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1 x L

One-dimensional chain [1, L] ⊂ Z

Single-site spin Hilbert space: Hx
∼= C2, o.n. basis {|↑〉 , |↓〉}

Spin matrices:

S1 =

 0 1/2

1/2 0

 , S2 =

 0 −i/2

i/2 0

 , S3 =

1/2 0

0 −1/2

 .

Defines spin-1/2 representation of SU(2) at each site x:

[S1, S2] = iS3 and cyclic permutations.
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Hilbert space for chain H =
⊗L

x=1Hx.
O.n. basis, all Ising–{↑, ↓} configurations for [1, L].

Isotropic Heisenberg Hamiltonian

H =
L−1∑
x=1

hx,x+1 ,

hx,x+1 =
1
4
− Sx · Sx+1

=
1
4
− S1

x S1
x+1 − S2

x S2
x+1 − S3

x S3
x+1

Raising and lowering operators: S± = S1 ± iS2

S+ |↓〉 = |↑〉, S+ |↑〉 = 0, S− |↑〉 = |↓〉, S− |↓〉 = 0

Nearest neighbor interaction is

hx,x+1 =
1
4
− S3

xS3
x+1 −

1
2
(
S+

x S−x+1 + S−x S+
x+1

)
.

2



The XXZ Kink Hamiltonian

The XXZ model breaks symmetry.

Choose ∆ > 1,

hx,x+1 =
1
4
− S3

xS3
x+1 −

1
2∆

(
S+

x S−x+1 + S−x S+
x+1

)
Nice parametrization: ∆ = (q + q−1)/2 for q ∈ [0, 1].
q = 0 Ising model, q = 1 isotropic Heisenberg

Kink Hamiltonian adds special boundary fields

hk
x,x+1 = hx,x+1 +

α

2
(
S3

x − S3
x+1

)
where α =

1− q2

1 + q2
.

N
N

1 2 L
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Special features of the XXZ Kink Hamiltonian:

• Quantum group symmetry SUq(2).

• Exact (and simple) formula for groundstates of Hk.

• Groundstates are “frustration free”: they minimize every n.n.
interaction separately.

• Finite volume groundstates are restrictions of approximately
half of all the infinite volume groundstates.
(Other half are ”antikinks”.)

• The Kink Hamiltonian is equivalent by a similarity
transformation to the Markov generator for the ASEP on [1, L].

• Hk is Bethe ansatz solvable.

• Exact formula known for the spectral gap γ = 1−∆−1.
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Representation of SUq(2) on H

The quantum group SUq(2) is a deformation of SU(2).
Representation determined by three matrices.
The total ”magnetization” matrix:

S3
[1,L] =

L∑
x=1

S3
x ,

and the q-deformed total raising and lowering operators

S+
[1,L] :=

L∑
x=1

S+
x q−2S3

[x+1,L] ,

S−[1,L] :=
L∑

x=1

q2S3
[1,x−1] S−x ,

where S3
[a,b] :=

b∑
x=a

S3
x.
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Using the Symmetry

The eigenspaces of S3
[1,L] are invariant subspaces for Hk.

Let H(n) be the eigenspace of S3
[1,L] with eigenvalue L/2− n.

The spin lowering matrix maps S−[1,L] : H(n) → H(n + 1).

Define Hhw(0) = H(0), and for n = 1, . . . , bL/2c, define Hhw(n)
such that

H(n) = Hhw(n)⊕ S−[1,L]H(n− 1) .

Then Hhw(n) is the set of “highest weight vectors” for the
representation of SUq(2).

The highest weight subspaces are also invariant subspaces for Hk.
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Numerical Diagonalization for L = 7 and ∆ = 1.25
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Abscissa: S3
[1,L]-eigenvalues, “total magnetization” M

Minimum energies in hw subspace. Maximum energies. Both.
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Ferromagnetic Ordering of Energy Levels

For each n ∈ {0, 1, . . . , bL/2c} define

EL(n) = min spec
(
Hk � Hhw(n)

)
.

Note that EL(0) = 0 is the ground state energy.
Previously the same authors proved (for more general spin chains)

EL(0) < EL(1) < · · · < EL(bL/2c) .

They also proved that for any n ∈ N, the sequences
(EL(n) : L ≥ 2n) is strictly decreasing in L.
We can define

E(n) = lim
L→∞

EL(n) ,

for each n ∈ N. We know

E(0) ≤ E(1) ≤ . . . ≤ E(n) ≤ . . .

Question: Is the ordering strict?
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Main result

Theorem For n ∈ N,

E(n) =
(1− q2)(1− qn)
(1 + q2)(1 + qn)

.

Note. For n = 0 this gives E(0) = 0, which is the ground state
energy.
For n = 1 this gives

E(1) =
(1− q2)(1− q)
(1 + q2)(1 + q)

=
(1− q)2

1 + q2
= 1−∆−1 = γ .

Also note. This formula agrees with a calculation of Yang and
Yang for a related quantity. Our method is related to theirs, but
not exactly the same. Particularly, our approach is simpler.
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The GNS Representation for the All-Up-Spin Groundstate

Define X0 := {∅}.
For each n ∈ N+, define

Xn := {x = (x1, . . . , xn) ∈ Zn : x1 < · · · < xn} .

For each n ∈ N, let HZ(n) := `2(Xn), with counting measure.
Let HZ :=

⊕
n∈N HZ(n).

There is a standard representation of SU(2) for each site x ∈ Z:

• S3
x is −1/2 if there is a particle at site x and +1/2 otherwise;

• S+
x : H(n) → H(n− 1) removes the particle at site x if one is

present, and otherwise annihilates the vector;

• S−x : H(n) → H(n + 1) places a particle at site x if one is not
present, and otherwise annihilates the vector.
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There is a densely defined, positive semidefinite operator

HZ =
∑
x∈Z

hx,x+1 =
∑
x∈Z

hk
x,x+1 ,

defined in terms of the S3,±
x operators.

Kink boundary fields telescope to ±∞ and cancel in this
representation.

For each n, HZ(n) is an invariant subspace for HZ.
On this subspace, the Hamiltonian is bounded.
There is no representation of SUq(2) on HZ.

Lemma For each n ∈ N, define

EZ(n) := inf spec
(
HZ � HZ(n)

)
.

Then
E(n) = EZ(n) .
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There is another symmetry of HZ � HZ(n), shift-invariance.
Let τ : Xn → Xn be the map τ(x) = x + (1, . . . , 1).
Let Yn = {y ∈ Xn : 0 ≤ y1 + · · ·+ yn ≤ n− 1}.
Then Yn

∼= Xn/τ in a natural way.

Define the shift operator

T δx = δτ(x) .

Let `(Xn) be the set of all sequences, and let `0(X ) be the set of
T -invariant sequences.
Define `20(Xn) to be the subspace of `0(Xn) with Hilbert space norm

‖f‖2 =
∑

y∈Yn

|f(y)|2 .
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Direct Integral Decomposition

Using the usual Fourier transform from Z to S1

HZ(n) = `2(Xn) ∼=
∫ ⊕

S1
`20(Xn)

dθ

2π
,

and

(HZ � HZ(n)) ∼=
∫ ⊕

S1
An(θ)

dθ

2π

where An(θ) is the image of HZ conjugated by appropriate
(Bloch-type) transformations, restricted to `20(Xn).
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The operator An(θ) is the restriction to `20(Xn) of an operator
Ãn(θ) on all of `(Xn) defined through the kernel

Kn(x,y; θ) =
n∑

k=0

K(k)
n (x,y; θ) ,

where

K(0)
n (x,y; θ) =

1
2

δy,x −
1

2∆
eiθ δy,x−e1 ,

K(n)
n (x,y; θ) =

1
2

δy,x −
1

2∆
e−iθ δy,x+en

,

and for k = 1, . . . , n− 1,

K(k)
n (x,y; θ) =

(
1− δxk+1,xk+1

)
δy,x

− 1
2∆

(
e−iθ δy,x+ek

+ eiθ δy,x−ek+1

)
.
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Each An(θ) is a self-adjoint operator on `20(Xn), and the map
θ 7→ An(θ) is norm-continuous. Therefore,

inf spec
(
HZ � HZ(n)

)
= min

θ∈S1
inf spec An(θ) .

But it is easy to see that the optimal θ is 0 because for any
f ∈ `20(Xn),

(f,An(θ)f) ≥ (|f |, An(0)|f |) .

15



One-binding Vectors for the Bethe Ansatz

Lemma Let C× = C \ {0}. Suppose that ξ ∈ (C×)n satisfies

ξk + ξ−1
k+1 = 2∆ ,

for k = 1, . . . , n− 1. Define fξ ∈ `(Xn),

fξ(x) =
n∏

k=1

ξxk

k .

Then f is an eigenvector of Ãn(0) with eigenvalue equal to

E(ξ) =
n∑

k=1

(
1− 1

2∆
[
ξk + ξ−1

k

])
.
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Proof. Define two kernels on Zn not Xn :

K̃1
n(x,y) =

n∑
k=1

(
δy,x −

1
2∆

(δy,x−ek
+ δy,x+ek

)
)

,

K̃2
n(x,y) =

n−1∑
k=1

δyk+1,yk+1

(
δy,x −

1
2∆

(
δy,x−ek

+ δy,x+ek+1

) )
.

Let K̃n = K̃1
n − K̃2

n. Then

1. for any x,y ∈ Xn, K̃n(x,y) = Kn(x,y), and

2. for any y ∈ Xn and x ∈ Zn \ Ωn, K̃n(x,y) = 0.

By these two properties, if f ∈ `(Zn) is any eigenvector,
its restriction to `(Xn) is an eigenvector of Ãn(0).

The first kernel corresponds to the discrete Laplacian for n

noninteracting particles. Its energy is just what was written in the
lemma, E(ξ). We try to find null-vectors for the second kernel.

17



Meeting Conditions

For each k = 1, . . . , n, let Mk be the operator on `(Zn) defined
through the kernel

K̃2
n,k(x,y) = δyk+1,yk+1

(
δy,x −

1
2∆

(
δy,x−ek

+ δy,x+ek+1

) )
.

Their sum equals K̃2
n.

Given fξ(x) =
∏n

k=1 ξxk

k , let us consider the linear equation
Mkfξ = 0.
This requires

2∆ f̃ξ(y) = f̃ξ(y + ek) + f̃ξ(y − ek+1) ,

for every y ∈ Zn such that yk+1 = yk + 1. But this means

2∆ ξyk

k ξyk+1
k+1 = ξyk+1

k ξyk+1
k+1 + ξyk

k ξyk

k+1 .

Dividing through by ξyk

k ξyk+1
k+1 , gives precisely ξk + ξ−1

k+1 = 2∆.
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Linear Fractional Recurrence Relation

By the lemma, we will have an eigenvector of Ãn(0) in `0(Xn) if we
choose ξ ∈ (Cx)n such that both

ξk + ξ−1
k+1 = 2∆ ,

for k = 1, . . . , n− 1, and such that
∏n

k=1 ξk = 1.
The first of these is a linear fractional recurrence relation

ξk+1 =
1

2∆− ξk
.

It can be easily solved just as for a linear recurrence relation.
The most general solution is

ξk =
z1/2 qk−1/2 + z−1/2 q−k+1/2

z1/2 qk+1/2 + z−1/2 q−k−1/2
.
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There is only one T -invariant solution

ξk = ζk−(n+1)/2 where ζm =
qm−1/2 + q−m+1/2

qm+1/2 + q−m−1/2
.

For this one can easily calculate (by induction on n)

E(ξ) =
(1− q2)(1− qn)
(1 + q2)(1 + qn)

.

Also, one can see that the ξk are strictly decreasing in k; therefore,
the norm,

‖fξ‖2 :=
∑

y∈Yn

|fξ(y)|2 ,

is finite. So fξ is not only in `0(Xn). It is actually an eigenvector of
An(0) in `20(Xn).
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An Easy Application of PF

We want to know that inf spec An(0) is equal to the eigenvalue for
fξ. We get this from the following lemma, which can be proved by
appealing to the PF theorem.

Lemma Suppose Y is a countable set, and A is a bounded,
self-adjoint operator on `2(Y) defined through a nonnegative
kernel. If there is some strictly positive f ∈ `2(Y) such that
Af = λf , then ρ(A) = λ.

(This is applied to (cI −An(0)) for c large enough.)
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Droplet Excitations

The wavefunction is fξ(x) =
∏n

k=1 ξxk

k where

ξk = ζk−(n+1)/2 where ζm =
qm−1/2 + q−m+1/2

qm+1/2 + q−m−1/2
.

This is a “droplet” of downspins, exponentially bound together.

In a previous paper [CMP 2001], Nacthergaele and S* studied 1d
droplets in the XXZ model.
Two natural Hamiltonians suggest themselves, in addition to those
already suggested.
For the finite chain [1, L] ⊂ Z,

Hcycl = H + hn,1

Hdrop = H +
(

1
2
− S3

1

)
+

(
1
2
− S3

2

)
.

We found the asymptotic description of all low-energy states.
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Using the methods of that paper, we can also prove

Corollary. For each n ≤ bL/2c, define

Ecycl
L (n) = min spec

(
Hcycl

[1,L] � H[1,L](n)
)

,

Edrop
L (n) = min spec

(
Hdrop

[1,L] � H[1,L](n)
)

.

Then

lim
L→∞

Ecycl
L (n) = lim

L→∞
Edrop

L (n) =
(1− q2)(1− qn)
(1 + q2)(1 + qn)

.

For the case of cyclic b.c.’s, this rederives a result of Yang and
Yang [Phys.Rev. 1966].
It also recovers the asymptotic droplet energy

lim
n→∞

E(n) =
1− q2

1 + q2
= α .
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