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Abstract. In this paper we present an unconditional proof of Wojtkowski’s

Ergodicity Conjecture for almost every system of 1D perfectly elastic balls

falling down in a half line under constant gravitational acceleration, [W1985],
[W1986], [W1990a], [W1990b], [W1998]. Namely, by introducing a new alge-

braic approach, we prove that almost every such system is (completely hyper-

bolic and) ergodic.

1. Introduction/Prerequisites

In order to introduce the subject of our investigation, the system of 1D falling
balls subjected to constant gravitation, along with the employed technicalities, we
will be closely following the first two sections of [S2024]. In order to make this
presentation self-contained and easier to read, we quote below two passages of
those two sections of [S2024], essentially verbatim.

In his paper [W1990a] M. Wojtkowski introduced the following Hamiltonian
dynamical system with discontinuities: There is a vertical half line {q| q ≥ 0} given
and n (≥ 2) point particles with masses m1 ≥ m2 ≥ · · · ≥ mn > 0 and positions
0 ≤ q1 ≤ q2 ≤ · · · ≤ qn are moving on this half line so that they are subjected to a
constant gravitational acceleration a = −1 (they fall down), they collide elastically
with each other, and the first (lowest) particle also collides elastically with the hard
floor q = 0. We fix the total energy

H =

n∑
i=1

(
miqi +

1

2
miv

2
i

)
by taking H = 1. The arising Hamiltonian flow with collisions (M, {ψt}, µ) (µ

is the Liouville measure) is the studied model of this paper.
Before formulating the result of this article, however, it is worth mentioning here

three important facts:

(1) Since the phase space M is compact, the Liouville measure µ is finite.
(2) The phase points x ∈ M for which the trajectory {ψt(x)|, t ∈ R} hits at

least one singularity (i. e. a multiple collision) are contained in a countable
union of proper, smooth submanifolds of M and, therefore, such points
form a set of µ measure zero.

(3) For µ-almost every phase point x ∈ M the collision times of the trajectory
{ψt(x)|, t ∈ R} do not have any finite accumulation point, see Proposition
A.1 of [S1996].
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In the paper [W1990a] Wojtkowski formulated his main conjecture pertaining to
the dynamical system (M, {ψt}, µ):

Conjecture 1.1 (Wojtkowski’s Conjecture). If m1 ≥ m2 ≥ · · · ≥ mn > 0
and m1 ̸= mn, then all but one characteristic (Lyapunov) exponents of the flow
(M, {ψt}, µ) are nonzero. Futhermore, the system is ergodic.

Remark 1.1. 1. The only exceptional exponent zero must correspond to the flow
direction.

2. The condition of nonincreasing masses (as above) is essential for establishing
the invariance of the symplectic cone field — an important condition for obtaining
nonzero characteristic exponents. As Wojtkowski pointed out in Proposition 4 of
[W1990a], if n = 2 and m1 < m2, then there exists a linearly stable periodic orbit,
thus dimming the chances of proving ergodicity.

In the paper [S2024] we proved Wojtkowski’s Ergodicity Conjecture 1.1 for al-
most every selection of masses m1 > m2 > · · · > mn, provided that the Transver-
sality Conditions (Claim 3.1 of [S2024]) is verified, i. e. singularities of different
order are transversal to each other and, analogously, the stable and unstable local
invariant manifolds are transversal to all singularities.

Here our main result is to prove the above Transversality Conditions and, as the
main corollary, we obtain our

Theorem 1.2 (Main Theorem). For almost every selection of masses m1 > m2 >
· · · > mn the falling ball flow (M, {ψt}, µ) is (completely hyperbolic and) ergodic.

We recall that the corresponding billiard map (Poincaré section) (∂M, T, ν) is
an invertible dynamical system T mapping the boundary

∂M =
{
(q, v) ∈M

∣∣ q ∈ ∂Q
}

of the phase space M onto itself and preserving the finite measure ν on ∂M
that can be obtained by projecting along the flow the invariant measure µ of the
flow onto ∂M . Also, as usual, in ∂M one identifies the pre-collision phase point
(q, v−) ∈ ∂M with the post-collision phase point (q, v+) ∈ ∂M .

Finally, denote by

Π : ∂M → ∂Q

the natural projection of ∂M onto ∂Q, i. e. Π(q, v) = q.

2. The Geometry of the Symplectic Flow

We will be working with the symplectic coordinates (δh, δv) for the tangent
vectors of the reduced phase space M satisfying the usual reduction equations∑n

i=1 δhi = 0 =
∑n

i=1 δvi.

Remark 2.1. The coordinates δhi and δvi (i = 1, 2, . . . , n) serve as suitable sym-
plectic coordinates in the codimension-one subspace Tx of the full tangent space
TxM of M at x. Recall that the (2n−2)-dimensional vector space Tx is transversal
to the flow direction, and the restriction of the canonical symplectic form
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ω =

n∑
i=1

δqi ∧ δpi =
n∑

i=1

δhi ∧ δvi

of M is non-degenerate on Tx, see [W1990a]. We also recall that

δhi = miδqi +miviδvi = miδqi + viδpi.

Corresponding to the above choice of symplectic coordinates, the considered
monotone Q-form will be

(2.1) Q1(δh, δv) =

n∑
i=1

δhiδvi.

It is clear that the evolution of DSt(δh(0), δv(0)) = (δh(t), δv(t)) between coli-
sions is

(2.2)
d

dt
(δh(t), δv(t)) = (0, 0).

If a collision of type (i, i + 1) (i = 1, 2, . . . , n − 1) takes place at time tk, then
the derivative of the flow at the collision δh−(tk) 7→ δh+(tk), δv

−(tk) 7→ δv+(tk) is
given by the matrices

(2.3)
δh+(tk) = R∗

i

[
δh−(tk) + Siδv

−(tk)
]

δv+(tk) = Riδv
−(tk),

where the matrix Ri is the n×n identity matrix, except that its 2×2 submatrix
at the crossings of the i-th and (i+ 1)-st rows and columns is

R
(i,i+1)
i =

[
γi 1− γi

1 + γi −γi

]
with γi =

mi −mi+1

mi +mi+1
. The matrix Si is, similarly, the n×n zero matrix, except

its 2 × 2 submatrix at the crossings of the i-th and (i + 1)-st rows and columns,
which takes the form of

S
(i,i+1)
i =

[
αi −αi

−αi αi

]
with

(2.4) αi =
2mimi+1(mi −mi+1)

(mi +mi+1)2
(v−i − v−i+1) > 0.

These formulas can be found, for example, in Sention 4 of [W1990a].
Concerning a floor collision (0, 1) at time tk, the transformations are

(2.5)

δh+1 (tk) = δh−1 (tk)

δv+1 (tk) = δv−1 (tk) +
2δh−1 (tk)

m1v
+
1 (tk)

,

see, for instance, Section 4 of [W1990a] or [W1998].
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3. Proof of the Transversality Conditions

If one closely studies the ergodicity proofs based upon the Birkhoff-Sinai Zig-zag
Method, like the one in [L-W1995], one realizes that, whenever a property is needed
to be proved for singular phase points x0 = (q0, v0) ∈ S0 (like the transversality of
Sk to S0 at x0, or the transversality of the local stable manifold γs(x0) to S0), it is
always enough to estabslish the required property for almost every point x0 of S0

with respect to the hypersurface measure of S0. This is what we do in this section.

We will be focusing on the billiard map (∂M, T, ν). Our first result asserts that
the system (∂M, T, ν) has no focal points almost surely almost everywhere.

Proposition 3.1. For almost every selection of the masses m1 > m2 > · · · > mn

it is true that for almost every phase point (q0, v0) ∈ ∂M , for every positive integer
k, and for every small enough ϵ > 0 the map

(3.2) Π ◦ T k : Cϵ(x0) → ∂Q

is of full rank (i. e. locally onto) at x0, where

(3.3) Cϵ(x0) =
{
(q0, v) ∈ ∂M

∣∣ ∥v − v0∥ < ϵ
}

is the so called “candle manifold”, and

(3.4) Π : ∂M → ∂Q

is the natural projection, taking Π(q, v) = q for (q, v) ∈ ∂M .

Proof. It is enough to prove the proposition for a given k and a given symbolic
collision sequence Σ = (σ0, σ1, . . . , σk), where σl(il, il + 1) tells that the collision
(il, il + 1) takes place at T l(x0), where il = 0 indicates a floor collision.

According to (9) of [W1990a], the time evolution (abrupt change) at a ball-to-ball
collision (i, i+ 1) is given by

(3.5)
v+i = γiv

−
i + (1− γi)v

−
i+1

v+i+1 = (1 + γi)v
−
i − γiv

−
i+1,

where

γi =
mi −mi+1

mi +mi+1
,

and

(3.6) v+1 = −v−1
for any floor collision. It is obvious that the time evolution between collisions is

given by

(3.7)
d

dt
qt = vt,

d

dt
vt = (−1,−1, . . . ,−1).
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This means that the entire trajectory segment
{
T l(x0)

∣∣ l = 0, 1, . . . , k
}
is gov-

erned by rational functions of the initial data (q0, v0, m⃗), including the moments tl
of the collisions σl.

Furthermore, by taking derivative of the flow 3.5–3.7, one obtains that for any
tangent vector

τ0 = (δq0, δv0) ∈ Tx0∂M

the images Dψt[τ0] = τt are evolving in time as follows:

(3.8)
δv+i = γiδv

−
i + (1− γi)δv

−
i+1

δv+i+1 = (1 + γi)δv
−
i − γiδv

−
i+1,

(3.9)
δq+i = γiδq

−
i + (1− γi)δq

−
i+1

δq+i+1 = (1 + γi)δq
−
i − γiδq

−
i+1,

for i > 0, where δv±j = (δv±)tj , δq
±
j = (δq±)tj , for j = i, i + 1, see (5) in

[W1990b].
At a floor collision (0, 1) we clearly have

(3.10) δq+1 = −δq−1 , δv
+
1 = −δv−1 .

It is also clear that the time evolution of the image tangent vector τt = Dψt[τ0] =
(δqt, δvt) between collisions is given by

(3.11)
d

dt
δqt = δvt,

d

dt
δvt = 0.

It follows from 3.8–3.11 that the time evolution of the tangent vectors τt =
Dψt[τ0] = (δqt, δvt) is also fully governed by finitely many rational functions of the
initial data (q0, v0, m⃗).

Finally, the negation of the assertion of the Proposition for a particular phase
point x0 = (q0, v0) means that the system of homogeneous linear equations

(3.12) δqtk = 0

has a nontrivial solution τ0 = (0, δv0). This, in turn, means that cetain minors
of this system vanish, i.e.

(3.13) Rj(q0, v0, m⃗) = 0, j = 1, 2, . . . ,m

for certain rational functions R1, R2, . . . , Rm of the initial variables.
Consider now the limiting system with

(3.14) m1 = m2 = · · · = mn > 0.

This system may not possess a trajectory segment with our prescribed symbolic
collision sequence Σ = (σ0, σ1, . . . , σk), yet all the rational functions Rj above are
well defined, and they correspond to the time evolution of this limiting system, so
that the unwanted collisions are annihilated in such a way that any two particles,
about to making an unwanted collision, are let to penetrate through each other
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without interaction. This limiting system is essentially integrable, after the dynamic
change of labels at collisions, as if the particles just penetrate through each other
without interaction, see also the paragraph right after Corollary 2.23 in [S2024].

In this limiting case, however, we have that δqt = tδv0, after the mentioned
dynamic change of labels. This means, in turn, that the system of homogeneous
linear equations 3.12 only has the trivial solution τ0 = 0, therefore, not all rational
functions Rj are identically zero, even if we assume m1 = m2 = · · · = mn.

This completes the proof of Proposition 3.1.
□

Our next result is analogous to the statement of Proposition 3.1, claimed here
for almost every singular phase point x0 = (q0, v0) ∈ S0.

Proposition 3.15. For almost every selection of the masses m1 > m2 > · · · > mn

and for every positive integer k it is true that for almost every singular phase point
x0 = (q0, v0) ∈ S0 and for all small enough ϵ > 0 the map in 3.2 is of maximum
rank (i. e. locally onto) at x0.

Proof. In Proposition 3.1, q0 possessed n − 1 independent coordinates. (Keep in
mind, that q0 ∈ ∂Q, so the q coordinates of two colliding particles are equal, or
q1 = 0.) When a singular collision takes place at time zero, i. e. x0 = (q0, v0) ∈ S0,
then one more equation holds true for the configuration coordinates, so one more
coordinate should be eliminated to work with independent configuration coordi-
nates. The arising vector with n − 2 coordinates is denoted by q̃0. After this, the
proof of this proposition is verbatim the same as that of Proposition 3.1, except
that q0 needs to be replaced everywhere by q̃0.

□

Corollary 3.16 ((Transversality of singularities of different order)). For almost
every selection of the masses m1 > m2 > · · · > mn and for every positive integer k
it is true that for almost every singular phase point x0 = (q0, v0) ∈ S0 if xk = T k(x0)
happens to belong to S0, then T

k(S0) and S0 are transversal at xk.

Proof. The statement immediately follows from the facts that

(i) Cϵ(x0) ⊂ S0,
(ii) Π ◦ T k : Cϵ(x0) → ∂Q is locally onto,
(iii) S0 is defined purely in terms of the q coordinates.

□

Corollary 3.17. For almost every selection of the massesm1 > m2 > · · · > mn and
for almost every singular phase point x0 = (q0, v0) ∈ S0 the local stable manifold
γs(x0) of x0 is transversal to the singularity S0.

Proof. This statement follows from the fact that γs(x0) is the C1-uniform limit
(locally, near x0) in the following way:

γs(x0) = lim
k→∞

T−k
[
Cϵ(T

k(x0))
]
,

the inverse images T−k
[
Cϵ(T

k(x0))
]
project locally onto ∂Q at x0, and, finally,

the maximum rank property is a C1 open property. Hence the projection
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Π : γs(x0) → ∂Q

is locally onto, and S0 is defined purely in terms of the q coordinates in ∂Q.
□

This completes the proof of our Main Theorem.
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