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1. DEFINITION

We mentioned the relative entropy function, in passing, in proving the Gibbs variational
principle. Let us now return to that topic alone and state some of its most important properties.

Suppose Ω is a finite sample space1, and let F be the discrete σ-algebra associated to it. Let
M1(Ω, F ) be the set of probability measures. If µ, ν ∈ M1(Ω, F ) then ν � µ will indicate
that ν is absolutely continuous with respect to ν: in other words, supp(ν) ⊆ supp(µ), where
supp(µ) := {ξ ∈ Ω : µ({ξ}) 6= 0}. The relative entropy is a function of two variables,
S(·|·) : M1(Ω, F )×M1(Ω, F ) → R ∪ {−∞}. If ν � µ then

S(µ|ν) :=

∫
Ω

u

(
dν

dµ

)
dµ

where u : [0,∞) → R is the function

u(t) =

{
−t log(t) if t > 0,
0 if t = 0.

If ν 6� µ then S(µ|ν) is defined to be −∞.

2. SIMPLEST PROPERTIES

The function u is continuous and strictly concave. Strict concavity means that, given
t1, t2 ∈ [0,∞), unequal, and given θ ∈ (0, 1), there is strict inequality

u(θt1 + [1− θ]t2) > θu(t1) + (1− θ)u(t2) .

Date: September 15, 2006.
1Many things are simpler for finite sample spaces, which is all we need. But if your own research/reading

leads you further, keep in mind some of these definitions need to be generalized for countable or continuous Ω.
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(Why is u strictly concave?) The following lemma is an easy exercise for you:

Lemma 2.1 Let f : K → R be a strictly concave function, where K is a convex subset of a
vector space. If f attains its maximum on K, then that maximum is unique.

Here is a lemma we will prove.

Lemma 2.2 Let µ ∈ M1(Ω, F ) and define Dµ := {ν ∈ M1(Ω, F ) : ν � µ}. Then
S(·|µ) � Dµ is strictly concave.

Proof. Note that the definition of S(ν|µ), can be rewritten as

S(ν|µ) =
∑

ξ∈supp(µ)

u

(
ν({ξ})
µ({ξ})

)
µ({ξ}) ,

when ν � µ. Also, the map ν ∈ M1(Ω, F ) 7→ ν(ξ)
µ(ξ)

is affine (read “linear”) for each
ξ ∈ supp(µ). Therefore, the map

ν ∈ M1(Ω, F ) 7→ u

(
ν(ξ)

µ(ξ)

)
,

is concave for each ξ ∈ supp(µ). Finally, because a convex combination of concave functions
is concave, we see that S(ν|µ) is concave in the variable ν, for ν ∈ Dµ. In fact, S(ν|µ) is
strictly concave, because if ν1, ν2 ∈ Dµ and ν1 6= ν2 then there is some ξ ∈ supp(µ) where
ν1({ξ}) 6= ν2({ξ}). Then the fact, that

S(θν1 + (1− θ)ν2|µ) > θS(ν1|µ) + (1− θ)S(ν2|µ) ,

for θ ∈ (0, 1), is implied by strict concavity of ν 7→ u
(

ν({ξ})
µ({ξ})

)
. �

Corollary 2.3 For any µ, ν ∈ M1(Ω, F ),

S(ν|µ) ≤ 0 ,

with equality if and only if ν = µ.

Before stating this simple fact, let us recall Jensen’s inequality, probably the most basic and
important inequality in all of analysis: for a concave function u and a probability measure µ
and any (measurable) function f : supp(µ) → R such that Ran(f) ⊆ Dom(u),∫

u ◦ f dµ ≤ u

(∫
f dµ

)
.

If any readers have never seen this result before, they should quickly look it up or prove it for
themselves.

Proof. Note that ∫
Ω

dν

dµ
dµ =

∫
Ω

dν = 1 .

So Jensen’s inequality gives∫
Ω

u

(
dν

dµ

)
dµ ≤ u

(∫
Ω

dν

dµ
dµ

)
= u(1) = 0 .
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Now observe that S(µ|µ) = 0 because dµ
dµ

= 1. Since S(·|µ) is strictly concave, µ is the
unique maximizer: for every other ν, S(ν|µ) is strictly less than 0. �

Let us note another property. Suppose that ν, µ1, µ2 ∈ M1(Ω, F ), and ν ∈ Dµ1 ∩ Dµ2 .
Then

S(ν|µ1)− S(ν|µ2) =

∫
supp(ν)

log

(
dµ1

dµ2

)
dν .

Indeed, this follows just because of the alternative representation

S(ν|µ) = −
∫

supp(ν)

log

(
dν

dµ

)
dν ,

and properties of the logarithm.

Remark 2.4 We use the convention for relative entropy common in classical spin systems.
But often it is defined with the opposite sign.
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