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Stable regimes for hard disks in a channel with twisting walls

N. Chernov, A. Korepanov, and N. Simányi
Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA

(Received 21 November 2011; accepted 27 February 2012; published online 20 June 2012)

We study a gas of N hard disks in a box with semi-periodic boundary conditions. The unperturbed

gas is hyperbolic and ergodic (these facts are proved for N¼ 2 and expected to be true for all

N � 2). We study various perturbations by twisting the outgoing velocity at collisions with the

walls. We show that the dynamics tends to collapse to various stable regimes, however we define

the perturbations, and however small they are. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.3695367]

Gas of hard balls is a classical model of statistical

mechanics. The chaotic motion of its molecules can

explain many phenomena observed in real gases and flu-

ids. We study a 2D gas of hard disks placed in a channel

whose walls act as “Maxwell demon” that makes the

angle of reflection different from the angle of incidence

(twisting the outgoing velocity vectors). We present quite

unexpected patterns developed by the gas dynamics

under various twisting rules.

I. INTRODUCTION

The gas of hard balls is a classical model of statistical

mechanics. Hard ball collisions produce strong scattering

effect which makes the system behave chaotically and

quickly relax to equilibrium (at least locally). In mathemati-

cal terms, the gas of hard balls in finite container is widely

regarded as a hyperbolic dynamical system (i.e., its Lyapu-

nov exponents should not be zero), and its natural invariant

measure (Liouville measure) is expected to be ergodic and

mixing.

More precisely, the celebrated Boltzmann-Sinai ergodic

hypothesis states that the gas of N hard balls in a container

with periodic boundary conditions (a torus) is hyperbolic, er-

godic, mixing (and Bernoulli). Attempts to prove this conjec-

ture have long history,28–30 and at present it is proven under

various conditions,15,24–27 but not yet in its full generality.

We note that the gas of N hard balls on a d-dimensional

torus has dþ 1 integrals of motion: its kinetic energy and its

total momentum (a d-vector) are preserved; hence, the posi-

tion of the center of mass can be fixed. This leads to a great

reduction of the phase space eliminating a total of 2dþ 1

dimensions.

If the container has rigid walls, the total momentum is

no longer preserved; thus the phase space has higher dimen-

sionality and is more complicated; such gases are even

harder to study. Hyperbolicity and ergodicity have been pro-

ven only for N¼ 2 balls in a rectangular box (when the disks

are no too large)23 and for N � 2 disks in a very special 2D

container with curved walls where each disk is confined to

its own cell.5

We are interested in a gas of N hard disks in a 2D rec-

tangular container with partial periodicity, i.e., where two

opposite walls are rigid but in the other direction boundary

conditions are periodic (such a container can be regarded as

a cylinder, rather than a torus). The hyperbolicity and ergo-

dicity for such a gas are proved only for N¼ 2, see Ref. 23,

but these properties are undoubtedly valid for all N � 2.

The dynamics of this gas becomes more intriguing if

small driving forces are added at the rigid walls, i.e., when

collisions of the disks with the walls are modified by stochas-

tic or deterministic perturbations. We consider deterministic

perturbations where the angle of reflection is no longer equal

to the angle of incidence, i.e., the velocity vector of the col-

liding disk is “twisted” a little right after the collision. Such

twisting collision rules may appear physically unrealistic

(they belong to the “Maxwell-demon” type of external

forces), but they produce very realistic and interesting none-

quilibrium phenomena such as shear flow and entropy

production.7

It is commonly expected (and observed empirically7)

that the gas of hard balls under small perturbations remains

chaotic and has a unique nonequilibrium stationary state,

perhaps in the form of a Sinai-Ruelle-Bowen (SRB) mea-

sure, i.e., an ergodic measure with smooth conditional den-

sities on unstable manifolds. These facts have been actually

proven for N¼ 1 particle in the the 2D periodic Lorentz gas

under two types of small perturbations: external fields6,10,12

and twisting collision rules.32 Similar results were obtained

for various classes of bounded billiard tables with twisting

walls.1,17

We note that the unperturbed Lorentz gas with N¼ 1

particle is a uniformly hyperbolic dynamical system. Under

small perturbations, uniform hyperbolicity usually survives

and makes the construction of an SRB measure possible.

The gas of N � 2 hard balls, on the other hand, is never
uniformly hyperbolic. Non-uniform hyperbolicity can be

easily destroyed even by arbitrary small perturbations mak-

ing it hard to control the perturbed dynamics. For this reason

there are no theoretical proofs of hyperbolicity or the exis-

tence of SRB measures under any perturbations, to our

knowledge. Moreover, one may expect that the perturbed gas

is not always fully hyperbolic or ergodic, i.e., there may be

elliptic islands, multiple ergodic components, etc.

The modest purpose of this paper is to point out that

things are actually much worse, even for the gas of N¼ 2

disks. We show that if the disks are not too big (if their
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diameters are less than 0.5), then an arbitrarily small twist

added to collisions at the walls tends to destroy the chaotic

behavior of the gas, causing a complete collapse of the dy-

namics in a way that almost every phase trajectory converges

to some trivial stable regimes. The collapse seems to happen

for every type of small twists, although the limit stable

regimes may be very different and sometimes quite bizarre.

Most of the stable regimes we observed for N¼ 2 also

appear for any number N > 2 of disks (provided their diame-

ter is small enough). On the other hand, when the disks are

not too small, then our stable regimes seem to disappear. We

believe that if the diameters of the disks are greater than 1/N,

then the gas is fully chaotic and SRB measures exist, in

agreement with numerical evidence.7

This work is motivated by discussions with J. Lebowitz

and Ya. Sinai. Our original purpose was to prove hyperbolic-

ity and construct SRB measures for at least some types of

twisting collisions. However, we discovered that at suffi-

ciently low densities all twists cause a total collapse (often to

our surprise). Thus in the end we decided to report our find-

ings in this paper.

II. MODEL

Our model is a system of N hard disks in a unit square

D ¼ f0 � x � 1; 0 � y � 1g

that has rigid (reflecting) walls at y¼ 0 and y¼ 1 and peri-

odic boundary conditions at x¼ 0 and x¼ 1. The disks are

identical (have the same mass and radius), and they collide

elastically with each other.

We can represent our model as an infinite chain of cop-

ies of the square D placed in the infinite strip (channel) I ¼
f0 � y � 1g where hard disks appear periodically (see

Fig. 1).

We denote by qi ¼ ðxi; yiÞ the position of the ith disk

and by pi ¼ ðui; viÞ its velocity vector, i ¼ 1;…;N. Now

suppose a disk collides with a wall (either y¼ 0 or y¼ 1). By

the classical law its velocity p ¼ pbefore ¼ ðu; vÞ changes to

pafter ¼ ðu;�vÞ, and its kinetic energy 1
2
kpk2

is preserved,

i.e.,

kpbeforek ¼ kpafterk: (2.1)

The total momentum ptotal ¼ p1 þ…þ pN of the system is

not preserved, but its x-component is preserved, i.e., the sum

u1 þ…þ uN remains constant in time.

The entire (macrocanonical) phase space is 4N-dimen-

sional, and the energy surface is (4N� 1)-dimensional. The

conservation of u1 þ…þ uN allows us to set it to zero, after

which the x-coordinate of the center of mass will be constant

and can be fixed, too. Thus the reduced phase space is

(4N� 3)-dimensional. The resulting system is expected to be

hyperbolic (with 2N� 2 positive Lyapunov exponents and

the same number of negative ones), ergodic, and mixing.

These facts have been proved for N¼ 2 in Ref. 23.

We now modify the law of collisions with the walls. We

will preserve the kinetic energy of the disks, so that Eq. (2.1)

still holds true. Thus, it is enough to specify the angle of

reflection w, as a function of the angle of incidence u

w ¼ f ðuÞ: (2.2)

We measure the angles w and u as shown in Fig. 2, so that

the range of our angles is the interval ½0; p�. The function f
does not depend on the point of collision, but it may be dif-

ferent for the bottom wall at y¼ 0 and the top wall at y¼ 1.

We will denote those two functions by f0 and f1,

respectively.

For classical collisions w ¼ u, hence f is the identity

function, f ðuÞ ¼ u. We will consider its small perturbations,

i.e., our functions f will satisfy f ðuÞ ¼ uþ small. For con-

venience we also assume that

• f ðuÞ is continuous and strictly monotonically increasing,
• f(0)¼ 0 and f ðpÞ ¼ p,

i.e., f is an orientation preserving homeomorphism of the

interval ½0; p�. This ensures that our dynamics will be inverti-

ble, i.e., every phase point has a unique past.

As before, the energy surface in the phase space is

(4N� 1)-dimensional. Since our collision rules are transla-

tion invariant (independent of the x coordinate of the colli-

sion point), the energy surface is naturally foliated

by invariant hypersurfaces on which the dynamics are identi-

cal. Thus we can factor this foliation out by replacing the x-

coordinates of the disks by their relative x-coordinates

x1 � xn;…; xn�1 � xn, which eliminates one more variable

and makes the (factored) phase space (4N� 2)-dimensional.

Most of the time we will deal with N¼ 2 disks, in which

case the phase space will be 6-dimensional.

Many collision rules Eq. (2.2) quickly lead to trivial

degenerate regimes. For example, if fkðuÞ < u for k¼ 0, 1

and all 0 < u < p, then uafter ¼ cosw > cosu ¼ ubefore;

hence, the x-component of the total momentum utotal ¼
u1 þ…þ uN will grow at every collision with the walls. It is

then clear that all the particles will eventually move almost

horizontally to the right (will be “blown away by wind”).

FIG. 1. A periodic system of disks moving in a channel. FIG. 2. Angle of incidence u and angle of reflection w.
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To prevent the wind from blowing, we will restrict our

study to collision rules where one wall counterbalances the

effect of the other

f1ðuÞ ¼ p� f0ðp� uÞ; (2.3)

i.e., the function f1 at the top wall y¼ 1 acts exactly opposite

to the function f0 at the bottom wall y¼ 0. Under this condi-

tion there is a natural symmetry in the channel; hence, drift

in either direction (left or right) cannot be dominant in the

whole phase space.

III. ONE PARTICLE CASE

To clarify the effect of our twisting collisions, we begin

with the simplest case of one hard disk, i.e., we set N¼ 1.

Then the radius of the disk is irrelevant, and we can just

make it a point particle bouncing between the two walls.

Let u0 be the angle of incidence at the initial collision

at, say, the bottom wall y¼ 0. Then the reflection angle w ¼
f0ðu0Þ becomes the incidence angle u1 at the next collision

at the top wall, i.e., u1 ¼ f0ðu0Þ. Similarly, the incidence

angle at the following collision at the bottom wall will be

u2 ¼ f1ðu1Þ ¼ f1ðf0ðu0ÞÞ;

and then the process will repeat periodically. By induction,

u2n ¼ gnðu0Þ for all n � 1;

where g ¼ f1 � f0, thus the evolution of incidence angles is

completely described by the iterations of the function g. For

functions with opposite orientations, i.e., those obeying

Eq. (2.3), we have

gðuÞ ¼ p� f0ðp� f0ðuÞÞ: (3.1)

Note that g, just like f0, is an orientation-preserving homeo-

morphism of the interval ½0; p�. But no homeomorphism of

½0; p� can be defined by (3.1), so we describe the class of

functions g satisfying (3.1). To this end we introduce an

involution j : ½0; p� ! ½0; p� defined by jðuÞ ¼ p� u and

note that

g ¼ ðj � f0Þ � ðj � f0Þ

Thus, g ¼ h2, where h ¼ j � f0 is an orientation reversing
homeomorphism of the interval ½0; p�.

The map h : ½0; p� ! ½0; p� obviously has a unique fixed

point u0 2 ð0; pÞ, which automatically is a fixed point for g.

For any other point u 6¼ u0 there are exactly three

possibilities:

• h2ðuÞ ¼ u, then u is a 2-periodic point for h and a fixed

point for g;
• jh2ðuÞ � u0j < ju� u0j, then the images of u under g

will move toward u0;
• jh2ðuÞ � u0j > ju� u0j, then the images of u under g

will move away from u0.

The non-fixed points of g make an open set, which is

a union of disjoint intervals, we denote them by fImg. The

endpoints of each interval Im are fixed points for g, i.e., 2-

periodic points for h (unless one of them is u0, of course). In

each interval Im � ½0; p� all the points move under g in one

direction—either toward u0 or away from u0.

For each interval Im its image Im0 ¼ hðImÞ is another

interval whose points move in the same direction (either to-

ward u0 or away from u0) as the points of Im. Note that Im ¼
hðIm0 Þ as well. We call the intervals Im and Im0 dual to each

other. Thus the intervals fImg come in dual pairs. Dual inter-

vals lie on the opposite sides of u0, and all the points in both

intervals move either toward u0 or away from u0. If Im; Im0

and In; In0 are two pairs of dual intervals, then one pair lies

inside the other (see Fig. 3).

If the number of intervals Im is finite, then it is necessarily

even, and exactly half of them lies to the left of u0, and the

other half—to the right. The above structure is essentially a

complete description of all interval maps g satisfying Eq. (3.1).

Proposition 3.1. Let g be an orientation preserving
homeomorphism of the interval ½0; p� with an odd number of
fixed points

0 ¼ u�k < u�kþ1 < … < u0 < …uk�1 < uk ¼ p:

Suppose that for each 0 � i < k either all the points of both

intervals ðu�i�1;u�iÞ and ðui;uiþ1Þ move under g toward

u0 or all the points in these two intervals move away from

u0. Then there exists an orientation reversing homeomor-

phism h : ½0; p� ! ½0; p� such that g ¼ h2. The middle fixed

point u0 is the (only) fixed point of h.

The proof uses standard methods of one-dimensional

topological dynamics, and we omit it.

The central fixed point u0 plays a special role, we will

call it the center (of the map g); it is the only fixed point of

h. Note that

f0ðu0Þ ¼ p� u0: (3.2)

Hence, if a particle hits a wall at the angle u0, it turns around

and flies straight back. Its trajectory is then periodic not only

in the angular coordinates but also in the spatial coordinates

(see Fig. 4).

FIG. 3. Dual intervals about the fixed point u0.

FIG. 4. A periodic trajectory running between two collisions.
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IV. A SPECIAL FAMILY OF COLLISIONS WITH A TWIST

While most of our conclusions apply to generic functions

f0 and f1 satisfying Eq. (2.3), it will be convenient to use one

particular family of functions to clarify our arguments.

First, it is convenient when the center u0 is at the geo-

metric center of the interval ½0; p�, i.e., u0 ¼ p=2. Then, the

special periodic trajectories described in the end of Sec. III

move vertically, up and down, i.e., they just bounce between

the walls like the regular periodic billiard trajectories.

Next, for simplicity, we consider functions g that have

one fixed point u0 ¼ p=2 (other than 0 and p), which will

automatically be the center. Then there are three fixed points

total: 0; p=2, and p. The intervals ð0; p=2Þ and ðp=2; pÞ either

both move toward p=2 or both move away from p=2. In the

former case p=2 will be a stable fixed point and attract the

entire interval ð0; pÞ. In the latter case p=2 will be an unsta-

ble (repulsive) fixed point and then each interval ð0; p=2Þ
and ðp=2; pÞ will be attracted by its other endpoint, i.e., by 0

or p, respectively. We will say that in the former case the

map g has a stable center and in the latter—an unstable cen-
ter. These cases are quite different in dynamical terms, and

both are interesting.

We note that in order to make p=2 a fixed point for g
satisfying Eq. (3.1), we need to set f0ðp=2Þ ¼ p=2, according

to Eq. (3.2). Then p=2 is a fixed point for f0 as well.

Thus f0 must have three fixed points: 0, p=2, and p. It is

also convenient if the time reversal of the collision rule

defined by f0 belongs to the same family of collision rules.

The time reversal collision rule is defined by u! f�0 ðuÞ at

the bottom wall and u! f�1 ðuÞ at the top wall, where the

functions f�0 and f�1 satisfy

f�0 ¼ f�1
1 and f�1 ¼ f�1

0 (4.1)

in accordance with Eq. (2.3).

In view of the above requirement we can define f0 by

tanf0ðuÞ ¼ ektanu: (4.2)

Then, due to Eq. (2.3),

f1ðuÞ ¼ f0ðuÞ; (4.3)

so both walls obey the same collision rule! Note that there

are no restriction on k here, our rules work well for any

k 2 ð�1;1Þ, but for the twist to be small we will only con-

sider k � 0.

Due to Eq. (4.1), the time reversal collision rules satisfy

tanf�0 ðuÞ ¼ tanf�1 ðuÞ ¼ e�ktanu:

Hence it belongs to the same family of rules (4.2), but k
must be replaced with �k, i.e., reversing the time corre-

sponds to negating k.

A direct differentiation of Eq. (4.2) gives

f0
0ðuÞ ¼ e�k sin2f0ðuÞ

sin2u
¼ ek cos2f0ðuÞ

cos2u
:

Hence

f0
0ðp=2Þ ¼ e�k and f0

0ð0Þ ¼ f0
0ðpÞ ¼ ek:

Thus, k > 0 corresponds to a stable center and k < 0 to an

unstable center, i.e., we have dynamics of both types.

We note that the rules (4.2) and (4.3) can be rewritten as

follows: at every collision with the wall the incoming veloc-

ity ðu�; v�Þ and the outgoing velocity ðuþ; vþÞ are related by

uþ=jvþj ¼ e�ku�=jv�j: (4.4)

This makes it convenient for numerical simulations: one can

recompute the velocity vectors by Eq. (4.4) without using

the angle u or its tangent.

V. COLLISIONS WITH A STABLE CENTER

We begin with a single disk and a small positive k > 0.

Again, we assume that the disk has zero radius, i.e., it is just

a point particle.

Recall that f0
0ðp=2Þ ¼ e�k < 1. Thus if the angle of inci-

dence is close to p=2, i.e., u ¼ p=2þ d for some small d,

then after n collisions at the walls it will be un ¼ p=2þ dn,

where dn ! 0.

More precisely, as the disk moves between collisions

from wall to wall, its displacement in the horizontal direction

is given by Dx ¼ cotu ¼ tand. Due to Eqs. (4.2) and (4.3),

after the next collision its displacement will be e�kcotu
¼ e�kDx. Thus the displacement in the x direction is pre-

cisely decreasing by a factor e�k < 1.

Thus the displacements in the x direction make a geo-

metric progression and the total displacement is

Dx
X1
n¼0

e�nk ¼ Dx

1� e�k
: (5.1)

The particle’s trajectory converges to a vertical line and the

velocity vector aligns vertically at an exponential rate.

Consider now the system of N disks. We assume that the

diameter d of the disks is small enough so that the disks can

be lined up along one vertical or horizontal line in the unit

square, i.e., d < 1=N.

For any disk with center at ðxi; yiÞ and velocity vector

ðui; viÞ denote by si the total displacement in the x direction

of that disk if it is allowed to bounce between the walls

alone, as if the other disks did not exist. By Eq. (5.1), si is

finite, and in fact

si 	
juj

jvjð1� e�kÞ : (5.2)

Let U be the subset in phase space satisfying the following

condition:

jxi � xjj > d þ si þ sj 8i 6¼ j: (5.3)

Note that the x coordinates must be taken modulo 1, as we

have periodic boundary conditions at x¼ 0 and x¼ 1.

Now Eq. (5.3) guarantees that the projections of the

disks onto the x-axis do not overlap and will not overlap at

any time in the future. Thus our N disks will never collide
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with each other, all of them will be bouncing between the

walls and the trajectory of each disk will converge to some

vertical line.

In this limit regime (Fig. 5), the x-component of the ve-

locity vector of each disk is zero. Thus, those limit trajecto-

ries form a family of codimension N in phase space. Note

that the phase space of our system is (4N� 1)-dimensional

(the only constraint is the conservation of the total kinetic

energy). Thus our family of stable limit trajectories is a

(3N� 1)-dimensional submanifold in the phase space. We

denote it by S.

Every phase trajectory starting in U converges to S at an

exponential rate. The set U is invariant, i.e., all the trajecto-

ries originating in U stay there in the future. Note that U is

an open subset of the phase space; thus, it has a positive Leb-

esgue measure. Therefore, the limit set S has an open basin

of attraction of positive Lebesgue measure.

It is more convenient to work with the collision space

M which consists of all phase states such that either some

two disks collide or a disk collides with a wall (at the

moment of collision, the velocity vectors change discontinu-

ously, and it is customary to include inM only the postcolli-

sional velocity vectors). The induced map T ¼ Tk :
M!M is called the collision map.

We denote by �0 the normalized measure on M that is

invariant under the map T0 corresponding to k ¼ 0. This

map corresponds to the classical specular reflections at the

walls (where w ¼ u), so T0 is the collision map for the clas-

sical gas of hard disks at equilibrium. The measure �0 is

absolutely continuous with respect to the Lebesgue measure

onM, and it has a strictly positive density. At the collisions

with the walls, the density is proportional to sinu.8

Let U0 ¼ U \M denote the subset of the collision

space where Eq. (5.3) holds. It is invariant under T, i.e.,

TðU0Þ � U0. Its trajectories converge to the set S0 ¼ S \M,

i.e., U0 is the basin of attraction of S0 under the map T. The

basin of attraction U0 may be regarded as a trap, or a

“hole”—every phase trajectory that enters it will never come

back.

VI. HOLES AND ESCAPE RATES

Dynamical systems with holes have been studied exten-

sively in the past decades, both numerically and theoreti-

cally.2,9,14,20,22 In particular, many researchers studied

billiards with holes.3,4,13,16,19 It is generally observed (and in

many cases proved) that holes attract almost the entire phase

space, i.e., almost every trajectory sooner or later enters the

hole and never returns (in other words, it escapes). This phe-

nomenon is also interpreted as the leakage of mass (phase

volume) through holes so that the remaining phase space

gets thinner.

The holes are usually characterized by the escape rate
q > 0, which basically says that the fraction of phase space

that has not escaped through the holes (not leaked out) by

the time n > 0 (where n is discrete time, i.e., the collision

counter) decays exponentially at a rate q, i.e., it is of order

e�qn. More precisely, if Mn denotes the subset of the phase

space M that has not escaped through the holes by the time

n, then

lim
n!1

1

n
lnLebðMnÞ ¼ �q:

For any phase state X 2 M we denote by sðXÞ the escape
time, i.e., the time the trajectory of X enters the hole. Then

sðXÞ has an approximate exponential distribution onM with

parameter q (with respect to the Lebesgue measure), and its

average is 1=q.

Many studies investigate how the escape through holes

is affected by the size of the latter. When holes get smaller

(shrink), the escape rate decreases and the escape time

grows. In our case, the “hole” U0 described above depends

on the parameter k > 0. When k decreases, the hole U0

shrinks, and in the limit k! 0 the hole converges to the sub-

manifold S0 �M of zero volume.

We have investigated the escape process in our model

by numerical simulations. We used N¼ 2 disks of diameter

d¼ 0.1 with the collision rules at the walls defined by Eqs.

(4.2) and (4.3) for various small k > 0. We have estimated

the “escape time” numerically, for different k’s. For each k
we simulated the dynamics from 105 randomly chosen initial

states, stopping the simulations whenever the system escaped

into the “hole” U0, and computed the mean escape time ls.

It naturally grows, as k gets smaller, and Fig. 6 shows

how it grows on the log-log scale. The plot clearly demon-

strates a linear pattern suggesting that ls 	 k�b for some

FIG. 5. Convergence of a stable limit regime.

FIG. 6. Plot of lnls versus �lnk. The least squares line has an estimated

slope of 2.11.
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b > 0. The least squares fitting line in Fig. 6 has slope 2.11,

so we may guess that b � 2. Below we give a heuristic argu-

ment supporting (and refining) this conjecture.

Recall that the “hole” U0 �M is an open set of positive

Lebesgue measure, and it is invariant under the collision

map T, i.e., TðU0Þ � U0. Hence the sets

U1 ¼ T�1ðU0Þ=U0 and Uk ¼ T�kþ1ðU1Þ

for k ¼ 2; 3;… are disjoint, and each of them has positive

Lebesgue measure, too. Their union U1 ¼ [1k¼0Uk contains

all the phase points X 2 M that end up in the hole U0 even-

tually. Our first conjecture (well supported by our numerical

observations) is that almost every phase point X 2 M even-

tually ends up in the hole, i.e., U1 covers the entire collision

spaceM (up to a null set), i.e.,M¼ U1 (mod 0). By direct

analysis (we omit details),

LebðU0Þ ¼ OðkNÞ and LebðU1Þ ¼ OðkNþ1Þ; (6.1)

and similar estimates hold for �0ðU0Þ and �0ðU1Þ.
Next, the measure �0 is invariant under the original,

twist-free collision map T0, but not for k 6¼ 0. In fact, it is

preserved by the interparticle collisions, but at collisions

with the walls it gets compressed if f0
0ðuÞ < 1 and gets

expanded if f0
0ðuÞ > 1. In our case, f0

0ðuÞ < 1 whenever

c1 < u < c2 for some constants 0 < c1 < c2 < p whose val-

ues are not essential.

For any point X 2 M we denote the Jacobian of the

inverse collision map T�1, with respect to the canonical mea-

sure �0 by JðXÞ ¼ ecðXÞ. If X corresponds to an inter-particle

collision, then J(X)¼ 1; hence cðXÞ ¼ 0. Otherwise c has a

small (of order k) value.

Now for every point X 2 U1 and k � 1 we denote

JkðXÞ ¼ JðT�kþ1ðXÞÞ ¼ eck ; ck ¼ cðT�kþ1ðXÞÞ;

then we have

�0ðUkþ1Þ ¼
ð

U1

J1…Jkd�0 ¼
ð

U1

ec1þ…þck d�0: (6.2)

Next note that the sequence c1;…; ck is determined by the

collisions of the disks with the walls along the past trajecto-

ries of points X 2 U1. As time runs backwards, the disks

begin colliding with each other and a chaotic regime quickly

sets in. Then the distribution of every trajectory in the phase

space will be fairly close to uniform (equilibrium). Thus the

values of cn could be treated as nearly independent random

variables. They are all of order k; hence, the sum of k of

them can be expected to grow as k
ffiffiffi
k
p

, in the spirit of the

central limit Theorem. Thus by Eq. (6.2) we can expect that

�0ðUkþ1Þ 	
ð

U1

ek
ffiffi
k
p

dX 	 kNþ1ek
ffiffi
k
p
;

as long as the chaotic regime continues. The obvious limita-

tion �0ðUkþ1Þ � 1 gives us an upper bound for k

k � const
ðlnkÞ2

k2
: (6.3)

Perhaps it is more reasonable to expect that �0ðUkþ1Þ 	 1=k,

but this would give us pretty much the same upper bound

Eq. (6.3) on k.

Thus we see that the chaotic regime, when the particles

collide and the measure of the regions Uk tends to grow, lasts

for about OððlnkÞ2=k2Þ collisions. As a result, the mean

“escape time” is of the same order

ls ¼ OððlnkÞ2=k2Þ: (6.4)

On the log-log scale x ¼ �lnk and y ¼ lnls adopted in Fig.

6 this means

y ¼ 2xþ 2lnxþ const: (6.5)

Accordingly, we used a functional relation y ¼ axþ blnxþ
c to approximate our data plotted in Fig. 6, and the least

squares fit gives

y ¼ 1:985xþ 0:233lnxþ 0:811:

The estimated slope of 1.985 is in a good agreement with the

theoretically predicted slope of 2. The logarithmic coeffi-

cient 0.233 is not close to 2 in Eq. (6.5), but it is of secondary

importance for the estimate Eq. (6.4).

We now investigate the dynamics beyond the bound Eq.

(6.3). The measure l0ðUkÞ cannot increase with k forever; in

fact we must have

l0ðUkÞ ! 0 as k !1;

and moreover, l0ðUkÞ should decay fast because the seriesP
k l0ðUkÞ is summable.

Thus for large k (those far exceeding the upper bound

Eq. (6.3)) the dynamics cannot be chaotic: it is dominated by

the collisions with the walls that compress the phase volume

(when the time runs backwards). Those collisions have inci-

dence angles close to 0 or p, so that the particles hit the walls

nearly tangentially. This means that the particles move

nearly horizontally in the channel.

We recall that running the time backward for a dynam-

ics with parameter k is equivalent to reversing the velocity

vectors of the disks and running the time forward for the dy-

namics with parameter �k.

This suggests that for the dynamics with negative pa-

rameter k < 0 the limiting regime also exists, and it involves

the disks flying almost horizontally and experiencing nearly

tangential collisions with the walls. This will be established,

with some rigor, in Sec. VII.

VII. COLLISIONS WITH AN UNSTABLE CENTER

Here we analyze the dynamics of N disks with a nega-

tive parameter, k < 0. In this case u ¼ 0 and u ¼ p are sta-

ble fixed points for both functions f0 and f1 and the

derivative at these points is

f0
0ð0Þ ¼ f0

0ðpÞ ¼ ek < 1:

Thus if the angle of incidence is close to 0 or p, i.e., u ¼ d
or u ¼ p� d for some small d, then after a collision at the
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wall it will be even closer to 0 or p, i.e., it will be u1 ¼ d1 or

u1 ¼ p� d1, respectively, with d1 < dek0 with some con-

stant k0 < 0 (k0 � k for small d).

However the angles of incidence cannot converge to 0

or p monotonically in a manner similar to their convergence

to p=2 in the previous section. Indeed, after a nearly tangen-

tial collision with the wall the disk has to move across the

channel to the opposite wall, and now on its way across it

will be very likely colliding with other disks.

Lemma 7.1. With probability one the disks will continue
colliding at arbitrary distant future.

Proof. Suppose that the disks never collide with each

other after some time T > 0. Then, they just collide with the

walls, and hence their velocity vectors align almost horizon-

tally and converge to some horizontal vectors.

By simple geometry, the disks can avoid each other on

their way from one wall to the other only if the horizontal

components of their velocities are nearly equal. And as the

vertical components get smaller, the horizontal components

would have to get also closer to each other. So in the limit,

as time grows to infinity, the velocity vectors of the disks

would have to converge to a common limit!

However, the collisions with the walls do not alter the

kinetic energy of the disks. Thus if the disks somehow man-

aged to avoid each other, the speed of each disk would

remain constant. And since their velocity vectors must have

a common limit, their speeds must have been equal all the

time! In other words, the “equal speeds” situation should

have occurred right after the last collision between the disks

in the past. This event is exceptional and occurs with proba-

bility zero. h

Thus almost surely our disks will keep colliding with

each other forever. For this reason the limiting stable regime

(if one exists) could not be as simple as the one we have

seen in the previous section. Still a limiting stable regime

exists, as we will show next. Again we assume that the disks

are not too large.

Let us set the total kinetic energy to N/2, so that the ve-

locity vectors ðui; viÞ of the disks will satisfy

u2
1 þ v2

1 þ…þ u2
N þ v2

N ¼ N: (7.1)

Now we define a subset Wþ in phase space by

Wþ ¼ fu1 þ…þ uN >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þ

p
g: (7.2)

An elementary calculation shows that for every X 2 Wþ

ui > 0 for all i ¼ 1;…;N: (7.3)

\Now consider the trajectory of a phase point X 2 Wþ. At ev-

ery collision with a wall, the incoming velocity vector ðui; viÞ
points to the right, due to Eq. (7.3). Then the postcollisional

velocity vector ðui
0; vi
0Þ will turn toward the wall, i.e., ui

0 >
ui and jvi

0j < jvij. At every collision between disks i and j,
the velocity vectors of both disks may change, but their total

momentum is preserved, i.e., ui þ uj remains the same.

We see that the total horizontal momentum of the

system

Mu ¼ u1 þ…þ uN (7.4)

is monotonically increasing: it is preserved at every interpar-

ticle collision and increases at every collision with a wall.

Thus, the trajectory of every point X 2 Wþ will remain in

Wþ forever. Furthermore, the value of Mu will grow and con-

verge to a limit.

We illustrate this process for N¼ 2. Figure 7 shows Wþ
in the u1; u2 coordinates: Wþ is bounded by the circular arc

u2
1 þ u2

2 ¼ 2; u1; u2 > 0, and its chord u1 þ u2 ¼
ffiffiffi
2
p

. Then

Wþ is foliated by parallel lines u1 þ u2 ¼ c;
ffiffiffi
2
p

< c � 2.

The point ðu1; u2Þ stays on the same line u1 þ u2 ¼ c at ev-

ery collision between the disks and moves up to another line

u1 þ u2 ¼ c0 with c0 > c during every collision with a wall.

Next we investigate the limit regime. Clearly there is a

limit chord u1 þ u2 ¼ c1 � 2. If c1 ¼ 2, the chord degener-

ates to a single point u1 ¼ u2 ¼ 1. In that case v1 ¼ v2 ¼ 0,

so the limit regime consists of both disks moving horizon-

tally with the same unit speed.

If c1 < 2, then the points ðu1; u2Þ along the trajectory

of X 2 Wþ accumulate on the chord u1 þ u2 ¼ c1. We

claim that they actually converge to one of the end points

of that chord. Indeed, when the point ðu1; u2Þ is at a dis-

tance d1 > 0 from the end points of the current chord

u1 þ u2 ¼ c, then u2
1 þ u2

2 < 2� d2 for some d2 > 0 (which

depends on d1). Therefore jv1j > d3 or jv2j > d3 for some

d3 > 0 (which depends on d2). Now we claim that at the

next collision with a wall by one of the disks its vertical

velocity will be jvij > d4 for some d4 > 0 (which depends

on d3). Indeed, a sequence of consecutive collisions

between the two disks can be reduced to a simple billiard

trajectory in a 2D periodic Lorentz gas (Ref. 11, Sec. 4.2),

and then one can easily check that the vertical components

of their velocities cannot both vanish at the time they hit

the walls.

Next, when a disk with a vertical velocity jvij > d4 hits

a wall, its velocity vector will be rotated so that ui will grow

by some d5 > 0 (which depends on d4). Thus the point

ðu1; u2Þ will move up to a chord u1 þ u2 ¼ cþ d6 for some

d6 > 0 (which depends on d5). Hence the convergence to a

limit chord can only occur when ðu1; u2Þ converges to one of

its end points (and, as a result, v1; v2 converge to zero).

In the above limit regime, when c1 < 2, both disks

move horizontally but at different speeds, �u1 6¼ �u2. We

believe this actually happens with probability zero, but we

FIG. 7. The region Wþ and the dynamics inside it.
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can only give a heuristic argument. By Lemma 7.1 the disks

have to collide from time to time. When they collide, their

relative horizontal velocity is u1 � u2 � �u1 � �u2 6¼ 0, but

their relative vertical velocity is v1 � v2 ¼ � � 0. The colli-

sion of two disks can be reduced to a 2D periodic Lorentz

gas with infinite horizon [Ref. 11, Sec. 4.2].

It is known in the studies of periodic Lorentz gases that

if the vertical velocity of the moving particle before the colli-

sion is �, then after the collision it is typically of order
ffiffi
�
p

,

i.e., v1
0 � v2

0 ¼ Oð
ffiffi
�
p
Þ; see Fig. 8. More precisely, there are

p; q > 0 such that the relative measure of initial conditions

for which v1
0 � v2

0 ¼ Oð�1=2�pÞ is Oð�qÞ (see Ref. 31). Thus,

in the course of infinitely many successive collisions

between the disks their vertical velocities would explode

sooner or later with probability one, violating the assumption

c1 < 2. This argument is not quite formal, as the word

“probability” here refers to the canonical measure �0, and in

our dynamics the images of this measure keep changing, but

we believe the conclusion is correct.

To summarize, we proved that in the limit regime the

particles move horizontally to the right. We also conjecture

that with probability one their horizontal velocities are equal

u1 ¼… ¼ uN ¼ 1 and v1 ¼… ¼ vN ¼ 0: (7.5)

In other words, almost all trajectories in Wþ converge to a

limit regime where all the particles move horizontally and at

unit speed. This is a stable limit regime, it corresponds to a

submanifold Sþ. This submanifold is defined by Eqs. (7.5);

hence, its dimension is 2N (corresponding to the free coordi-

nates ðxi; yiÞ of all the particles).

There is a symmetric region W� in phase space defined

by

W� ¼ fu1 þ…þ uN < �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þ

p
g; (7.6)

where all the particles move in the negative x direction. By a

similar argument, almost all trajectories X 2 W� converge to

the stable limit regime where all the particles move horizon-

tally to the left, and (we again conjecture) at unit speed

u1 ¼… ¼ uN ¼ �1 and v1 ¼… ¼ vN ¼ 0: (7.7)

This corresponds to a submanifold S� of dimension 2N.

Note that we have two stable limit regimes. Each one

attracts a part of M that has a positive Lebesgue measure.

Their basins of attraction are obviously disjoint, and due to

symmetry they must have the same �0 measure. Thus we

have a coexistence of two attracting mechanisms in phase

space.

Just like in Sec. VI we estimated the escape time

numerically. We used N¼ 2 disks of diameter d¼ 0.1 with

the collision rules at the walls defined by Eqs. (4.2) and (4.3)

for various small k < 0. Figure 9 shows the mean escape

time ls versus k on the log-log scale. The plot clearly dem-

onstrates a linear pattern, and the least square fitting line has

slope 0.984 suggesting that ls 	 jkj�1
. Thus typical trajecto-

ries now escape much faster than in the case of stable center.

We discuss the reason for the faster escape below.

Our main argument in Sec. VI used the central limit the-

orem and was based on the chaotical character of the motion

of the balls (before they enter the stable regime). However,

FIG. 8. Nearly horizontal trajectories in a periodic Lor-

entz gas.

FIG. 9. Plot of lnls versus �lnjkj. The least squares fit

has slope of 0.983737.
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when the balls collide with the walls, our twisting rules Eqs.

(4.2) and (4.3) with k < 0 make the horizontal components

of their velocities increase; thus, the x component of the total

momentum, u1 þ u2, tends to grow (in absolute value). This

tendency causes a drift toward larger values of ju1 þ u2j, i.e.,

toward the trapping regions W6. Thus we should regard u1 þ
u2 as a one-dimensional Itô diffusion process with a non-

zero drift.18,21

Figure 10 described the degree of the drift: it shows the

average change of u, the x component of the disk velocity,

versus its current value (the plot was computed for

k ¼ �0:015). We see that the absolute value juj always tends

to increase, and this tendency is strong everywhere except

when u is close to 0 or 61. In Sec. VI we dealt with the balls

that were approaching the hole U0; then they moved nearly

vertically, hence the drift was small and could be ignored.

Now the balls are approaching the regions W6; thus the drift

is almost at its peak and its effect is crucial. Since the aver-

age drift, per collision, if of order jkj, typical trajectories

reach the regions W6 of order jkj�1
.

Figure 10 also shows that the drift persists as long as

juj < 1, although it decreases as juj ! 1. This supports our

conjecture that typical trajectories converge to a limit regime

where all the particles move at the same unit speed.

VIII. GENERALIZATIONS

To summarize, the dynamics with unstable center

(k < 0) is quite different from the one with stable center

(k > 0). It has two distinct limit regimes (Sþ and S�), both

have dimension 2N, while in the other case we had a single

stable regime S with dimension 3N� 1.

The attracting regions W6 (“holes”) are of fixed size and

measure (independent of k), while for stable center the

“hole” U0 was quite narrow and had measure OðkNÞ.
Next we generalize our results. Our analysis of the sta-

ble center case applies to any stable fixed point of the map

g ¼ f �1 f0 inside the interval ð0; pÞ. Every such point produces

a T-invariant open set U0 �M, i.e., TðU0Þ � U0, which acts

as a “hole”. It has a basin of attraction in M of positive

Lebesgue measure, and the limiting stable regime consists of

disks moving with periodic incidence angles (assuming that

the disks are small enough to avoid colliding with each

other).

Of course if the map g : ½0; p� ! ½0; p� has more than

one stable fixed point, the corresponding basins of attraction

are disjoint, so we have a coexistence of several attracting

regimes.

Our analysis of the unstable center case applies to any

map g with stable fixed end points, 0 and p. In that case we

have two attracting regimes similar to Sþ and S� above, and

each has its own basin of attraction.

We must note that in the general case the “holes” W6

need be defined more cautiously than Eqs. (7.2) and (7.6).

Precisely, we need to choose a small �0 > 0 and define W6 by

W6 ¼ f6ðu1 þ…þ uNÞ > N � �0g:

It is easy to verify that there is a c ¼ cð�0Þ > 0 such that for

every phase state in W6 we have

6ui > 1� c and jvij < c

for all i ¼ 1;…;N. Moreover, c! 0 as �0 ! 0. So we can

choose, for example, c¼ 0.1 and fix the corresponding �0 >
0 in the definition of W6. Then of our analysis of the conver-

gence to S6 will not require significant changes.

In summary, every stable fixed point of the map g :
½0; p� ! ½0; p� leads to a stable regime that attracts a set of

positive Lebesgue measure in phase space.

In our numerical experiments, we mostly observed sta-

ble regimes for N¼ 2 disks. Our analysis shows that they

exist for larger N’s, too, but they become increasingly diffi-

cult to observe experimentally. Indeed, the sizes of the holes

in phase space are exponentially small in N (cf. Eq. (6.1),

and a similar estimate can be derived for Eq. (7.2)), hence

the escape time grows exponentially with N. Thus in physi-

cal systems with a large number of molecules the stable

regimes become almost unobservable. Still, they exist for

any N, and they dominate the dynamics for small N’s.

FIG. 10. Average change of the x component of the

disks velocity u versus its current value.

026105-9 Chernov, Korepanov, and Simányi Chaos 22, 026105 (2012)



One may wonder whether attracting regimes exist when

g has no stable fixed points. For example, what if gðuÞ ¼ u
is the identity map? The next section presents the most strik-

ing result: even in that case stable regimes may exist, which

attract almost every phase trajectory!

IX. TIME REVERSIBLE COLLISIONS WITH WALLS

Of special physical interest are twisting collisions (2.2)

that make the dynamics time reversible. This means that if

we reverse the velocity vectors of all our disks, then they

will move along their past trajectories backwards. By direct

inspection, the collision rule (2.2) is time reversible if and

only if the function f satisfies

f ðp� f ðuÞÞ ¼ p� u: (9.1)

This condition implies that the graph of the function w ¼
f ðuÞ is symmetric about the line w ¼ p� u.

If our collision rule is time reversible, i.e., satisfies Eq.

(9.1), then we immediately arrive at gðuÞ ¼ u.

A simple example of a time-reversible rule is

cot fkðuÞ ¼ ð�1Þkkþ cotu: (9.2)

One can easily see that this definition is consistent with (2.3)

and (9.1). The rule (9.2) can be written in the notation of

(4.4) as

uþ=jvþj ¼ u�=jv�j þ ð�1Þkk: (9.3)

This formula has a simple geometric interpretation: suppose

a particle collides with a wall at a point with x-coordinate x0,

and we extend its trajectories before and after the collision

until they cross the other wall at points whose x-coordinates

we denote by x�1 and x1, respectively (see Fig. 11), then

x1 � x0 ¼ x0 � x�1 þ ð�1Þkk:

If, for example, k > 0, then the above relation implies that

the bottom wall y¼ 0 pushes the particles to the right, and

the top wall—to the left. This creates shear flow in the chan-

nel of the type studied in Ref. 7.

Next we describe a special regime in the above shear

flow for N¼ 2 disks. Suppose the disks move with opposite

velocity vectors (i.e., their total momentum is zero) and they

collide with opposite walls simultaneously. Then after the

collision they again move with opposite velocity vectors.

When the disks collide with each other, then by symme-

try their point of contact has coordinate y¼ 0.5, i.e., the col-

lision occurs right in the center of the channel. After the

collision the disks move with opposite velocity vectors again

and will collide with the opposite walls simultaneously.

Hence this regime is invariant under our dynamics. See illus-

tration in Fig. 12.

We denote the above special family of phase trajectories

by S
. Note that dim S
 ¼ 3, while the (reduced) phase space

is 6-dimensional, cf. Sec. II.

A striking fact we discovered by numerical simulations

is that the regime S
 is stable and attracting. Almost every

randomly selected phase trajectory eventually stabilizes near

S
 and then evolves in a symmetric fashion so that the disks

move with opposite velocity vectors at equal distances from

the opposite walls.

Actually, the regime S
 may be also stable for the dy-

namics with an unstable center (Sec. VII), but this happens

only for relatively large perturbations (k > 0:6). Since we

are primarily interested in small perturbations, we will not

discuss this last fact.

We provide a semi-heuristic argument showing that the

regime S
 is stable for the time-reversible collision rules, i.e.,

phase trajectories near S
 tend to get closer to S
 in the future.

We perturb the symmetries of the regime S
 and show

that perturbations tend to decrease, on average. There are

two symmetries in the regime S
: the velocity vectors of the

disks are opposite, v and �v, and their y-coordinates sum up

to one, i.e., y1 þ y2 ¼ 1.

First we perturb the velocity symmetry, i.e., suppose

that the velocity vectors are vþ dv and �v, i.e., the total mo-

mentum is a small dv 6¼ 0. The interparticle collisions do not

change the total momentum. When the disks collide with

(opposite) walls, then the postcollisional velocity vectors

will be denoted by v0 þ dv0 and �v0. Our goal is to show that

jdv0j tends to be smaller than jdvj, on average.

We decompose dv ¼ dvk þ dv? into the components

parallel and perpendicular to v, respectively. Similarly,

dv0 ¼ dvk
0 þ dv?

0 are the components of dv0 parallel and

perpendicular to v0. Due to the conservation of the kinetic

energy of each disk at the collision with the wall we have

jv0j ¼ jvj and jv0 þ dv0j ¼ jvþ dvj:

Hence

jdvk
0j ¼ jdvkj (9.4)

FIG. 11. Collision rule pushing the particles to the right. FIG. 12. Special regime S
 with symmetric motion.
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to the leading order. We will show that jdv?
0j < jdv?j, on

average.

Let u and uþ du denote the directional angles (i.e.,

angles made with the positive x axis) of the velocity vectors

v and vþ dv, respectively. Let w and wþ dw denote the

directional angles of the velocity vectors v0 and v0 þ dv0,
respectively. Then

jdv?j
jvj ¼ jduj and

jdv?
0j

jv0j ¼ jdwj

to the leading order; hence

jdv?
0j

jdv?j
¼ jdwj
jduj ¼ jfk

0ðuÞj ¼ fk
0ðuÞ; (9.5)

recall that fk is monotonically increasing, i.e., fk
0 > 0.

Now after the collisions with the walls the particles

move across the channel, and they either collide with each

other or they miss each other and hit the opposite walls. In

the latter case we denote by v00 þ dv00 and �v00 their new

postcollisional velocity vectors and again decompose

dv00 ¼ dvk
00 þ dv?

00. Then, inductively,

jdvk
00j ¼ jdvk

0j ¼ jdvkj;

jdv?
00j

jdv?j
¼ jdv?

00j
jdv?0j

jdv?
0j

jdv?j
¼ f1�k

0ðwÞfk
0ðuÞ ¼ g0ðuÞ ¼ 1:

Therefore jdv00j ¼ jdvj.
We see that as long as the particles collide with the walls

only, the perturbation vector dv changes periodically, with

period two. So for an even number of wall collisions

between two successive interparticle collisions, the net result

will be zero change, i.e., jdvj will remain the same. For an

odd number of wall collisions between two successive inter-

particle collisions, the net result will be the same as for just

one wall collision, i.e., Eq. (9.5) will apply. Next we relate

jdv?j to jdvj.
Consider an interparticle collision. It preserves the entire

vector dv, but the direction of the postcollisional velocity

vector v can be regarded as a random variable uniformly dis-

tributed in the entire range ½0; 2p�, due to the scattering na-

ture of the elastic collisions of hard disks. Let b denote the

directional angle of the vector dv. Let u denote, as usual, the

directional angle of the outgoing velocity vector v. Then

jdv?j ¼ jdvjjsinðb� uÞj. The perturbation dv0 at the next

interparticle collision will be

jdv0j2 ¼ jdvj2ðcos2ðb� uÞ þ vsin2ðb� uÞÞ; (9.6)

where v ¼ ½fk 0�2 for an odd number of intermediate wall col-

lisions and v ¼ 1 for an even number of intermediate wall

collisions.

Next we estimate the total change of the norm jdvj over

a long period of time (0, T) during which n interparticle colli-

sions occur. We have n� 1 intervals between successive

interparticle collisions, and some of them (say, m � n� 1 of

them) have an odd number of collisions of each particle with

the walls, while others (i.e., n�m� 1 intervals) have an

even number of collisions of each particle with the walls.

Our previous analysis can be summarized as

logjdvT j � logjdv0j

¼ 1

2

Xm

i¼1

log½1� ð1� ½fki

0ðuiÞ�2Þsin2ðbi � uiÞ�; (9.7)

where the summation is taken over the intervals with odd

numbers of wall collisions.

Due to the randomization caused by the scattering effect

of the interparticle collisions we can treat the angles bi and

ui’s as independent random variables with uniform distribu-

tion in their ranges 0 � bi < 2p and 0 � ui � p. We will

prove in the Appendix that the average value of each term in

Eq. (9.7) is negative.

Lemma 9.1. For both k¼ 0, 1 we have

ðp

0

ð2p

0

log½1� ð1� ½fk 0ðuÞ�2Þsin2ðb� uÞ�dbdu ¼ l1 < 0:

Thus the sum in Eq. (9.7) approaches �1 linearly in m (i.e.,

linearly in time); hence, the norm of the perturbation dv

decreases exponentially in time.

Second, we perturb the other symmetry of the regime

S
, i.e., we suppose that an interparticle collision occurs

slightly above or below the central line y¼ 0.5 of the chan-

nel. More precisely, let the point of contact at the moment of

collision have coordinate y ¼ 0:5þ ‘. At the same time we

suppose that the particles have opposite velocity vectors,

v¼ (u, v) and �v¼ (�u, �v), i.e., their total momentum

is zero.

When the particles collide with the opposite walls, their

postcollisional velocity vectors ðu0; v0Þ and ð�u0;�v0Þ will

again be opposite. But the particles collide with the walls at

slightly different moments of time, and the time interval

between their collisions with the walls will be 2j‘=vj. If, after

those collisions with the walls the particles collide with each

other again, the point of contact will have coordinate y ¼
0:5þ ‘0 with j‘0j ¼ j‘v0=vj, i.e.,

logj‘0j � logj‘j ¼ logðjv0j=jvjÞ ¼ logðsinf ðuÞ=sinuÞ: (9.8)

However, if the particles miss each other, then after their

second collision with the opposite walls their velocities will

be again (u, v) and (�u, �v). If the particles collide with

each other after that, the point of contact will be again the

distance j‘0j ¼ j‘j from the central line y¼ 0.5.

Thus the parity issue again arises and the formula (9.8)

applies whenever the number of wall collisions between suc-

cessive interparticle collisions is odd; otherwise, there is no

change j‘0j ¼ j‘j. Thus, in the notation of Eq. (9.7) we have

logj‘T j � logj‘0j 	
Xm

i¼1

logðsinfki
ðuiÞ=sinuiÞ: (9.9)

Again we treat ui’s as independent uniformly distributed

random variables and verify that the mean value of

logðsinf ðuÞ=sinuÞ is negative. Proof of the following lemma

will be given in the Appendix.
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Lemma 9.2. For both k¼ 0, 1 we have

1

p

ðp

0

logðsinfkðuÞ=sinuÞdu ¼ l2 < 0:

Thus the sum in Eq. (9.9) approaches �1 linearly in m (i.e.,

linearly in time), hence the magnitude of the positional per-

turbation ‘ decreases exponentially in time.

This all verifies the stability of the regime S
. Indeed,

our perturbations by dv account for two directions transver-

sal to S
, and those by ‘ account for one more; hence, we

took care of all the three codimensions in the (reduced) 6-

dimensional phase space.

We note that the classical (unperturbed) system of N¼ 2

hard balls also leaves the manifold S
 invariant. The dynam-

ics within S
 easily reduce to a periodic Lorentz gas with a

single particle and infinite horizon. The periodic Lorentz gas

is strongly hyperbolic and ergodic; thus, the phase points

X 2 S
 have one positive and one negative Lyapunov expo-

nents, and typical phase trajectories within the manifold S


fill it densely. Interestingly, there are no expansion or con-

traction in any transversal direction to S
, i.e., the points X 2
S
 have exactly one positive and one negative exponents

with respect to the unperturbed dynamics in the entire phase

space. This makes the manifold S
 exceptional, as typical

phase points are proven23 to have two positive and two nega-

tive Lyapunov exponents, cf., Sec. II.

We now describe what happens under our time-

reversible perturbations. First, all the (previously zero) Lya-

punov exponents in the directions transversal to S
 seem to

become negative, which instantly makes S
 an attractor (here

we refer to Lyapunov exponents of typical points X 2 S
).
Second, the (previously equivalent to the Lorentz gas) dy-

namics within S
 is also perturbed, and it seems to retain its

hyperbolic character and admit an SRB measure. For peri-

odic Lorentz gases with infinite horizon under small pertur-

bations the hyperbolicity is proven and a (unique) SRB

measure is constructed in Ref. 12. Perhaps the arguments of

Ref. 12 could work in our case, too.

As a result, the SRB measure living on S
 seems to

attract nearly entire phase space. This makes it (the only)

physically observable measure, as it describes the distribu-

tion of typical phase trajectories. Therefore, some kind of

chaotic behavior does exist in the present case, but only

after the six-dimensional phase space is reduced to the 3D

surface S
.
Lastly, we tried to find similar stable regimes for N � 3

balls with time-reversible twists at the walls, and did not

observe any—the dynamics seem to be totally chaotic.
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APPENDIX: PROOFS OF LEMMAS 9.1 AND 9.2

First we prove Lemma 9.1. We note that fk
0ðuÞ > 0 andÐ p

0
fk
0ðuÞdu ¼ p. With these assumptions the integral over b

can be taken analytically. It results in

ð2p

0

log½1� ð1� ½fk
0ðuÞ�2Þsin2ðb� uÞ�db

¼ 4plog
1

2
ð1þ fk

0ðuÞÞ
� �

Now Jensen’s inequality works to show that

1

p

ðp

0

log
1

2
1þ f 0kðuÞ
� �� �

du� log
1

p

ðp

0

�

log
1

2
1þ f 0kðuÞ
� �� �

du

�
¼ 0

Lemma 9.1 is proved. h

Now we prove Lemma 9.2. Our arguments apply to both

functions f0 and f1, so we suppress the index and denote

them by f.
Recall that the graph of the function w ¼ f ðuÞ is sym-

metric about the line w ¼ p� u (see Fig. 13). Thus it is con-

venient to use new variables

s ¼ f ðuÞ þ u
2

and w ¼ f ðuÞ � u
2

:

If we drop a perpendicular from the point ðu; f ðuÞÞ that lies

on the graph onto the main diagonal line w ¼ u, then its

footpoint will be (s, s), and its length will be w
ffiffiffi
2
p

. The func-

tion w ¼ f ðuÞ becomes, in new variables, w¼w(s), and due

to the above symmetry we have wðp� sÞ ¼ wðsÞ, i.e., w is

an even function with respect to the center s ¼ p=2. We also

note that wð0Þ ¼ wðpÞ ¼ 0; jw0j < 1 and

u ¼ s� w and f ðuÞ ¼ sþ w:

Therefore

du ¼ ð1� w0Þds and
df

du
¼ df

ds

ds

du
¼ 1þ w0

1� w0
:

In these new variables the integral in Lemma 9.2 becomes

l2 ¼
1

p

ðp

0

log
sinðsþ wÞ
sinðs� wÞ ð1� w0Þds: (9.10)

Note that

ðp

0

log
sinðsþ wÞ
sinðs� wÞ ds ¼ 0

because of symmetry wðp� sÞ ¼ wðsÞ.
We consider a function

FðtÞ :¼
ðp

0

log
sinðsþ twÞ
sinðs� twÞw

0ds (9.11)

for 0 � t � 1. Note that F(0)¼ 0. We will show that

F0ðtÞ > 0. Indeed,
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2F0ðtÞ ¼
ðp

0

ðcotðsþ wtÞ þ cotðs� wtÞÞdðw2Þ

¼ w2ðcotðsþ wtÞ þ cotðs� wtÞÞjp0

þ
ðp

0

1þ tw0

sin2ðsþ wtÞ
þ 1� tw0

sin2ðs� wtÞ

� �
w2ds:

Recall that wð0Þ ¼ wðpÞ ¼ 0 and jw0j < 1. This makes the

middle line vanish. The integrand is always positive, which

proves that F0ðtÞ > 0. Then FðtÞ > 0 for all t > 0, and

l2 ¼ �
1

p
Fð1Þ < 0:

Lemma 9.2 is proved. h
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