groups,drieens 12, 14 and 15 are three
ways of saying that the rows and columns of a group table armaytations. Theorem 16
begins a central theme of characterizing groups of diffifieite orders, and foreshadows
the notions of equivalence relation and isomorphism.

In Chapter 3 we study cyclic groups. Lemma 22 is used in Prol28 to give a bare
hands proof that every subgroupayf is cyclic whenn = 12. Imagining doing this rather
laborious computation for other valuesmhelps my students appreciate the value of ab-
stract mathematics when later they prove Theorem 32. RroBieis another good example
of an empirical conjecture, and the correct answer to theglasstion appears to be ‘No’
until they reach the last theorem of the chapter.
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In Chapter 4 we pull LaGrange’s Theorem out of some more &e@arguments. The-
orem 16 initiates the broad question as to which values lndive the property that every
n—element group is cyclic, that is, for which finite carditiak are the group axioms cate-
gorical. Theorems 36 and 37 say that this is the case for 5 and fead to a conjecture in
Problem 40 that is later proven as Theorem 47. Meanwhileaiip@ments of Theorems 36
and 37 suggest the idea of coset decomposition and LaGrmamgebrem. Problem 39
foreshadows Theorem 48. The chapter ends by asking thenssuidetry to answer the
opening question for numbers up to 60.

Chapter 5, Equivalence Relations, could be skipped if sttedeome with a good
knowledge of this topic. | find that they rarely do, as it isesftpresented in elementary
courses before they have enough examples to draw from to thalencept meaningful.
I only pursue the final question in the chapter if studentsoskdo work on it.

The level of abstraction steps up in Chapter 6, where the asiplis on isomorphism
rather than homomorphism. Theorem 65 now makes it possibiteake precise the prob-
lem of classification of finite groups initiated in Theorem 1Bhis theme culminates in
Problem 81, which adds to the results of Problem 49. | counCbapter 7 to give an
entertaining introduction to quotient groups.

Rather than devising a superficial overview of groups, rifigkls and linear spaces, |
prefer to give my students an in depth experience with grbeprty alone. My belief is that
this will give them a much better sense of what algebra is abimicompensate for these
omissions, the final Chapter 8 introduces other algebraitesys with an indication as to
how the basic notions of subalgebra, isomorphism and homamsm can be applied.

David Clark
clarkd@newpaltz.edu
April, 2005

David M. Clark www.jiblm.org



Chapter 1

Concrete Groups

A binary operation on a set Gis a rulex which associates with every pair of elements
a andb of G a unique elemerd b of G. More formally, a binary operationon G is a
functionx : G x G — G from the cartesian product

GxG:={(ab)|abeG}

into G. Note that “=" means that the expression on the left is being defined aslaewab
ation for the expression on the right. We write«'b” to denote the image(a,b) of (a,b)
underx. Abstract algebra has primarily grown out of the study ofapynoperations, and
of the features common to many familiar binary operationsiaB/ operations abound in
mathematics, as the examples below illustrate.

1. Addition +, subtraction — andmultiplication - are binary operations on the $et
of real numbers and, suitably restricted, on theZsef integers. Notice thalivision
-+ is not a binary operation on eithBror Z sincea - b is not defined wheb = 0.

2. LetSbe a set and I€®(S) denote the collection of subsets®fcalled thepower set
of S. Thenintersection N, union U, andset difference~ are binary operations on
P(S). Another important binary operation ¢{S) is thesymmetric difference, @,
defined as

A@B:= {xe S| xis in eitherA or B but not both},

thatis,A@ B= (AUB) ~ (ANB).

3. LetS; denote the set gfermutations of the se{ 1,2, 3}, that is, one-to-one and onto
functions from{ 1, 2, 3} to itself. Compositiono forms a binary operation o®; since
the composition of two permutations is again a permutatidne set{1,2, 3} has
exactly 6 permutations, illustrated below as rigid motiohan equilateral triangle.

2 3 1 2 3 1
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Here a permutatio is represented by putting cornerin the g(x) position, for
x=1,2,3. For examplea is achieved by starting in theconfiguration and rotating
the triangle clockwise 120 degrees. The produetf = d is realized by doingf
first and thera: we flip the triangle over the diagonal through cornerf B &nd then
rotate it clockwise 120 degrees)( as we have

a(f(1)) =a(2) =3=d(1)
a(f(2)) =a(l)=2=d(2)
a(f(3)) =a(3) =1=d(3).

(ao f)(1)

(aof)(2)
(ao f)(3)

4. TheseZ1,=1{0,1,2,3,4,5,6,7,8,9,10,11} denotes the numbers on a clock, where
0 replaces 12. We defire+1,b to be the hour that i® hours after houa. For
example, 16+1,7 = 5 since 7 hours after 10 o’clock is 5 o’clock.

5. Consider a X% 2 “chess board” on which you are allowed to make four différen

moves:
1 2 -~ L °
H: V: D: E:
3| 4 —

H move horizontally (1to 2,2to 1, 3to 4 or 4 to 3),
V move vertically (1to 3,3to 1, 2to 4 or 4 to 2),

D move diagonally (1to 4,4to 1, 2to 3 or 3to 2), or
E stay in place.

LetK4={E,H,V,D} and letX Y be the move achieved by doiivgfirst and then
doingX.

6. Recall that theleterminant of a 2x 2 matrixA = (25) is the numbetA| := ad—
bc. Let M1 be the set of % 2 matrices with determinant 1 under the usual matrix
multiplicatione defined by

a b (P 9\ _ ap+br ag+bs
c d r s) \cp+ds cotds
A binary system consists of a seB together with a binary operation: G x G — G
onG. If Gis afinite set withh elements, we can fully define a binary operationith an
n-by-n table. We list the elements @& as labels down the left side of the table and again
across the top. Then the entry in the row labetezhd column labeled is the value of
X Y.
Constructing tables for a few sample finite binary systenwvigdes a good opportu-

nity to build some concrete intuition about their behaviefdse we begin to study them
abstractly. We will make frequent reference to the examipédsw in the future.

Problem 1. Using a separate sheet for each one, construct a table foioll@ving binary
systems:

() Ks={E,H,V,D} with x,

David M. Clark www.jiblm.org
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(i) Z1o with 412, the clock arithmetic,

(iii) Papc with @, the system of 8 subsets of the &&th,c} under symmetric difference,
and

(iv) Sz with o, the rigid motions of an equilateral triangle(lt will help to use a real
triangle with ae on the top side!

Many operations have special properties that enhance dlity @b do computations
within them. A binary operation is associativef

ax(bxc)=(axb)xc foreveryab,ceG.

If a,b,c € G, then the expressiora* bx*c” is in general ambiguous since it could mean
eitherax (bxc) or (axb) «c. When we know thaG is associative, we generally omit the
parentheses sin@ex b x c will have the same value whichever way we interpret it.

We say thats is commutative if
axb=bxa foreveryabeG.
An element € G is anidentity for « if
exa—axe=a foreveryacG.
If eis an identity forx anda € G, then aninversefor ais an elemenb € G such that
axb=bxa=e
Our next definition isolates the most essential properfiésnary systems.

Definition 1. A group is a binary systen® with « for which
(i) = is associative,
(ii) there is an identity elementeG for *, and

(i) each element db has an inverse.

For example, we can check that each of the binary systemsobld®n 1 is a group. We
call K4 theKlein 4-Group, Z1» thegroup of integers modulo 12andS; the symmetric
group on 3 elements The fact thaP,uc is associative is not obvious from the definition,
but is a straightforward exercise in elementary set theory.

It turns out that most of what we will want to do does not regtire commutative prop-
erty. If the binary operation of a group is commutative, we say th& is acommutative
group, or anabelian group after the Norwegian mathematician Niels Abel (1802-1829).

Problem 2. Which of the binary operations, —,-,N,U,~,0,412,%, e are associative?
For each one that is not, give a counterexample to show itis no

Problem 3. Which of the binary operations, —,-,N,U, ~, 0, +12, %, are commutative?
For each one that is not, give a specific counterexample tavghat it is not. Reviewing
Problem 1, how can you tell from looking at a table if an op&matis commutative?

Problem 4. What is the identity of each of the groulds, Z12, Papc and Sg? List the
elements of each group and, under each element, list itsseve

David M. Clark www.jiblm.org



Concrete Groups 4

Problem 5. Show that the product of two || * || 0 | 1 | 2 | 3 | 4 ||

members oM is again a member d¥l 1, 001|234
and thatM ; forms a group under matrix 1]11/]0]3]4]|2
multiplication. 2112131410

3(314(0]2(1
Problem 6. LetL be the binary system on 414]12]1]0,3

the right. IsL commutative? Is it a group?

David M. Clark www.jiblm.org



Chapter 2

Consequences of the Axioms

What is truly fascinating about the three little axioms fograup—associativity, identity

and inverses—is that together they imply so much. In thiptdrave will look at a number

of different immediate consequences of these axioms. Weafdr to a consequence of
these axioms as a “Lemma”, a “Theorem” or a “Corollary”. Asuyarove each of the

following consequences, specify each use of one of the axiom

We begin with a fact that does not even depend on the groupraxids it possible
for a binary system to have two different identity elemenis®, for example, to fill in a
table for a binary operation on a 3—element sefte;, e,,a} in which bothe; ande, are
identity elements. If you have difficulty, look at exactly aths causing the difficulty and
then prove the following theorem.

Theorem 7. A binary systen® with operation« can have at most one identity element.

Now try to fill in a table for a binary operation on the 4—element sdie,a,b,c} in
which e is the (unique) identity and andc are both inverses fa. This time you should
have no trouble, which tells you that any proof of the follogitheorem will necessarily
have to make use the group axioms.

Theorem 8. Let G be a group with identity e, and let a be an elemenGofvith inverse b.
If c € G and either ac= e or cxa= e, then c=b. In particular, a has only one inverse.

Since the inverse of a group elemeris unique, we will normally denote it bya“?”. In
this notation, Theorem 8 says that, if we already know thaawesn a group, then we can
show thatb is the inverse o# by verifying either thabxb = e or bxa = e; we don’'t need
to verify both.

Corollary 9. If G is a group with identity e and,& € G, then
) @ht=a
(i) (axb)yt=b1lxal

Let G be a binary system. We say the G is aright identity if axe=aforallac G.
An elemenb € G is aright inverse for a (with respect te) if axb=e. An elementf € G
is anidempotentif f« f = f.
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Theorem 10. Let G be an associative binary system with a right identity e shelh ¢éach
element has a right inverse. Thénis a group.

[Hint: You need to show thatis also a left identity and that a right inverse is also a left
inverse. Start by showing thats the only idempotent i.]

The examples of groups that we have computed will give us arédbry to test hy-
potheses that might be true of groups in general. Noticetligatwo groupd4 andPgpc
have the unusual property that each element is its own iavéiisese two are among the
commutative groups, but not every commutative group (fanepleZ 1) has this property.

Corollary 11. Let G be a group in which every element is its own inverse. TBes
commutative.

Algebra in general grew out of the historical need to solveatigns, and this need
led specifically to the development of group theory wher¢abeikinds of equations can
always be solved.

Theorem 12. If G is a group, ab € G, then the equations-ax = b and yxa= b each
have a unique solution, namely=xa~1 «b, and y=bxa1.

Cancellation is a technique that is often useful for solvémations, but it must be
used judiciously. For example, in high school algebra wenoainonclude fronab = ac
thatb = c without first checking thaa £ 0. In general, for a binary operatian we say
that

x is left cancellativeif axb=axcimpliesb=c, and

x isright cancellative if bxa= cxaimpliesb=c

for every choice of, b, c.

Problem 13. Give examples to show that multiplication 2& 2 matrices in general and
composition of functions in general are neither left nottigancellative.

Theorem 14. Every group is both left and right cancellative.

If we examine the group tables that we constructed in Chdpter notice something
special about the rows and the columns. In each case, eachrmdweach column is a
permutation of the elements of the group. The rows and coblanmprecisely the functions
from the group into itself obtained by left and right muligation by a single element.
What we have observed in these examples is true for all groups

Theorem 15. If G is a group and & G, then the two functions
la(X):=axx and [(X):=x*xa
are both permutations of G.

An essential goal of group theory is to discover all possistaips of each finite size.
The theory we will develop later will help to do this, but wencaiready address a simple
case. The following theorem can be proven from the axiomsybu might be able to
apply what you have learned to give a simpler proof.

David M. Clark www.jiblm.org
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Theorem 16. In the following sense, there is essentially only one groith three ele-
ments.

(i) There is at most one way to fill in a table for the §eta, b}, using e as the identity,
which could possibly be a group.

(i) The table of parf(i) is in fact a group. (You will need several cases to establish
associativity)

Associativity in groups allows us to unambiguously writentiothe product b c
wherea, b, c are elements of a group. What about longer products suchaasbcxdx* f?
This expression has quite a number of possible interpoetstifor example((axb) x (cx
d))« f andax ((bxc)« (d« f)). Do these both represent the same element? They do, but
this fact requires four applications of the associativepprty to prove:

((axb)x (cxd))« f = (axb)x ((cxd)« f)= (axb)(cx(d« f))
=ax(bx(cx(d«f))) =ax*((bxc)* (d«f)).

If we could devise a similar argument for every pair of 5—ed@itrproducts, we would then
be able to unambiguously writex b ¢ dx f.

More generally, is it possible to prove that the proda@as. . . a, is unambiguous?
This task sounds rather daunting, as the number of possibiupts will grow rapidly
as the number of factors extends beyond five. It turns outitlienevertheless true, and
that mathematical induction provides a simple proof. We fiefine theleft associated
product of a,ap,as,...,a, to be

(...((ar*ap)*xag)*...)*an.

Theorem 17. LetG be an associative binary system, and choose elemgras as, ..., an €
G. Then every product of the elementsa,as,...,a,, in that order, is equal to the
left associated product. In particular, we can unambigupuwgrite down the product
arkap*xagz*---*an.

Real number exponents satisfy two important rules:
a"a"=a™" and (@"=a™

wherem andn are positive integers. His an element of a group andn € Z* (the set of
positive integers), we recursively define #vgonenta” as

n+1._

al:=a and a a"xa.

Applying the above associativity theorem, we see #lat= axax---xa, the product oh
a’s. Itis easy to check that the same rules of exponents haldthis definition.

We would like to extend the definition of exponents to give @amieg to ‘2" and “a—""
in such a way that the rules of exponents will continue to hdliere is only one way that
we could possibly do this. &0« al = a®t1, then we hava®« a = a so that, by Theorem
4, we must define

a’:=e the identity

Similarly, if a="*a" = a """, then we hava "xa" = e so that, by Theorem 2, we have
no choice but to define
a":=(@") !, theinverse of".

David M. Clark www.jiblm.org
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Lemma 18. If G = (G, ) isa group, ac G and nc Z*, thena" = (a~1)".
The proof of the following theorem requires examining a nemif cases.
Theorem 19. Let G = (G, x) be a group, & G, and mn € Z. Then

() amxa"=a™"and
(i) (@M"=am.

For another familiar source of groups, recall that the asidon a linear space require
that vector addition be commutative and associative, aattltere be a zero vector which
is an additive identity. The other axioms imply that, for le@ointP of a linear space, the
point (—1)P is an additive inverse dP. Thus every linear space is a commutative group
under addition.

The group operation in a vector space is normally denotedh&yatdition symbol +.
For example, the vector space of all functions from the raatlpers into the real numbers
forms a commutative group|R, R] where the sum of functionsandg is defined by

(f+9)(x) = f(x) +9(x).

When we refer to a commutative group whose operation is éenoy +, such as the
additive group oR of real numbers, the additive groupmby-m matrices, or the additive
groupF[R,R], it is rather awkward to use the multiplicative notationtthee have been
using for general groups. Instead, we introducesithditive notation for groups as follows.

Multiplicative Additive
product; sum axborab a+b
identity ea=ae=a O+a=a+0=a
inverse at —a
exponent a" na
quotient; difference ab?! a—b

In additive notation, for example, Theorem 19 says thatafba,b € G andmn € Z, we
have

(i) ma+na= (m+nja
(i) n(ma) = (nmja.

While this may look at first glance like the distributive arsbaciative properties, they are
in fact the properties of exponents written in additive tiota

David M. Clark www.jiblm.org



Chapter 3

Cyclic Groups

Let G be a group with operatior and letH be a subset o6. We say thaH is closed
under x if
a,beH implies axbeH.

If H is closed undek, thenH also forms a binary system. H turns out to be a group,
we call it asubgroup of G. Notice that ifH is closed undek, thenH is automatically
associative. Thull is a subgroup o if and only if

(i) H is closed undex,
(ii) the identitye of GisinH and

(i) for each elemenb of H, the inversd 1 is in H.

For example, the subgroups of the additive gréupf real numbers include the addi-
tive groupQ of rational numbers and the additive groug of integers Familiar sub-
groups of the additive group(R,R) include the group o€ontinuous real valued func-
tions C(R,R), the group ofdifferentiable real valued functions D(R,R) and the group
of polynomial functions P(R,R):

P(R,R) CD(R,R) C C(R,R) C F(R,R).
Our next lemma gives a simple way to find a multitude of subgsou

Lemma 20. Let b be an element of the gro@ Then the sefb” | n € Z} [the set{nb]|
n € Z} in additive notatiof of all powers[multipleg of b forms a subgroup o&.

We use the notation
sgb):={b"|neZ}

and call this thecyclic subgroup of G generated byb. If G = sg(b) for some element
b € G, we say thaG is acyclic group and thatb is acyclic generatorof G. For example,
the additive groupZ of integers is cyclic since every integer is a multiple of Hattis,
Z =sg(1).

Lemma 21. Every cyclic group is commutative.

9
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Thus, for exampleSz andM 1 arenotcyclic groups. Notice that each element of every
group generates a cyclic subgroup. We will see that diffeetgments can generate the
same cyclic subgroup.

Lemma 22. If H is a subgroup ofG and be H, thensg(b) C H.

Problem 23. Find the cyclic subgroup o 1, generated by each of its elements. Show that
Zjy is itself a cyclic group. Is there a subgrotipof Z1, that is not cyclic?

We have seen a small number of different finite groups. Howyndiffierent finite
groups are there? For example, is there a group with 17 eksfengroup with 64,539
elements? Looking closely at the grodp, suggests some answers. Indte an arbitrary
positive integer and consider the §&1,2,3,...,n— 1} of all possible remainders when
we divide byn. Following the example o 1, we define+, on this set by

a+b if at+b<n
a-+tnb:= .
at+b—-n if a+b>n.

Clearly 0 is an identity for, andn— b is an inverse fob. Moreover,+, is associative
since botha+, (b+nc) and(a+nb) 4+ c are the number we get by addiag- b+ c and
then subtracting until we get a number less than Thus

Zn:={({0,1,2,....,n—1};+n)

is a (commutative) group which we call tigeoup of integers modulon. This gives us at
least onen-element group foeverypositive integen.

Problem 24. Show thatZs is cyclic. Exactly which elements df; are cyclic generators
of Zg?

Problem 25. Show that the grou@,, is cyclic for each re Z*. Looking at the examples
of Zs andZ1,, which elements oZ,, do you think are the cyclic generators @f,? State
your answer as a conjecture. Can you prove it?

The cyclic grouZs can be illustrated by the following diagram.

0=5-1=..
/ \
Ze: =9-1=4 11 e1=6-1=...

.=81=3 e<+~—e2=7.1=_.

This diagram certainly does support our choice of the teryelic” for this kind of group.
We would like to show that every finite cyclic group looks littes. If a cyclic group has
generatob, then it consists of all the powers

.02 b2 b1 b0 =eb,b% b3 b, ...

of the elemenb. If the group happens to be finite, then this list must be yigatlundant
asitisinZs. We will see that this redundancy must follow the above “yjgattern.

David M. Clark www.jiblm.org



Cyclic Groups 11

Lemma 26. Let b be an element of a group, and let ne Z*. Assume that the powers
e=b%b=Db!b? b b ... b"are notall distinct, that is, there are integerg isuch that
b' = bl where0 < i < j < n. Then there is a positive integerkn such that b= e.

We say thab hasinfinite order if all of the non-negative powers= b% b= b!,b? b3, b*,...
are distinct. Otherwise, we say thalbasfinite order and we define therder of b, written
o(b), to be the smallest positive integesuch thab® = e [additively, kb= 0]. For example,
each element of the additive grodphas infinite order while each element of a finite group
Problem 27. Find the order of the following elements of the grdvp :

must, according to Lemma 26, have finite order.
: 0 -1 , 3 5\ . - -
(|)A:(1 0) (||)B:(4 7) (|||)C:<%§ B )

Lemma 26 leads to several useful results. Recalllthat G is a subgroup o6 pro-
vided that it is closed, contains the identity and contaivelises. These criteria can be
simplified for finite groups.

Nl m|$|

Theorem 28. LetH be a finite non-empty subset of a gradBpThenH is a subgroup oG
provided only that it is closed.

Corollary 29. If Gis afinite group and let & G, then the subgroup generated by a consists
of all positive powers of a:
sga) ={a|kez"}.

We can now prove two important theorems about cyclic grouj will need the
following fundamental fact about the integers, which wd wilt prove here.

Long Division Lemma Let m be an integer and lat (thedivisor) be a positive integer.
Then there are unique integersthequotient) andr (theremainder) such that

m=qd+r with 0<r<d.

Letm,d € Z. We say that divides m, writtend|m, if there is aq € Z such thatm = qd.
We generally use Long Division to find outdfm by dividing m by d and seeing if the
remainder is 0. Use this strategy to prove the following leanm

Lemma 30. Assume k& G has finite order, and let m, j € Z. Then
(i) bM=eifandonlyifo(b)jm, and
(i) b'=blifandonlyif o(b)]i — j.

Theorem 31. Let b be an element of a gro@, and assume that b has finite order k. Then
the cyclic subgroup o6 generated by b has exactly k distinct elements, namely,

sgb) = {e,b,b?,b%, ... .b 1} withb =e

David M. Clark www.jiblm.org
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This theorem tells us that a finite cyclic group is accuratigcribed by the adjective
“cyclic”. Using this information, we can fill in the entire gup table forsg(b). Thus every
group element of orddt generates a cyclic group that look exactly like the cycliougr
Zk. The next theorem tells us that what we discovered aBgutn Problem 23 is true of
every cyclic group.

Theorem 32. Every subgroup of a cyclic group is cyclic.

Proof: (Hint) Let G = sg(b) be cyclic, and leH be a subgroup o&. Choose an integer
for which you believe thaitl = sg(b"). Then show thasg(b") C H and thatH C sg(b").

14 o—».—»
i3 / \
b4
\

//bs
/b6

8

b12

o—».—»o
o<—.<—o

bll

The fact thatZ is a cyclic group leads to some useful properties of the aregFor
example, we know that, for each non-negative intagehe multiples ofn form a cyclic
subgroup oZ. Theorem 32 tells us that these are tmdy subgroups oZ. Letmne Z
wherem andn are not both 0. We say thdtis thegreatest common divisorof mandn,
writtend = gcd'm, n), if d is the largest positive integer that divides botlandn.

Lemma 33. Assume mm € Z where m and n are not both 0. Then=d gcdm,n) is the
smallest positive integer that can be expressed in the foxm ny where xy € Z.

Proof: (Outline) Show thaH := {mx+ny| x,y € Z} is a subgroup o and apply Theo-
rem 32.

We say tham,n € Z arerelatively prime if gcd(m,n) = 1.

Theorem 34. Integers mn € Z are relatively prime if and only if there are integergpe Z
such that mx- ny= 1.

We now have the machinery we need to prove the conjectureotién 25.

Theorem 35. Let G = sg(b) be a finite cyclic group where(b) = k. Then B'is a cyclic
generator ofG if and only if m and k are relatively prime.
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Chapter 4

LaGrange’s Theorem

By the order of a finite groupG, written o(G), we mean the number of elementsGn In
this chapter we will see how numerical properties @) imply algebraic properties of the
groupG itself.

Theorem 31 tells us that a cyclic group of ordteronsists of the firsk powers of the
generator, where the operation is done by adding the powedulmk. Thus all finite
cyclic groups of the same order have virtually identicaléabTheorem 16 tells us that all
groups of order 3 are cyclic, and therefore look alike. QYetire same is true for groups
of order 1 or 2. On the other harld, is a non-cyclic group of order 4. These observations
raise the following question.

Question For which positive integens is it true that every group of orderis cyclic?
The smallest value af for which we do not yet have an answenis- 5.

Theorem 36. Every groupG of order 5 is cyclic, and therefore looks exactly like.

Proof: (Outline) Letb be any element db other than the identity. Explain why(b) must
be either 2,3,4 or 5.

(i) Show that ifo(b) = 4, thenG would have at least 8 elements. [Fill in the first 4
rows of the table listing the elementsab, b2, b3. Then add a 5th column for a new
elementc and explain whyc, d :=bxc, f :=b?xc, g:=b®xcwould be 4 distinct
new elements.]

(i) Show that ifo(b) = 3, thenG would have at least 6 elements. [Fill in the first 3 rows
of the table listing the elements a$, b%. Then add a 4th column for a new element
cand explain why, d:=bxc, f :=b%«cwould be 3 distinct new elements.]

(iif) Show thatifo(b) = 2, thenG would have at least 6 elements. [Fill in the first 2 rows
of the table listing the elements a. Then add a 3rd column for a new element
and explain whyc, d := bxcwould be 2 distinct new elements. Add columnsdor
andd and fill in the 2 columns below them. Now Iéthe the 5th element and explain
why f, g:=bx f would again be 2 distinct new elements.]

13



LaGrange's Theorem 14

Theorem 37. Every groupG of order 7 is cyclic, and therefore looks exactly like.

Proof: (Outline) Follow the strategy of Theorem 36, adding the seagy additional cases.

What about groups of order 9? Here is a helpful observatitwe. Tartesian plang?,
viewed as an additive group, is obtained by taking orderéd pa,b) from the additive
group of real numberR and defining the operation &?2 by applying the operation d®
in each coordinate:

(ag,b1) + (ag,bp) := (a1 +ap, by +by).
The same idea works with any pair of grouths= (H; ) andK = (K;*k ). We define the
Cartesian product of H andK to be the group

Hx K= (HxK;x)

whose elements are ordered pdinsk), whereh € H andk € K, and whose operation is
done by applying the operationsidfandK in each coordinate:

(h1,ke) * (h2,k2) = (hy*h hz, kg *k ko).

Theorem 38. If H andK are groups, therd x K is a group. If they are both finite, then
H x K is finite ando(H x K) = o(H) - o(K).

Problem 39. Use the Cartesian product to construct a group of order 9 thatot cyclic.

Problem 40. For exactly which of the values=a 1,2,3,4,5,6,7,8,9 s it true that every
group of order n is cyclic? Make a conjecture as to when in ganieis true that every
group of order n is cyclic.

We will settle this question by proving a more general theoabdout finite groups due
to J. L. LaGrange (1736-1813). First we need some more erapdata. Use Theorem 28
to find all of the subgroups of the four groups in the table Weland list each of their
orders. What does this table suggest about the relatiom&tipeen the order of a finite
finite group and the orders of its subgroups?

[ G | o(G) | o(H) for subgroups of G ||
S
Zy2

Pabc
Ky

To see why this relationship might hold in general, considersubgroup! := {0, 4,8}
of Z12. We can generate new elementZg$ fromH by applying the operation. If we start
with 1 ¢ H, then{0+ 1,4+ 1,8+ 1} = {1,5,9} gives us 3 new elements @f,. Choosing
2¢{0,4,8,1,5,9}, we obtain 3 more new elemerd8+2,4+2,8+ 2} = {2,6,10}. Doing
the same thing with  {1,4,8,1,5,9,2,6, 10} will give us the last 3 elements @f». What
we find is thaiZ 1, is the disjoint union of 4 sets, each having the same numbeleafents
asH:

Z1,=1{0,4,8}U{1,5,9} U{2,6,10} U{3,7,11}.

Thuso(Z12) = 4(o(H)) and therefore(H)| o (Z12).

In general we say that a collectio#® of subsets of a s&k is apartition of A if every
element ofA is in exactly one of these sets, that is,
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LaGrange’s Theorem 15

e each element dAis in some set of” (in symbols|J & = A) and

o two different setsX andY in & have empty intersection. (We sayandY are
disjoint.)

We will now see that every subgroup of every group produceartition like the one we
have seeniZq,.

Let H be a subgroup of a group. For each elemerit € G we define theight coset

generated b to be the set
Hxb:={hxb|heH}.

L+fof[4]8f[1[5[9][2][6[10[3[7[11]
0[0]4[8]1]5]9] 26103711
a]4a]8|0|5|9|1] 6 10| 2| 7 11| 3
8|80 [4]9[1]5]10] 2|6 11| 3] 7

In the above example, the right cosetd-bf= {0,4,8} form a partition ofZ;,. The right
coset generated by each element occurs immediately belowhi¢ table forZ 15.

We would like to know if the collectior?? of right cosets of an arbitrary subgrotp
of an arbitrary grougss form a partition like the one we have seerp. At the moment,
all we know about the right cosets Hfis that they are a collection of subsets®f One
coset isH = H x eitself. This might be illustrated as follows.

H Hxc @
Hxd

Hxb

The next two lemmas tell us that this picture is not very aataur

Lemma4l. If b € G, then b is in the right cosét b that it generates. In particular, every
element of5 is in some right coset.

Lemma42. Lethce G.
(i) If ceHxb,thenHxc=H xb.
(i) If c¢Hxb,then(Hxc)N(Hxb)= 2.

Together, the above two lemmas tell us that the right codetssobgroupH form a
partition of the grouss, as is illustrated in the more accurate illustration below.
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LaGrange’s Theorem 16

Hxc Hxf
H Hxd H+g

Hxb Hk

Using additional group properties, we can see that eachciget ofH look, as a set,
just likeH.

Lemma43.If be G, then :H — Hxb (defined asy(x) := xxb) is one-to-one and onto.
In particular, if H is finite, then every right coset éf has the same number of elements as
H.

This leads us to a yet more accurate picture, which tells astgxwhy the order oH
should divide the order db. If the number of right cosets &1 in G is finite, we call this
number thendex of H in G and denote it byG : H].

H | Hxb | Hxc | Hxd | Hxf | Hxg | Hxk

Lagrange’s Theorem 44.1f G is a finite group andH is a subgroup ofG, theno(G) =
[G:H]-o(H). In particular,o(H)| o (G), and[G : H] is also the number of left cosetsldf
in G.

Corollary 45. If G is a finite group and ke G, theno(b)| o (G).
Corollary 46. If G is a finite group of order n and b G, then ' = e.

We can now see why it was true that every 5 or 7 element group beusyclic and,
with no additional effort, why the same must be true for exgngup of prime order.

Theorem 47. Every group of prime order is cyclic.

In contrast to Theorem 47, we can use the idea of Problem 3%hibienon-cyclic
groups of orden for many non-prime values of. (Hint: Show that ifn = p?q wherep is
a prime, therZ p x Zpq is not cyclic.)

Theorem 48. If every group of order n> 1 is cyclic, then n is either prime or a product of
distinct primes.

Problem 49. Partition the numbers from 1 to 60 into three sets as follows.
A:={n| You can prove that every group of order n is cyglic.
B:= {n| You can exhibit a group of order n that is not cyclic.

C:= {n| Neither of the above is trup.
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Chapter 5

Equivalence Relations

Assume that you go to buy a new car. You examine the possildiee$y, and gradually
narrow the scope of your search. You are concerned abougttieydar make and model
of a car, its particular assortment of added features anabpsreven its particular color.
But among all the cars that are presently for sale, you willsier ones of the same make,
model, features and color to be “equivalent” since they fareyou, totally indistinguish-
able. Auto companies produce thousands of individual casyeyear, but only a handful
of essentially different kinds. Fortunately you only needhoose among the handful of
different kinds, not among the thousands of different ifdlial cars. Once you choose a
particular class of “equivalent” cars (for example, blud&w Foresters with manual trans-
mission that have no extra added features), you will be hapthywhichever member of
that “equivalence class” that you can buy at an acceptahde.pr

In this chapter we will examine what it means for two thingbéin some useful sense
“equivalent”. This notion turns out to have important apgtions in mathematics and sci-
ence, and particularly in group theory. There are many écoasvhen we want to describe
certain objects as being “equivalent”. For example, twoatigns in variableg andy can
be thought of as equivalent if they have the same sets ofisntut Thusy = 3x+ 4 and
6x = 2y — 8 are equivalent. Two computer programs might be thoughs 6¢quivalent” if
they always produce the same output from the same input. ififesesht context, we might
think of two compound sentences in propositional logic to'&dguivalent” if they have
the same truth tables. For example, the truth table belowvsltioat every implication is

P{9)|P—9q| ~g——P
0|0 1 1
0|1 1 1
1,0 0 0
11 1 1

Table 5.1: 1 is True; O is False

equivalent to its contrapositive.

The significance of truth table equivalence can be easily gege limit our attention
to the set of compound sentences with a single varipbl€here are still infinitely many
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Equivalence Relations 18

different compound sentences that we can write down, fomgea,

(PVP)A(=p = (PAP)) == ((=PVP)AP).

But there are only four possible different truth tablesegiby the four compound sentences
p, —p, pV—pandpA—p. Thus every compound sentence with one varighteequivalent

PIIP|[~P|[PVTP]| PA—P
00| 1 1 0
1)1 0 1 0

to one of these four.

All of the above notions of “equivalent” have something immaaon. In each case there
is a set (cars, equations, programs, compound propodidentences) which is broken up
into disjoint bunches so that two members are “equivalex#éicdy when they are in the
same bunch. In each case the bunches form a partition of therlying set.

A partition of a setA, which consists of a set of subsetsffis often a rather awkward
thing to talk about. It is usually much more convenient tl t&thout the associated relation
of being “equivalent” among certain pairs of element®\ofin order to discuss this idea,
we define ainary relation on a setA to be a subset of Ax A. Forx,y € A we often
write “x = y” to mean that(x,y) € =. For example, the less than or equal to relatioon
the setR of real numbers is formally defined as

<={(x,y) | xis less than or equal tp}.

We normally prefer to write “3< 7” instead of the rather strange looking, but formally
correct, {3,7) € <". The equality relation= on A is defined as. = b if a andb represent
the same element @f.

Associated with any partitios”? of Ais a relation= 5 of “equivalence” orA: elements
x andy of A are “equivalent”, that isx= v, if xandy are in the same member 6¢. A
relation=4 that arises out of a partitio®” in this way is called arquivalence relation
onA. In this case the member @P containing an elememnte A is called theequivalence
classof x.

Consider, for example, the satof children in the elementary schools. For certain
purposes it is helpful to think of two children as being eqlewnt if they were born in
the same year. We then have one grade for each equivalerss dfeCharlie is in the
fourth grade, his equivalence class is the fourth gradescl&@r we might think of two
children as equivalent if they are working at the same gradd in mathematics. We could
then partition the children into different math classessheaorking at a different level.
Alternately, we could think of two children as equivalenttiey have the same favorite
hobby, and then partition them into clubs that each condishiddren with a particular
hobby. But sometimes we just need to realize that each chilshique, and focus on the
partition with a single child in each equivalence class. sehare all different partitions,
or equivalence relations, on the sameAefThere is no right meaning of “equivalence”;
rather, each notion of equivalence is useful in a differemtext.

We would like to determine when a binary relatians the equivalence relation asso-
ciated with some partition. For example, is the relatioon the numbers is an equivalence
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Equivalence Relations 19

relation? It is easy to see that every equivalence relatio& onust have three simple
properties: a relatioe onAis

o reflexiveif x = xforanyx € A;
e symmetricif y=xwhenevex =y,

e transitive if Xx=zwhenevex =y andy = z

If = is the equivalence relatiaa 5 for some partition??, then it will certainly have these
properties. The relatiort, for example, is clearly not symmetric since<49 but 9« 4.
Thus< is not an equivalence relation.

Conveniently, it turns out that every binary relatieron A which has these three sim-
ple properties is the equivalence relation associated sathe partition. To see this, we
define—for a binary relatioe: on A and an element € A—the=-classof x to be the set

x| ={y|y€ Aandx=y}.

A Z

Equivalence Relation TheoremLet = be a binary relation on the sat If = is reflexive,
symmetric and transitive, then the st of =—classes is a partition & and= is the
equivalence relatios 4, associated with?.

In the first four problems, verify that the relation is an e@lénce relation and then
describe its equivalence classes, which should form atipartf A.

Problem 50. A is the set of point§x,y) in the plane.(x,y) = (X,Y) if (x,y) and (X,Y)
are the same distance from the origin.

Problem 51. x=y if x and y are integers and-xy is a multiple of3.
Problem 52. x=y if x and y are integers and-y is even.

Problem 53. LetS= {a,b,c,d,e, f,g,h}, let T = {a,b,c} and let A be the set of a(®)
subsets 08. For X,Y € A, we define XY if X and Y have the same intersection with

Problem 54. Let A= {0,1}° be the set of 32 different five-tuples of Os and 1s, that is, all
sequenceta, b, c,d,e) where ab,c,d,e€ {0,1}. For x,y € A, define x= y to mean that x
and y have the same number of 1s. Showthatan equivalence relation and write down
all the members of each of the differentclasses.
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Equivalence Relations 20

Every functionf : A — B induces a natural equivalence relation on its domain. For
X,y € A, we say thak is f—equivalent toy if f(x) = f(y). The classes of this equivalence
relation are called -classef A. For example, the equivalence classes of Problem 50 are
exactly thef-classes wheré(x,y) := /X2 +y2.

Problem 55. For each equivalence relatioa above, define a function f on A so that the
=-classes are exactly the f-classes.

Let G be a group and ldtl be a subgroup o&. We have seen that the right (and left)
cosets oH (both) partitionG. These partitions can be described as equivalence redation
thatH induces orG. Fora,b € G, we define

a~pbiff ableH and ay~b iff albeH.
Theorem 56. If H is a subgroup ofG, then

(i) ~n is an equivalence relation 08, and the~y—classes are exactly the right cosets
of H,i.e.,a~y b & Ha=Hb;

(i) n~ is an equivalence relation 08, and they ~—classes are exactly the left cosets
of H,i.e.,ay~b < aH =bH.

There is a standard and important notion of equivalencedmtvgets. LeA denote
the collection of all sets. FOX,Y € A, we say thaK andY are thesame sizef there is a
bijection (one-to-one and onto functioh} X — Y from X toY. Thus finite setx andY
are the same size if and only if they have the same numbermikgits, but in general they
need not be finite.

Lemma 57. Let X, Y and Z be sets.
(i) The identity functiony : X — X, with ix (X) = x, is a bijection.
(i) If f :X —Y is abijection, then f1:Y — X is a bijection.
(i) Iff:X—=Y andgY — Z are bijections, then gf : X — Z is a bijection.

Theorem 58. If X is a set, the se$x of all bijections from X to itself (called theermu-
tations of X) is a group under composition.

Theorem 59. Being the same size is an equivalence relation on the clasi$ s¥ts.

What are the equivalence classes of sets in Theorem 597
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Chapter 6

Isomorphic Groups

There is a very natural and important equivalence relatiothe class of all groups, that
is, a natural sense in which we can view two groups as beingivatgnt”. Recall that we
proved in Chapter 4 that every 7—element gr@uis cyclic, and interpreted this to say that
G “looks exactly likeZ;.” Thus any two 7—element groups look exactly like each other
and, in this sense, can be thought of as equivalent. We willtld give a precise meaning
to the assertion that two groups “look exactly alike”.

As another example, consider the grdduypand the 4—element subgrodp= {2, a, c,ac}
of the groupPapc.

kK, */E H V D H @D |9 c ac
EIE H V D g|l@ a ¢ ac
HIH E D V ala © ac c
ViV D E H c|c ac g a
DID V H E aclac ¢ a o

We see here is that, although the elements of the two groep®tally different kinds of
objects (chess board moves and sets of letters), the tafitles groups look alike. Notice
that, if we were to change the order the the elements ard listihe tables, they would no
longer look alike. So the equivalence in question has to dio avparticular way of pairing
the elements:

E—~9,H—a V—c D—ac

Let us call this functiorh. Thenh: K4 — H is a bijection, that is, a one-to-one and onto
function. Moreover, undehn the two tables match in the following sense. If X,YeZK,4
and X%«Y = Z, thenh(X)@ h(Y) = h(2).
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Isomorphic Groups 22

H & h(Y)
!

N +—| <

h(X) |[— h(2)

These ideas can be applied to any groups. G.dte a group with operatior and let
G’ be a group with operation A homomorphismfrom G to G’ is a functionh: G — G’
with the property that, for akk,y,z€ G,

xxy =z implies h(x) oh(y) = h(z).

Afunctionh: G — G’ is called arisomorphismif it is a homomorphism that is a bijection.
We say that group& andG’ areisomorphic if there is an isomorphism fror@ onto G/,
and we express this in symbols@s~ G'.

Lemma 60. A function h: G — G’ is a homomorphism if and only if, for allxe G, we
have
h(xxy) = h(x) o h(y).

Lemma 30 will be useful for proving the following fact.

Lemma 61. Two finite cyclic groups of the same order are isomorphic.

Logarithms were invented by John Napier in order to explagpacial isomorphism
between two familiar and important groups:

Lemma 62. LetR* denote the group of all real numbers under addition, andRl&tdenote
the group of all positive real numbers under multiplicatidimenR* =~ R™.

Homomorphisms, and therefore also isomorphisms, preseove than just the binary
operation.

Theorem 63. LetG andG’ be groups with identitese Gandé € G/, andleth. G — G’
be a homomorphism. Then

() he)=¢,
(i) h(x~1) =h(x)~* for each xc G,
(iii) if H is a subgroup ofG, then HH) is a subgroup ofG’.
(iv) if K is a subgroup ofG’, then W1(K) := {ac G| h(a) € K} is a subgroup ofG.

As a special case of part (iv), the subgrdug({€'}) of G is called thekernel of h and
is denoted byK},. This subgroup is useful for recognizing when a homomorpligsan
isomorphism. Applying part (i) we see thathihappens to be one-to-one, thép = {e}.
The converse is also true.
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Isomorphic Groups 23

Lemma 64. Let h: G — G’ be a homomorphism. Then h is one-to-one if and only if
Kh= {e}

Theorem 65. Isomorphism is an equivalence relation on the class of alugs, that is,
for all groupsG, G’ andG”,

) G=G,
(i) G= G impliesG’' =G, and
(i) GG andG’' = G” impliesG = G".

We will now digress briefly to present an important class otdimon-commutative
groups. For a positive integar> 3, thedihedral n-group Dy, consists of the rigid motions
of a regulam-sided polygon. Since the regulargon hasn top side orientations and
bottom side orientations, the orderBf is 2n. In casen = 3, the groufDs is the familiar
6-element groufss. The 8-element dihedral 4-groupy, is illustrated below:

L] L ]
e| o al e b| e c| @
L] L]
I v N
. » N

| d e f T -9 AN h

1 e L4 L4 AN

\ s N

Notice that the 4 top side orientations are obtained by sspteerotations of the square,
while the 4 bottom side orientations can be realized bydflipllowed by successive clock-
wise rotations. In algebraic language, this says that th§ael} generates D, as we
have

b=a’ c=a° e=a% f =ad, g=a?d, h=a%d.

Instead of listing the elements Bf; as
Ds={ea,b,c,d, f,g,h},
we find that the listing
D4 = {ea,a’ a’,d,ad,a’d,a’d}
provides much more informative names for the elements.

In fact, these names allow us to give a complete descripfitreayroup if we remember
a small bit of additional information. Clearlg,has order 4 and has order 2. Going back
to the square itself, we can compute the prodlact= h = a®d. Thus we can descriti@,
by giving generatorsanddefining relationsas

Ds=sg{a,d|a*=e=d? da=a’d}. (%)

This means thabD, consists of all products af's andd’s subject only to the constraints
implied by the defining relations. From this information wenaleduce thaD, has the 8
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elements listed, and we can fill in the complete tableligr For example, to compute the
product ofad anda?d, we have

(a3d)(a’d) = a®(da)ad = a®(ad)ad = a°(da)d
= ab(ad)d = a%d? = a(a*)(a*)(d?) = aeee=a

The strategy here is to use@= a3d to express the product as a poweadimes a power of
d, and then to usa* = e= d? to reduce the exponents. Similarly, for any positive intege
n, we can describB, as

Dnh=sg{a,d|a"=e=d? da=a""1d}.
wherea has orden andb as order 2, anba= a"'b.
Problem 66. Using (x), fill out a table forD4 without referring to the square itself.

Problem 67. Using the description
Ss=sg{a,c|a®=e=c? ca=a’c},

list the distinct elements &; and fill out its table without referring to the triangle.

The notion of isomorphism allows us to articulate a fundatalegoal of group theory.
Given a property that a group may or may not have, we seagkpresentation theorem
for this property. What this means is that we would like to fmdet of specific well
understood groups that have propdptyand then prove that every group with property
is isomorphic to a group in our set. For example,Rebe the property of having prime
orderp. A well understood group of ordgy is the groupZ,. If G has propertyP, then
G is cyclic by Theorem 47 and consequer@y= Z, by Lemma 61. This gives us a nice
representation theorem.

Theorem Every group of prime ordep is isomorphic t& p.

In order to prove the following representation theorems, wil need to spend some time
examining elements of the group, considering their possilbtlers, and looking at the
subgroups they generate. Recall thap &ndq are both prime, then the only divisors of

pgare 1 p,qandpa.

Theorem 68. Let p and q be distinct primes. Then every commutative gréwpder pg
is cyclic and is therefore isomorphic By

Lemma 69. Let p be a prime. Then every commutative group of ordds somorphic to
either the cyclic grougZ . or to the direct producZp x Zp,.

It turns out that there is a beautiful representation théorall finite commutativegroups
which extends the three previous results. The final theovemch we won’t prove here,
states thagvery finite commutative group is isomorphic to a direct jpictaf cyclic groups

Representation of non-commutative groups is a fascinatifgect that proves to be
much more difficult. In fact, a full description of all finite@ups is not yet known. A well
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known representation theorem for all groups was first disoet by Sir Arthur Cayley
(1821-1895). In Theorem 15 we saw that the left multiplimatiunction/ associates each
elementa of a groupG with a permutatior/y of G. Thus¢:G — Sg. In fact,/ is a
one-to-one homomorphism:

Cayley Representation Theorem 70Every groupG is isomorphic to a subgroup of the
permutation grousy for some set X, namely, for X G.

In the remainder of this chapter we will prove two importdredrems which, together
with what we have, will provide a full description of finite@rps of many small orders.
Our next theorem extends Theorem 68 to all groups in the base & 2.

Theorem 71. Let g be a prime. Then every group of ordy is isomorphic to either the
cyclic groupZyq or to the dihedral groug.

The Lemma 69 is called a “lemma” because, as we will now s@anitbe extended to
all groups by utilizing some new techniques. Elemenanidb of a groupG are said to be
conjugateif there is an element € G such thab = xtax In this case we writea =. b
and say thaé is conjugate tob.

Theorem 72. For a groupG, the relation=¢ is an equivalence relation.

Theorem 73. For a groupG,

(i) Conjugacy is the equality relation if and only@ is commutative.
(i) Conjugate elements & have the same order.

Problem 74. Find all of the conjugate classes 8.

The=c—classes o6 are called theonjugate classesf G.
If ais an element of the group, thenormalizer of aiis defined to be the set

Na:= {xe G |xa=ax}
of elements that commute with

Lemma 75. The normalizer of an element of a group is a subgroup.

Lemma 76. Let G be a group with ax,y € G. ThenNax = Nay if and only if x tax =
y tay. [In words, two elements are in the same right coset of the nkereof a if and
only if they produce the same conjugate gf a

Recall that ifH is a subgroup of a finite grou@, then theindex of H in G is the
number|[G : H] of right (or left) cosets oH in G. LaGrange’s Theorem now tells us
something important about conjugate classes.

Lemma 77. Let G be a finite group with & G. Then the order of the conjugate class of
a is equal to the index of the normalizer of a, thatd§jal=.) = [G : Ng]. In particular,

o([a=)|° (G).
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(Show that the set of conjugatesafnd the set of right cosets bff; are thesame sizg

A subgroup always contains at least one element, the igieatitl the conjugate class
of a always contains at least the one elemenif one of these sets contains only this one
element it is said to bé&ivial ; otherwise it isnon-trivial . The center of a groupG is
defined as

Z(G) :={be G|ba=abforallac G},

the element® of G that commute with every element &. In other wordsZ(G) in the
intersection of all of the normalizers of elementsf

Lemma 78. The center ZG) is a subgroup of5 which is exactly the union of the trivial
conjugate classes of G.

Now let G be a finite group and leds, ay,...,am € G be a list of representatives of
the distinct non-trivial conjugate classes@f Then we can partitio into its trivial and
non-trivial conjugate classes as

G = Z(G) Ular]=, U [az)=, U+~ Ufaml=..

It follows that the order of5 is the sum of the nhumber of elements in each piece of this
partition. This assertion yields an important numericalpgarty of a group that is called
theClass Equationof G:

o(G) = o(Z(G)) +o([arl=c) +o([@2l=c) + -+ o([am]=)-

Lemma 79. If the order of a group is a power of a prime, then the group hasa-trivial
center.

Theorem 80. Let p be a prime. Then every group of order ip commutative, and is
therefore isomorphic to either the cyclic groép. or to the direct producE x Zp.

Problem 81. For which of the numbers n frofnto 25do you now know, up to isomorphism,
all of the groups of order n? Make a list which gives, for eagblsnumber n, all of the
non-isomorphic n—element groups.
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Chapter 7

Normal Subgroups & Quotients

Imagine that you arrive late to algebra class one day, somewmlore tired than usual,
and you sit down in back where you hope not to be noticed. Yeutlse professor up
front holding a square with a black dot in the center of one sidd talking about a new
groupD4. But, in your present state and location, you don't see ttle tiot in the corner.
To you the elements of the subgroip:= {e,a,a? a’} all appear to be equivalent and
indistinguishable, as do also the elements of the righttdéde- {d,ad,a’d,ad}. To you

it appears that the professor is presenting a 2-elemenp@cd {N,Nd}. When asked to
fill out a table for the group, you quickly whip out the a niddldi group table below. It has
N as its identity and is isomorphic #y.

[+« [ N [Nd]
N N |Nd
Nd | Nd | N

Itis only after a few idle minutes while your fellow studerttinue hard at work that
you look over at what they are doing and discover your errot Vi&ait a minute. Haven't
you just found a neat way to make a new group from the righttsasfea subgroup?!

Let G be any group with a subgrouy, and letG/N denote the set of right cosets of
N in G. [We use this notation because temberof right cosets oN in G is o(G)/ o (N)
whenG is finite.] Define a binary operatioronG/N by

Nx-Ny:= Nxy forall x;y € G. (%)

In words, the product of the right cosetx&nd the right coset of is the right coset oRy.
Notice thatG /N inherits group properties froi@:

e -is associative sinclx- (Ny-Nz) = Nx- Nyz= Nx(yz) = N(xy)z = Nxy-Nz= (Nx-
Ny) - Nz,

e Ne-Nx= Nex= Nx= Nxe= Nx-Ne, soN = Neis an identity,
o Nx-Nx1=Nxx1=Ne=Nx1x=Nx1-Nx soNx1isthe inverse oNx.

By gum,G/N is a group! We callG/N thequotient group of G modulo N (or G mod N
for short).
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Problem 82. List the distinct right cosets of the subgrobp:= {7n| ne€ Z} of Z and
construct a table for the quotient groufy N (theintegers modulo7).

Problem 83. List the distinct right cosets of the subgrotdp:= {0,3,6,9} of Z;, and
construct a table for the quotient groufa»/N.

Problem 84. List the distinct right cosets of the subgroMp= {e,c} of Sg and construct
a table for the quotient grouz/N.

Now, if you were careful you should have run into some diffigwith the last quotient
groupSz/N. What, for example, is the product of the right coshits= {a,a’c} and
Na? = {a?,ac}? On the one hand, we have

Na-Na®=Na®=Ne=N.
On the other handya = Na?c andNa? = Nac, so that
Na-Na? = Na’c-Nac= N(a’c)(ac) = Na # N!

It appears that the “product” of the coséta andNa? changes depending on which names
(representatives) we choose for these cosets. In a cagbikee say here that the “oper-
ation” - on Sg/N is not well defined that is, it is simply nonsense.

Definition A subgroupN of a groupG is called anormal subgroup of G if the represen-
tative operation on G/N given by(xx) is well defined that is,

if Nx; =Nx2 and Ny; = Ny,, then Nx1y; = NXoy»

for all X1,%2,y1,Y2 € G.

Problem 85. Verify thatN := {e,a,a?,a} is a normal subgroup oD.

We can now stop to summarize what we have found.

Theorem Let N be a subgroup of the grou@. If N is a normal subgroup, the@ /N is
a group with operation defined by(x*). If N is not normal, ther(xx) does not define a
binary operation at all.

What we need to know, then, is how to tell whether or not a solygN is normal.
There are several different ways to do this.

Theorem 86. For a groupG and a subgroupN, these are equivalent.

(i) Nis anormal subgroup o6.

(i) Nx=xN forall x € G (every right coset is a left coget
(i) Forallx € G and ae N, the conjugate Xx'ax is inN.
Corollary 87. Every subgroup of a commutative group is normal.
Corollary 88. Every subgroup of a group of index two is normal.

Corollary 89. The center of every group is a normal subgroup.
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Corollary 90. The kernel of every homomorphism is a normal subgroup.

When we form the quotier@® /N of G by a normal subgroul, we think of collapsing,
and thereby eliminating, the elementshf It is sometimes possible to start with a group
that is in some sense “bad”, then gather the “bad” elemeitdsamormal subgroup. By
dividing out this normal subgroup, we get a quotient growgt th “good” since it has no
“bad” elements left.

For example, being commutative is surely a “good” propeotyd group. IfG is a
group anda, b € G, thecommutator of a andb is defined as

[a,b] :=a b lah
Lemma 91. For elements &b, x in a groupG,

(i) [a,b]=eifandonlyif aand b commute.
(i) [ab]~!=[b,a (The inverse of a commutator is a commutgtor.

(i) x~1a,bjx= [xtax x tbx (The conjugate of a commutator is the commutator of the
conjugates.

If you prefer commutative groups, then you have to think ahowutators (other thag)
as “bad” elements. L€G,G] denote the set of all commutators and finite products of
commutators of elements &.

Lemma92. If G is a group, theriG, G| is a normal subgroup d& (called thecommutator
subgroupof G).

Because each commutator different fremvitnesses the failure of two elements to
commute, the size of the commutator subgroup is a measurevwohbn-commutativés
is. Thus, by (i),[G,G] = {e} if and only if G is commutative, and a larger commutator
subgroup indicates more non-commuting elements. When we foe quotient group
G/[G,G], we collapse all of the witnesses of failure of commutayitit the identity. The
result is a group with no witnesses to failure of commutgtivi

Theorem 93. For every groupG, the quotientG/[G, G] of G by its commutator subgroup
is a commutative group.

Another illustration of quotient groups comes from an egten of Problem 53 and
the groupPg,c with operation®. Let S= {a,b,c,d,e f,g,h}, T = {a,b,c} andU =
{d,e f,g,h}. Problem 53 asks us to think df as the “important” elements &, and
think of U as the “unimportant” elements & We then think of two members ¢fs as
being equivalent if they contain the same important element

Like P4y, the collection of subse®s of S, subsetdr of T and subsetBy of U each
form a group under symmetric differenge

Problem 94. Define f: Ps— Pt by f(X) :=XNT. Thus {X) consists of the “important”
elements of X.

(i) Show that f is a homomorphism frofg onto Pr. (This says that the sum of the
important elements in X and the important elements in Y istBxéhe important
elementsin XpY )
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(i) Show thaPy is the kernel of f.

(i) For X,Y € Ps, show that {X) = f(Y) if and only if X and Y are in the same coset
of Py.

(iv) Show théPs/Py = Pr. (Be sure that your isomorphism is well defined.

We will see that the conclusion of Problem 94 is quite genéxgroupG’ is said to be
ahomomorphic imageof a groupG if there is a homomorphisrh: G — G’ from G onto
G.

Theorem 95. Every quotient of a grou is a homomorphic image o&. More specif-
ically, if N is a normal subgroup o6, then thenatural homomorphism h: G — G/N,
given by tix) := Nx, is a homomorphism fro@ ontoG/N.

Lemma 96. Let f : G — G’ be a homomorphism,xe G. Then fx) = f(y) if and only if
Kix= Kfy.

We can now prove that every homomaorphic image of a group mmasphic to a quotient
of that group.

The Isomorphism Theorem 97.If f : G — G’ is an onto homomorphism, th&yK ; =
G'.

(<] Ki=Kie= f‘l(e’) > o¢
f
® X Kix=f"(a) ea
G/Ki |ey Kty=f~1(b) = b G
°z Kiz=f1(c) eC
ow Kiw= f~1(d) od

(For example, iiky=w, thenK ;x- Ky =K;wandab=d.)

Wow — quotient groups — what a great idea! And in the end, thayadut to be exactly
the same as homomorphic images. But just as you are thinkisgthere is an unsettling
disturbance.

“You — yes, you in the back there! Can you come up to the boaddsawow us your
table forD4?”

“Well, no Professor, I'm sorry — | can’t. But I've just foundraally neat way to patch
together a whole bunch of new groups! Can | put that up in§tead
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Chapter 8

Other Algebras

A slightly more sophisticated way to viewgroup G is to think of it as consisting of a
setG together with a binary operation: G x G — G, a unary operation! : G — G and a
constanee G,

G = <G;*771ae>7

wherex is associativeg is an identity, anc ! is an inverse ok for eachx € G. It turns
out that there are many different familiar algebraic systéiat are similar to groups and
can be studied in much the same way that we have studied grAn@dgebra

A= (Ao, +,..., La-,...,e01...)

consists of a sek, a collectiorp, %, +, ... of binary operations oA, a collectiom ™, a, -, . ..
of unary operations oA, and a seg, 0,1, ... of distinguished constants frof

Many central notions from group theory extend to all algebFar example, an algebra

1

B=(B;o,*,+,..., ,d,7,...,60,1,...)

is asubalgebraof A if it is closed under each of the operationsAgfthat is,

e if X,y € B andx is a binary operation oA, thenxxy € B;
¢ if xe Band’ is a unary operation d&, thenx € B, and

e if eis a constant oA, thene € B.

Notice that a subset of a group forms a subgroup in the usnaksié and only if it is a
subalgebra in this sense.

Similarly, a functionh from an algebraA to an algebra is ahomomorphism if it
preserves each of the operations, that is,

e h(xxy) =h(x)xh(y) for each binary operaticnand allx,y € A;
e h(X') = h(x)’ for each unary operatidrand allx € A;

o h(es) = eg Whereea is a constant oA andeg is the corresponding constant®f
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AlgebrasA andB areisomorphic if there is a bijectiorh : A — B which is a homomor-
phism.

As we did with groups, we like to study classes of algebrah wifixed type of opera-
tions satisfying a fixed set of axioms. In this chapter we intHloduce three such examples.

RINGS
Our childhood experience with mathematics begins with titaraetic of the integers

and the rational numbers. These are two of many familiar @asnof another kind of
algebra. Aring with identity is an algebr&®k = (R;+, -, —, 0, 1) with two binary operations
+,-, a unary operation and two constants 0 and 1 such that
1. (R;+,—,0) is a commutative group,
2. forallx,y,ze R,
° X (y-2=(xy)z
o 1.x=x=x-1,
e X-(y+2)=x-y+x-zand(y+2) - X=Yy-X+z-X.

The third condition is expressed in words by saying that,gdperation distributes over
+.” Note that since may not be commutative, we must verify both distributivegandies.

Lemma 98. If Ris a ring with identity and x R, then x0=0=0-x and—x= (—1) -X.

Problem 99. Assume thaR™", the real numbers with the usual operations, is a ring with
identity. Show that each of the following is a ring with idgnt(In each case you will need
to tell whatO and1 are.)

Z, the set of integers with the usual operations.

C, the set of complex numbers with the usual operatitms,bi) + (c+di) := (a+c) +
(b+d)i and (a+ bi) - (c+di) := (ac— bd) + (bc+ ad)i.

M, the set of 2-by-2 matrices ov&rwith the usual matrix addition and multiplication.

Ps:= (Ps;®,N,—, o) where S is a seBs is the collection of subsets of S, apX := X
for X € Ps.

F, the set of real valued functions defined on the set of realbeusn with the usual
addition and multiplication( f +g)(x) := f(x) +g(x) and(f - g)(x) := f(x)g(x).

Problem 100. Show thaZ is a subring ofR*" which is a subring o€.

Problem 101. Let a be a real number, and defing tF — R™ by hy(f) := f(a). Show
that hy is a ring homomorphism.

Problem 102. Let T be a subset of a set S and defin€g— Pt by h(X) :=XNT. Show
that h is a ring homomorphism. Show that the multiplicatipem@tionn is well defined
on the set of coseRs/Ky, and thatPs/Ky, is itself a ring with identity that is isomorphic
to Py.
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LINEAR SPACES

Ina college Linear Algebra course we learn about systentetdinear spaces”. Ain-
ear spaces an algebrd = (L;+,—,0,a)acr With a binary operation-, a unary operation
—, and a unary operatiamfor each real numbex € R such that

1. (L;+,—,0) is a commutative group,

2. forallX,Y e Landa,be R,

a(X+Y)=aX+ay,

(a+b)X =aX+bX,

a(bX) = (ab)X and

e aX=0ifandonlyifa=0o0rX =0.

The study of linear spaces is callixaear algebra. There are many familiar linear spaces:
the Euclidean plan&?, Euclidean 3-spacR?, Euclideann-spaceR", the space of real
valued functions on any fixed domain, the space of solutioasttomogeneous differential
equation, the space afby-mmatrices, etc.

A subalgebra of a linear spateis called asubspace The smallest subalgebra bf
containing a se6 C L is called thespanof S, written SpafS). A generating set fok is
called aspanning set A homomorphism from one linear space to another is calletar
transformation.

Theorem 103. LetL be a linear space, le¥ be any subspace df, and letL /M be the
set of right cosets dfl (which forms a group undef sinceM is a normal subgroup
Then scalar multiplication is always well definedlofiM as

aM +X) :=M +aX,

and (L /M;+,—,0,a)acr s itself a linear spacécalled thequotient space.

BOOLEAN ALGEBRA

Modern algebra became a viable subject beyond group theotlgei 1850’s when
George Boole showed how the laws of logical inference carolbi&ied into an algebraic
system in which the elements are statements. What we have tmoall aBoolean al-
gebrais an algebrd = (B;V,A,’,0,1) with two binary operationfin vV andmeetA, a
unary operation o€Eomplementation’, and constants 0 and 1 such that, fonayl € B,

. V andA are both commutative and associative, and each distribugrghe other,

. XV X=XxandxAX=X,

1
2
3. XV (YAX) =xandxA (YyVX) =X,
4. xvl=1landxAn0=0,

5

. XVX =1andxAx =0.

There are two important and familiar examples of Boolearlalgs.
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Let Sbe a set and |d?(S) denote the collection of all subsets®f Thenu andn are
binary operations o®(S), complementation- is a unary operation oR(S), and2 and
Sare special elements 8{(S). The proof of the following theorem has many parts, all of
which are normally done in a foundations course in matharsati

Theorem 104. If Sis a set, theP(S) := (P(S);U,N,~,,S) is a Boolean algebra.

Formulating propositional logic as a Boolean algebra nexguan extra step that we
draw from our experience with quotient groups. Consider fagd set of propositional
variablesp, g, r,. .., each representing a fixed statement. If we\user “or”, A for “and”,

" for “not”, O for “False” and 1 for “True”, we can combine progitional variables to for
compound sentences such as

(pvD) AN V(A A(pVI)).

If C denotes the set of all compound sentences, thand A are binary operations o
while " is a unary operation and 0 and 1 are constan@ ifhis gives us an algebra

C:=(C;V,A,,0,1).

Is C a Boolean algebra? For examplepisommutative? We havg Vr), p € C so, for
commutativity, we would need to know that

(Qvr)Ap=pA(qVr).

Is this the case? While these two compound sentences seel@kmthe same assertion
(“pis true and eitheq or r is true.”), they are not really the same membe€CofSo A is
not commutative. But the two compound sentences are egquivial a natural sense: they
have the same true tables.

These observations lead us to the following constructionxFy € C, we say thak=y
if xandy have the same truth tables. We check thas an equivalence relation and define

B=C/=={[x|xeC}
to be the set of equivalence classe€of

Theorem 105. The representative operations A and’ are well defined on B bfx] v [y] :=
[xVy], X Aly] :=[xAy] and[x]’ := [X], and the quotient algebra

B:= <B- Vv, /\a/ ) [O]v [1]>
is a Boolean algebra.

These operations on the equivalence classes are well défiezectly the same sense that
a group operation is well defined on the cosets of a normalrsuipg The resulting Boolean
algebraB is called theLindenbaum-Tarski algebra for propositional logic. It allows us
to understand mathematical logic through algebra.
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