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ASYMPTOTIC HOMOTOPICAL COMPLEXITY OF AN

INFINITE SEQUENCE OF DISPERSING 2D BILLIARDS

NANDOR SIMANYI

Abstract. We investigate the large scale chaotic, topological structure of the
trajectories of an infinite sequence of dispersing, hence ergodic, 2D billiards
with the configuration space Qn = T

2 \
⋃n−1

i=0
Di, where the scatterers Di

(i = 0, 1, . . . , n− 1) are disks of radius r << 1 centered at the points (i/n, 0)
mod Z

2. We get effective lower and upper radial bounds for the rotation set
R. Furthermore, we also prove the compactness of the admissible rotation
set AR and the fact that the rotation vectors v corresponding to admissible
periodic orbits form a dense subset of AR. We also obtain asymptotic lower
and upper estimates for the sequence htop(n) of topological entropies and
precise asymptotic formulas for the metric entropies hµ(n, r).

1. Introduction

In order to make this paper easier to read and more self contained, hereby we
cite certain passages of the introductory section of [MS(2019)] essentially verbatim.

The concept of rotation number finds its origin in the study of the average
rotation around the circle S1 per iteration, as classically defined by H. Poincaré
in the 1880’s [P(1952)], when one iterates an orientation-preserving circle homeo-
morphism f : S1 → S1. This is equivalent to studying the average displacement
(1/n)(Fn(x) − x) (x ∈ R) for the iterates Fn of a lifting F : R → R of f on
the universal covering space R of S1. The study of fine homotopical properties
of geodesic lines on negatively curved, closed surfaces goes back at least to Morse
[M(1924)]. As far as we know, the first appearance of the concept of homological ro-
tation vectors (associated with flows on manifolds) was the paper of Schwartzman
[Sch(1957)], see also Boyland [B(2000)] for further references and a good survey
of homotopical invariants associated with geodesic flows. Following an analogous
pattern, in [BMS(2006)] we defined the (still commutative) rotation numbers of a
2D billiard flow on the billiard table T

2 = R
2/Z2 with one convex obstacle (scat-

terer) O removed. Thus, the billiard table (configuration space) of the model in
[BMS(2006)] was Q = T

2 \O. Technically speaking, we considered trajectory seg-
ments {x(t)|0 ≤ t ≤ T } ⊂ Q of the billiard flow, lifted them to the universal
covering space R

2 of T2 (not of the configuration space Q), and then systemati-
cally studied the rotation vectors as limiting vectors of the average displacement
(1/T )(x̃(T )− x̃(0)) ∈ R

2 of the lifted orbit segments {x̃(t)|0 ≤ t ≤ T } as T → ∞.
These rotation vectors are still “commutative”, for they belong to the vector space
R

2.
Despite all the advantages of the homological (or “commutative”) rotation vec-

tors (i. e. that they belong to a real vector space, and this provides us with useful
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tools to construct actual trajectories with prescribed rotational behaviour), in our
current view the “right” lifting of the trajectory segments {x(t)|0 ≤ t ≤ T } ⊂ Q
is to lift these segments to the universal covering space of Q, not of T2. This, in
turn, causes a profound difference in the nature of the arising rotation “numbers”,
primarily because the fundamental group π1(Q) of the configuration space Q is a
highly complex hyperbolic group.

After a bounded modification, trajectory segments {x(t)|0 ≤ t ≤ T } ⊂ Q give
rise to closed loops γT in Q, thus defining an element gT = [γT ] in the fundamental
group π1(Q). The limiting behavior of gT as T → ∞ will be investigated, quite
naturally, from two viewpoints:

(1) The direction “e” is to be determined, in which the element gT escapes to
infinity in the hyperbolic group π1(Q) or, equivalently, in its Cayley graph
G. All possible directions e form the horizon or the so called ideal boundary
Ends(π1(Q)) of the group π1(Q), see [CP(1993)].

(2) The average speed s = limT→∞(1/T )dist(gT , 1) is to be determined, at
which the element gT escapes to infinity, as T → ∞. These limits (or
limits limTn→∞(1/Tn)dist(gTn , 1) for sequences of positive reals Tn ր ∞)
are nonnegative real numbers.

The natural habitat for the two limiting data (s, e) is the infinite cone

C = ([0,∞)× Ends(π1(Q))/({0} × Ends(π1(Q))

erected upon the set Ends(π1(Q)), the latter supplied with the usual Cantor space
topology. Since the homotopical “rotation vectors” (s, e) ∈ C (and the corre-
sponding homotopical rotation sets) are defined in terms of the non-commutative
fundamental group π1(Q), these notions will be justifiably called homotopical or
noncommutative rotation numbers and sets.

The rotation set arising from trajectories obtained by the arc-length minimizing
variational method will be the so called admissible homotopical rotation set AR ⊂
C. The homotopical rotation set R defined without the restriction of admissibility
will be denoted by R. Plainly, AR ⊂ R and these sets are closed subsets of the
cone C.

In this paper we study the large scale chaotic topological (actually, homotopic)
structure of the trajectories of an infinite sequence of dispersing, hence ergodic, 2D
billiards with a configuration space Qn = R

2/Z2 \ ∪n−1
i=0 Di = T

2 \ ∪n−1
i=0 Di, where

the scatterers Di (i = 0, 1, . . . , n− 1) are disks of radius r << 1 centered at (i/n, 0)
modulo Z

2. In Theorems 2.1 and 2.2 we provide lower and upper radial estimates
for the homotopical rotation set of the system. Namely, in Theorem 2.1 we prove

R ⊂ B(0, 2
√
2),

whereas Theorem 2.2 states that

B

(

0,
1√
5
−O(

1

n
)

)

⊂ AR.

Furthermore, in Theorems 3.1 and 3.2 we also prove the compactness and the
convexity of the admissible rotation set AR and the property that the set of rotation
vectors v corresponding to periodic admissible orbits form a dense subset of AR.
For all of the above notions, please see [MS(2017)], [MS(2019)].
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For the topological entropy htop(n) of the n-th system, in Theorem 4.1 we obtain

1√
5
≤ lim inf

n→∞
htop(n)

logn
≤ lim sup

n→∞

htop(n)

logn
≤ 2

√
2.

Finally, for the metric entropy hµ(n, r) of the flow, in Section 5 we prove that
for any fixed n,

hµ(n, r) = O(−r log r)

as r → 0, and for r = O(1/n)

hµ(n, T ) = O(log(n)),

as n → ∞ for the Poincare section map T .

2. Radial Size Estimates for the Admissible Rotation Set

As described in Section 2 of [GS(2011)], the free generators of the fundamental
group π1(Q) ∼= Fn+1 are a, b1, . . . , bn, so that each of these generators correspond
to a specific wall crossing of a trajectory: The generator a corresponds to a trajec-
tory crossing the wall

{0} × [r, 1− r]

(modulo Z
2) in the positive direction, whereas the generator bi means that the

trajectory crosses the wall
[

i− 1

n
+ r,

i

n
− r

]

× {0}

(taken again modulo Z
2) in the positive direction. Needless to say, crossing these

walls in the opposite, negative directions means the inverses of the above mentioned
elements of π1(Q).

First we prove the upper radial size estimate:

Theorem 2.1. R ⊂ B(0, 2
√
2)

Proof. Let us investigate the symbolic wall-crossing sequence, or associated word,
W of a trajectory segment S[0,T ]x0 of the billiard flow. We write W as the shortest
product of generators a, b1, b2, . . . , bn and their inverses, i.e. only the exponents 1
and −1 are permitted. In such a writing, a maximal subsequence of consecutive
symbols a or a−1 ofW will be called an a-block Ba, whereas a maximal subsequence
of consecutive symbols bj or b−1

j (j = 1, 2, . . . , n) of W will be called a b-block Bb.
For just simplifying the notations, we assume that W begins with an a-block Ba

1 ,
and it ends with a b-block Bb

s, so that W is of the form

W = Ba
1B

b
1B

a
2B

b
2 . . . B

a
sB

b
s.

At the end of proving the upper radial size estimate 2
√
2 for such words, we will be

clearly pointing out the minor differences in the argument to cover the other cases
for the word W .

Let us denote the total number of the symbols a and a−1 in W by k, whereas
the total number of the symbols b±1

j (j = 1, 2, . . . , n) is denoted by m. Clearly,

s ≤ min{k,m}.
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Observe that for our trajectory segment

S[0,T ]x0

{

(q(t), v(t))
∣

∣ 0 ≤ t ≤ T
}

the estimate

(2.1)

∫ T

0

|v1(t)| dt ≥ k − s

holds true. Indeed, for each a-block Ba
j the horizontal position changes at least by

the amount |Ba
j | − 1, where |Ba

j | is the number of symbols in Ba
j . Taking the sum

of all these lower estimates, we obtain 2.1.
The situation with b=blocks Bb

j and the corresponding vertical move

∫ T

0

|v2(t)| dt

is somewhat different. Namely, we consider not only the block Bb
j , but also the

subsequent two blocks Ba
j+1 and Bb

j+1. Elementary inspection shows that, after

having at least the amount of |Bb
j | − 1 of vertical motion with Bb

j , in order to

switch from Bb
j to Bb

j+1 through the block Ba
j+1, the orbit has to make at least

a unit of vertical motion betwen Bb
j and Bb

j+1. (More precisely, this motion is at

least 2−O(1/n), if one of Bb
j and Bb

j+1 corresponds to an upward motion and the

other one to a downward motion.)
Thus, by taking the sum of all these lower estimates, one obtains the lower bound

(2.2)

∫ T

0

|v2(t)| dt ≥ m− 1.

Taking the sum of 2.1 and 2.2, one ends up with the estimates

(2.3) m+ k − s− 1 ≤
∫ T

0

||v(t)| |1dt ≤
√
2T,

which, in turn, implies that

max{m, k} − 1 ≤
√
2T,

thus

(2.4) |W | = m+ k ≤ 2
√
2T + 2.

Dividing 2.4 by T and passing to the limit T → ∞ yields

R ⊂ B(0, 2
√
2).

As said earlier, here we review the minor changes in the proof that are necessary
to make, if the first block of W is not an a-block, or the last block of it is not a
b-block. Then, by simply truncating the unwanted block(s) at the two ends of W
(thus also truncating the trajectory segment under investigation), we can reduce
the study to the above case. Note that, in this way, we make a bounded errorin
the right-hand-side of 2.4, but that error vanishes after division by T and passing
to the limit T → ∞. This completes the proof of the theorem. �
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Theorem 2.2. The lower radial estimate

B

(

0,
1√
5
−O(

1

n
)

)

⊂ AR

holds for the admissible rotation set AR.

Proof. For any given infinite word W∞ = w0w1w2 . . . (where each wj either a
generator or the inverse of a generator, and W∞ is in the shortest form) we are
going to construct an infinite sequence

(

S[0,Tm]xm

)∞

m=1

of admissible orbit segements with limm→∞ Tm = ∞ and such that the symbolic
wall crossing sequence of S[0,Tm]xm is w0w1 . . . wm. In this process of constructing
admissible orbit segments we use the method of anchoring and length minimizing
technique, just as described in §3 of [MS(2017)]. We will try to economize time and
make Tm as small as possible, thus making the escape speed

lim inf
m→∞

m

Tm

as large as possible. We want to prove that

(2.5) lim inf
m→∞

m

Tm
≥ 1√

5
−O(

1

n
)

can be achieved. Then, by “slowing down” the speed of escape to infinity by inserting
“idle runs”, just as in the papers [MS(2017)] and [MS(2019)], one gets that any
speed s, 0 ≤ s ≤ 1√

5
− O( 1n ), is achievable while escaping to infinity in the given

(but arbitrary!) direction of W∞, thus proving the desired set inequality

B

(

0,
1√
5
−O(

1

n
)

)

⊂ AR.

In order to prove 2.5, it is enough to show that, when constructing longer and
longer orbit segments with the symbolic sequence w0w1 . . . wm, in order to construct
the passage wj → wj+1, it is sufficient to spend at most the time

√
5+O(1/n). We

consider all possible, mutually non-isomorphic passages wj → wj+1 by excluding
geometrically symmetric cases and cases equivalent after time reversal. After this
reduction, here is the list of the remaining four cases for the passages:

2.1. Case 1. Passage abi. Direct inspection shows that here the worst case sce-
nario is when i = n and the admissible orbit (under construction) enters the unit
fundamental cell at the upper end of the left vertical a-wall. Then, the most efficient

admissible construction bounces back at the disk with index
⌊n

2

⌋

at the lower edge

of the unit cell, before leaving it upwards through the wall bn. The time spent to do
this is at most

√
5 +O(1/n2).

Remark 2.3. The possible error O(1/n2) may be caused by the occurence of an odd
value of n, n = 2q + 1, and having to select Dq or Dq+1 at the bottom side of the
unit cell.
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2.2. Case 2. Passage bib
−1
j (i 6= j). Here again, direct inspection shows that the

least favorable (i.e. the most time consuming) situation is when |i− j| is maximal,
i.e. i = 1 and j = n. (Or the other way around.) Then the most time efficient
construction of the admissible trajectory in the unit fundamental cell [0, 1] × [0, 1]
is to have it bounce back at the disk with index ⌊n/2⌋ at the ceiling of the unit cell.

This takes time
√
5 +O(1/n).

Remark 2.4. As opposed to the previous case, the reason why the error is of order
O(1/n) (and not O(1/n2)) is that, in the recursive construction of the passages of
the admissible trajectory, it can happen that the incoming wall crossing b1 takes
place while bouncing back at the scatterer D1. In order to facilitate the admissible
passage to D⌊n/2⌋ at the ceiling of the unit fundamental cell, the orbit needs to visit
the scatterer D0 first, before shooting towards D⌊n/2⌋ at the ceiling. This takes an
extra time of O(1/n).

2.3. Case 3. Passage aa. By excluding symmetric cases, we may assume that the
orbit enters the unit fundamental cell by bouncing back at D0 at the top of the left
wall “a”. Then we can have it exit the fundamental unit cell through the right wall
“a” by bouncing back from D0 = Dn at the bottom of this wall. This takes time√
2.

2.4. Case 4. Passage bibj. Here again the least favorable case is when |i − j| is
maximal, i.e. i = 1 and j = n (or, vice versa). Then an admissible trajectory
construction in the unit fundamental cell can diagonally traverse the cell, similarly
to Case 3, thus spending time not more than

√
2+O(1/n) in the cell. The O(1/n)

error term should be included here for the same reason as in Case 2, but this does
not matter, since

√
2 +O(1/n) <

√
5.

Summarizing all the above, when constructing the admissible orbit segments
S[0,Tm]xm with the symbolic sequence Wm = w0w1 . . . wm (being the m-th trun-
cation of the given, infinite admissible word W∞ = w0w1 . . . ) we can achieve that

lim inf
m→∞

m

Tm
≥ 1√

5 +O(1/n)
=

1√
5
− (1/n).

This completes the proof of the theorem. �

3. Geometric Properties of the Admissible Rotation set AR

Theorem 3.1. The set AR is a convex, compact subset of the infinite cone C
erected upon the topological Cantor set Ends(π1(Q)).

(Here the set Ends(π1(Q)) denotes the set of all ends, i.e. the horizon of, the
hyperbolic group π1(Q), see Section 3 of [MS(2017)].)

Proof. First we note that the convexity of a compact subset K of the cone C is
equivalent to the star shaped property of K. This is a consequence of the fact
that the basis Ends(π1(Q)) of the cone is totally disconnected. Indeed, the shortest
path (geodesic line) connecting two points (s1, e1) and (s2, e2) of C (s1 > 0, s2 > 0,
e1 6= e2) is the curve γ that first connects (s1, e1) with the vertex (0, e1) by a linear
change in the radial speed coordinate s, then it connects the vertex with (s2, e2)
by also a linear change in the s coordinate.

We follow the ideas of the proof of Theorem 3.3 of [MS(2017)]. Indeed, the
cone C is a totally disconnected, Cantor set-type family of infinite rays that are
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glued together at their common endpoint, the vertex of the cone. Therefore, the
convexity of AR means that for any (s, e) ∈ AR and for any t with 0 ≤ t ≤ s we
have (t, e) ∈ AR. However, this immediately follows from our construction, since
we can always insert a suitable amount of idle runs into an admissible orbit segment
to be constructed, hence slowing it down to the asymptotic speed t, as required. �

Theorem 3.2. The rotation vectors (s, e) ∈ AR that correspond to periodic admis-
sible trajectories form a dense subset of AR.

Proof. We adopt the main ideas of the proof of Theorem 3.4 of [MS(2017)]. Con-
sider an arbitrary trajectory segment

S[0,T ]x0 =
{

Stx0 = (qt, vt)
∣

∣ 0 ≤ t ≤ T
}

with q0, qT ∈ ∂Q that bounces back from the scatterers with centers at C0, . . . , Cn

(‖C0−q0‖ = ‖Cn−qn‖ = r) with an admissible symbolic sequence (C0, C1, . . . , Cn).
We want to find a periodic, admissible trajectory near S[0,T ]x0 such that its rotation
vector is close to the rotation vector of S[0,T ]x0.

A direct inspection shows that the symbolic sequence (C0, C1, . . . , Cn) has a
bounded extension to a longer admissible sequence (C0, C1, . . . , Cm), i.e. m > n
and m− n has an upper bound K, independent of S[0,T ]x0 and n, such that

(1) Cm = C0 + (a, b), a, b ∈ Z,
(2) (Cm−1, Cm, C1 + (a, b)) is admissible.

Then, by anchoring the trajectory segment at C0 and Cm with the configuration
points q0 (with ‖q0 − C0‖ = r) and q0 + (a, b), and performing the usual length

minimization, we obtain a periodic, admissible orbit S[0,T ′]x′
0 whose rotation vector

is close to the rotation vector of S[0,T ]x0. �

4. Topological Entropy

Here we prove

Theorem 4.1.

1√
5
≤ lim inf

n→∞
htop(n)

log(n)
≤ lim sup

n→∞

htop(n)

log(n)
≤ 2

√
2.

Proof. It turns out that the estimates of this theorem are corollaries of Theorems
2.1 and 2.2. Indeed, following the ideas of Section 5 of [MS(2017)], we construct a
generating partition P for the topological entropy of the billiard flow, as follows:

Define

(4.1) D+
k =

{

(q, v) ∈ M
∣

∣

k

n
< q1 <

k + 1

n
, {q2} < ǫ0

}

,

(4.2) D−
k =

{

(q, v) ∈ M
∣

∣

k

n
< q1 <

k + 1

n
, 1− ǫ0 < {q2}

}

for some 0 < ǫ0 << r (i.e. ǫ0 = o(r) is small ordo of r), k = 0, 1, . . . , n− 1,

(4.3) S+ =
{

(q, v) ∈ M
∣

∣ {q1} < ǫ0
}

,
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(4.4) S− =
{

(q, v) ∈ M
∣

∣ {q1} > 1− ǫ0
}

,

where {x} = x − ⌊x⌋ denotes the fractional part of x. By definition, the partition
P consists of all sets in 4.1, 4.2, 4.3, 4.4 and the rest of the phase space

(4.5) B = M \
(

n−1
⋃

k=0

D+
k ∪

n−1
⋃

k=0

D−
k ∪ S+ ∪ S−

)

.

Just like in Section 5 of [MS(2017)], an easy geometric inspection shows that the
P-itinerary (P1, P2, . . . , Pk) of a trajectory segment S[a,b]x0 uniquely determines
the homotopy type of S[a,b]x0.

The lower radial estimate of Theorem 2.2 allows us to construct admissible orbit
segments S[0,T ]x, with a given time span T , with at least as many as

(4.6) (2n+ 1)(5
−1/2−O(1/n))T

different P-itineraries. By taking the natural logarithm of 4.6, dividing by T , and
passing to the limit as T → ∞, one concludes that

htop(n) ≥ (5−1/2 −O(1/n)) log(2n+ 1).

Finally, dividing by log(n), then passing to the limit inferior as n → ∞, we ontain
the lower bound of Theorem 4.1.

On the other hand, Theorem 2.1 shows that the orbit segments S[0,T ]x, with a
given time span T , cannot form more than

(2n+ 1)2
√
2T

different P-itineraries. Again, by taking natural logarithm, dividing by T , passing
first to the limit T → ∞, then to the limit superior as n → ∞, we obtain the upper
bound of Theorem 4.1. �

5. Concluding Remarks

In this brief section we make a quick comparison between the topological entropy
htop(n) of the flow and its metric entropy hµ(n) = hµ(n, r), where µ = µn is the
unique, absolutely continuous invariant measure of the billiard flow. As it turns
out, if the radius r = r(n) of the disks is a sufficiently fast decreasing function
of n, than hµ(n) is dramatically smaller than htop(n). Indeed, first fix the value
of n, and study the behaviour of the metreic entropy hµ(n, r) of the flow as a
function of r, when r → 0. As it follows from the Marklof-Strömbergsson theory
of the distribution of the free path length in a dilute Lorentz gas [Ma-St(2010)],
the expected value of the free path length is O(1/r). After a typical collision with
a scatterer of radius r, an expanding (convex) local orthogonal manifold collects a
curvature of the order of O(1/r), and undergoes an expansion of the order O(1/r2)
until the next collision. Thus the positive Lyapunov exponent will be of the order
O(−r log(r)), therefore hµ(n, r) = O(−r log(r)) for any fixed n, while r → 0. This
immediately implies that, if r = r(n) is a sufficiently fast decreasing function of
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n, then the ratio
hµ(n)

htop(n)
can be made to converge to zero as fast as we wish, as

n → ∞.
On the other hand, if r = O(1/n) and we consider the billiard map T instead of

the flow {St}, then the metric entropy hµ(n, T ) will be of the order O(log(n)), i.e.
of the order of the topological entropy of the map. Indeed, the iterate T k produces
asymptotically the same amount of dilation of the local unstable manifolds (as
k → ∞) as the iterate Sk/r ≈ Skn of the flow so, after rescaling, we gain an
extra multiplying factor n in the metric entropy, i.e. hµ(n, T ) = O(−nr log(r)) =
O(log(n)).
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