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1. THE ISING MODEL

The Ising model is a basic model of equilibrium statistical mechanics. In this first lecture
we will use it primarily as a specific example for describing statistical mechanics in general.
One of the main goals is to motivate why so people want to calculate the free energy and
pressure in general. That happens in Sections 1 and 2. In Section 3, we state the Gibbs
variational principle directly in infinite volumes, i.e., on Zd. The reason we do this is that
it will set up the prototype we will follow when we use de Finetti’s theorem to solve the
mean-field models, several lectures from now.

1.1 Set-up.

We will use the word “lattice” to mean a graph. But, abusing notation, we will often also
use the same name/symbol to denote just the vertex set of the graph. Let Λ be a finite lattice.
Given x, y ∈ Λ, if there is an edge between x and y, it will be denoted 〈x, y〉. In particular,
a sum whose index set is 〈x, y〉 is meant to be summed over edges in the graph. As usual,
〈x, y〉 and 〈y, x〉 are the same edge. We will often say that x and y are “nearest neighbors”,
or write x ∼ y, to mean that they comprise an edge 〈x, y〉. We will usually define the edge
set in words, instead of introducing a notation for it.
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A typical example of a lattice is Λ = Zd
N for some N and d. Here ZN = Z/NZ is the

chain [1, N ] = {1, 2, . . . , N}, with periodic boundary conditions (N + 1 ≡ 1). So Zd
N is a

discrete d-dimensional torus, with a total of Nd vertices. Then there is an edge 〈x, y〉 in Zd
N

if an only if there is an edge 〈x′, y′〉 in Zd between some pair of points x′ and y′ projecting to
x and y on the torus.

Another family of lattices are the complete graphs, KN . Thus, Λ = {1, 2, . . . , N}. In the
complete graph, every pair x, y is a nearest-neighbor 〈x, y〉, except that it is typical to exclude
self-edges, i.e., loops: there is no edge 〈x, x〉, not for any x ∈ Λ. This graph has a high degree
of symmetry. Most of the models we will discuss after the first lecture will involve KN rather
than Zd

N .

FIGURE 1. A two-dimensional lattice: Z2
6

The state space (or configuration space) for the Ising model on Λ is: ΩΛ = {+1,−1}Λ.
This is the set of all spin configurations (σx ∈ {+1,−1} : x ∈ Λ). We abbreviate such a
configuration, σ. We think of each site xwhere σx = +1 as having an up-spin ↑, and each site
where σx = −1 as having a down-spin ↓. This is one of the simplest models for magnetism.
For more realistic models, one should consult the literature on quantum spin systems. (See,
for example, Daniel Mattis’s textbook, The Theory of Magnetism Made Simple.) But that will
not be the focus of this class.

An equilibrium stat.-mech. model is determined by a Hamiltonian function on the state
space: HΛ : ΩΛ → R. The Hamiltonian function gives the energies of the spin configurations.
For the Ising model, we will write

HΛ(σ) = −J
∑
〈x,y〉

σxσy − h
∑
x∈Λ

σx ,

where J and h are real constants. The first term indicates the preference of two nearby spins
to be aligned or misaligned: if J > 0 the model is called a ferromagnet; if J < 0 it is called
an antiferromagnet. The second term is the effect of a uniform external magnetic field, of
strength h, in the direction of the up-spins. Of course, h can also be negative, which causes
a preference for down-spins instead. We will restrict attention to the ferromagnet, which is
slightly simpler.

The energies determine the probability to see any given spin configuration, according to
the Boltzmann-Gibbs distribution. This also depends on the temperature. Let T be the tem-
perature, and define a quantity β, called the “inverse-temperature”, which is β = (kBT )−1
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where kB is Boltzmann’s constant. (We will always use β instead of T , so we don’t need to
explicate kB.) Then the Boltzmann-Gibbs measure is given by

µβ(σ) = ZΛ(β)−1 e−βHΛ(σ) ,

for each σ ∈ ΩΛ, where
ZΛ(β) =

∑
σ∈Ω

e−βHΛ(σ) .

To define the measure more canonically: for any set S ⊆ ΩΛ, let

µβ(S) := ZΛ(β)−1
∑
σ∈S

e−βHΛ(σ) .

1.2 The partition function, pressure and free energy.

The quantity ZΛ(β), the normalization for the Boltzmann-Gibbs measure, is important on its
own. It is called the “partition function”. Let us define some subsidiary functions from it. We
will call the function

PΛ(β) = log ZΛ(β)

the “thermodynamic potential”. We will call the function

pΛ(β) =
1

|Λ|
log ZΛ(β) ,

the “pressure”. The “pressure” is a term used, for example, in Simon’s book, The Statistical
Mechanics of Lattice Gases, because of its analogy to the real physical concept of pressure
for lattice gases. Let us also define the “free energy density1”,

fΛ(β) = −β−1pΛ(β) .

This is related to the ground state energy density, defined as

e0(Λ) :=
1

|Λ|
min
σ∈ΩΛ

HΛ(σ) ,

because limβ→∞ fΛ(β) = e0(Λ). We prefer the pressure because the extra factor β−1 in the
free energy becomes a nuisance when taking derivatives.

One reason that the pressure is important is that it gives information for certain natural
random variables. To see this, first note that pΛ(β) is implicitly a function of h and J as well
as β. (In fact it is just a function of βJ and βh, but we prefer to think of all three variables as
separate.) We write pΛ(β, h, J) to make this explicit. A simple calculation will show that

∂

∂h
pΛ(β, h, J) = β Eµβ [mΛ(σ)] where mΛ(σ) = |Λ|−1

∑
x∈Λ

σx .

(We should also write µβ,h,J if we want to emphasize the dependence on h and J , but we will
leave it implicit.) We will call mΛ(σ) the “magnetization” and we will define

m̄Λ(β) := Eµβ [mΛ(σ)] ,

1We should call pΛ(β) and fΛ(β) the “finite volume approximations” to the pressure and the free energy.
These are thermodynamic quantities, properly defined only for an infinitely large sample. But it is convenient
and harmless to use the shorter names.
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to be the average magnetization of the system. Another simple calculation gives

∂2

∂h2
pΛ(β;h; J) = β2|Λ|Varµβ(mΛ(σ)) .

By taking higher derivatives, one obtains higher cumulants for mΛ(σ), viewed as a random
variable, modulo certain factors such as the β2|Λ| term above.

There are similar calculations, taking partial derivatives with respect to J and β instead of
h. In particular, one result of these calculations, and the fact that variance is always positive,
is the conclusion that pΛ(β, h, J) is convex in β, and it is jointly convex in h and J .

1.3 The Gibbs variational principle.

One of the most important tools in statistical mechanics is the Gibbs variational principle.
To begin with, note that there is an obvious variational principle for the ground state energy,
namely the definition:

e0(Λ) = min
σ∈ΩΛ

|Λ|−1HΛ(σ) ,

We will state a generalization of this, applicable for β <∞.
Let M1(ΩΛ) be the set of all probability measure on ΩΛ. The relative entropy of ν ∈

M1(ΩΛ), relative to µ ∈M1(ΩΛ), is defined as

SΛ(ν|µ) :=

∫
ΩΛ

u

(
dν

dµ

)
dµ =

∑
σ∈ΩΛ

u

(
ν({σ})
µ({σ})

)
µ({σ}) ,

if ν is absolutely continuous with respect to µ, where

u(x) =

{
−x log(x) x ∈ (0,∞] ;

0 x = 0 .

If ν has a singular component with respect to µ, then SΛ(ν|µ) := +∞. Let µ0 be the uniform
probability measure on ΩΛ. (This matches the definition of the Boltzmann-Gibbs measure
when β = 0.) For each probability measure ν on ΩΛ, define

φΛ(β; ν) := |Λ|−1
(

Eν [HΛ(σ)]− β−1S(ν|µ0)− β−1 log(|ΩΛ|)
)
.

Theorem 1.1 (Gibbs Variational Principle)

fΛ(β) = min
ν∈M1(ΩΛ)

φΛ(β; ν) ,

and, moreover, ν = µβ is the unique minimizer.

The proof of the Gibbs variational principle is trivial once one knows the right properties
of the relative entropy.

Lemma 1.2 For any µ ∈M1(ΩΛ),

max
ν∈M1(ΩΛ)

SΛ(ν|µ) = 0 ,

and the unique maximizer is ν = µ.
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Proof of Lemma 1.2. Note that u is strictly concave. Therefore, SΛ(·|µ) is strictly concave
on M1(ΩΛ). Therefore if any local maximizer exists, it is the unique global maximizer. By
Jensen’s inequality,

SΛ(ν|µ) = Eµ
[
u
(dν
dµ

(σ)
)]

≤ u
(

Eµ
[dν
dµ

(σ)
])

= 0 ,

because Eµ[dν/dµ] = ν(ΩΛ) = 1. On the other hand, by a direct calculation, SΛ(µ|µ) = 0.
Therefore, µ is the unique maximizer of SΛ(·|µ). �

Proof of Theorem 1.1. By a direct calculation

φΛ(β; ν) = fΛ(β)− β−1SΛ(ν|µβ) .

So the theorem follows from Lemma 1.2. �

The Gibbs variational principle can equally well be stated for the pressure as for the free
energy.

Corollary 1.3 Define the functional

ψΛ(β; ν) := |Λ|−1
(
SΛ(ν|µ0)− Eν [βHΛ(σ)] + log(|ΩΛ|)

)
.

Then
max

ν∈M1(ΩΛ)
ψΛ(β; ν) = pΛ(β) ,

and ν = µβ is the unique maximizer.

2. PHASE TRANSITIONS

The most important facet of statistical mechanical systems is the possibility to have phase
transitions. For spin systems, phase transitions can only occur in the thermodynamic limit.
In order to be precise, let us now restrict attention just to the set of lattices ΛN = Zd

N , for
some fixed dimension d. Then the thermodynamic limit is N →∞.

For each N ∈ N+, pN(β, h, J) is a smooth function of β, J and h. We define the thermo-
dynamic pressure to be

p(β, h, J) = lim
N→∞

pN(β, h, J) ,

if the limit exists. This is a pointwise limit of convex functions. Therefore, it is convex,
wherever it is defined. In particular, this means that it is continuous where it is defined, and
even has one-sided directional derivatives.

If the pressure is not smooth at some point, then that point is said to correspond to a phase
transition. One can be more specific, however. If, for example, ∂p/∂h has a jump disconti-
nuity at (β, J, h), then one says there is a first-order phase transition there, with respect to the
variable h. If, on the other hand, ∂2

∂h2p(β;h; J) is undefined, then one says there is a second-
order phase transition with respect to h. Of course, it is possible to have phase transitions
with respect to the other variables, β and J , as well.
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2.1 Pictures for the Ising model.

Let us state the known results for the Ising model in dimensions d ≥ 2. We will state some
things which are not mathematically proved, or at least not easily proved.
Ackowledgement. We have copied the pictures here (not entirely faithfully) from Minlos’s
nice, short book, “Introduction to Mathematical Statistical Mechanics”.

Let us restrict attention to the ferromagnet. Then we fix J = 1, which is no loss of
generality because of the redundancy in (β, h, J). If β is small enough, or if |h| is large
enough, then p(β, h) := p(β, h, J = 1) can be proved to be analytic. But, for large β one can
prove that there is a first-order phase transition with respect to the variable h, at h = 0. In
other words, defining

m̄(β, h) := lim
N→∞

m̄ΛN
(β, h, J = 1) ,

there is a jump discontinuity in m̄(β, h), across h = 0, for each β > β0.
What is widely understood is that p(β, h) is smooth everywhere except on the ray {(β, h) :

β > βc, h = 0}, and there is a jump discontinuity in m̄(β, h), with respect to h, across this
ray. (Of course, β0 > βc: one cannot prove more than is true.)

h

β

βc

FIGURE 2. The region where p(β, h) is smooth.

Here (β, h) = (βc, 0) is known as the critical point and it is characterized by its own
special properties. As mentioned before, there is a jump discontinuity in m̄(β, h) at h = 0
for β > βc. Let us denote this jump as [m̄(β, 0)]h := m̄+(β, 0)− m̄−(β, 0), where

m̄±(β, 0) = lim
h→0±

m̄(β, h) .

But [m̄(β, 0)]h goes to 0, continuously, as β approaches βc from the right.
The behavior is supposed to be power-law: [m̄(β, 0)]h = C(β−βc)

β(1+o(1)) for β > βc.
Here β is a number not to be confused with the inverse temperature β, o(1) symbolizes a
quantity which vanishes as β → β+

c , and C is a non-“universal” constant, which is therefore
of less interest. The constant β is called a “critical exponent”. It is one of the numbers that
physicists care about when they consider critical phenomena. It is dependent on d. But sup-
posedly it is independent of some of the microscopic structure defining the model, although
it is dependent on the symmetry group. The idea is that at criticality there is a divergent
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h

m̄(β, h)

+1

−1

m̄+(β, 0)

m̄−(β, 0)

(a)

m̄

β

+1

−1

m̄+(β, 0)

m̄−(β, 0)

βc

(b)

FIGURE 3. (a) m̄(β, h) as a function of h, for a fixed β > βc; (b) the region
of accessible values for m̄(β, h): the height of the excluded region at β > βc

is [m̄(β, 0)]h.

“correlation length” and therefore one obtains continuum equations replacing the lattice vari-
ables. This is connected with the ideas of “scaling” and the “renormalization group”. On
the other hand, at the level of rigorous mathematics, universality is not very well understood.
In two dimensions universality is related to the [stochastic, Schramm-] Loewner evolution.
Therefore, much recent progress has been made in understanding universality there.

In two lectures we will consider the mean-field Ising model, also known as the Curie-Weiss
model. One sometimes thinks of this as an analogue of the Ising model on Zd

N , except that d
goes to ∞. For the mean-field model, we can calculate p(β, h, J), fairly explicitly. Then we
will see that there are phase transitions, for that model, and we will be able to verify all these
pictures in that context. We will also be able to calculate the critical exponent β = 1/2 for
the mean-field model. So, if we write β(d) for the critical exponent on Zd, as a function of d,
one fully expects β(d) → 1/2, as d→∞. (For certain models one has mathematical proofs
of such facts, and in fact for some models, there is even a critical dimension d0 such that for
d ≥ d0, the critical exponents equal to the mean-field values. But this is a little beyond our
present scope.)

3. THE GIBBS VARIATIONAL PRINCIPLE ON INFINITE LATTICES

There is a version of the Gibbs variational principle that works directly on the infinite
lattice Zd. Let us attempt to explain this now, in a very brief way.

The configuration space ΩZd = {+1,−1}Zd has the product topology, and is therefore
compact. This topology can be understood very concretely. Let Pf be the set of all finite
subsets X ⊂ Zd. Given any X ∈ Pf , let FX be the set of all cylinder sets in ΩZd which
depend only on the spins inX . Let CX be all the functions which are measurable with respect
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to FX . Then C , the set of all continuous functions on ΩZd , is

C =
⋃

X∈Pf

CX ,

where the closure is with respect to the sup-norm.
Let F be the Borel σ-algebra on ΩZd . Let M1(F ) denote the set of Borel probability

measures on ΩZd . There are some interesting subsets of M1(F ). First of all, there are those
measures which are “trivial at infinity”. Specifically, let the “algebra at infinity” be

F∞ =
⋂

X∈Pf

FX{ ,

where FX{ is the algebra of all events in F which only depend on spins outside of X . A
measure µ ∈ M1(F ) is trivial at infinity if and only if for every event E ∈ F∞ one has
µ(E) ∈ {0, 1}. It satisfies a type of 0-1 law.

Also note that Zd is a lattice in the group-theoretical sense. Let M I
1 (F ) denote the set

of translation-invariant measures. For each x ∈ Zd, let τx : ΩZd → ΩZd be the action of
the translation by x on the spin configurations. Given µ ∈ MI

1 (F ), let F µ
0 be the set of

events E ∈ F such that µ
(
E4τx(E)

)
= 0 for all x ∈ Zd (where for any events E,F ,

E4F = (E \F )∪ (F \E) is the usual symmetric difference). These are the events E, which
are µ-a.s. invariant, with respect to each τx.

Definition 3.1 A measure µ ∈ MI
1 (F ) is called ergodic if and only if, for every event

E ∈ F µ
0 , one actually has µ(E) ∈ {0, 1}.

The set MI
1 (F ) is obviously convex : the mixture of two translation invariant measures is

translation invariant. (Note if µ, ν ∈ MI
1 (F ), the mixture is simple. Given any θ ∈ [0, 1],

the measure θµ + (1 − θ)ν describes the law for a random variable: toss a biased coin with
probability θ of being “HEADS”. If it comes up HEADS, use a random variable X, distributed
by µ. If it comes up TAILS, use a random variable Y, distributed by ν.) It turns out that the
extreme points of MI

1 (F ) are the ergodic measures. We will not prove this fact now, but in a
few lectures we will prove a completely analogous fact called de Finetti’s theorem. We may
state the mutatis mutandis necessary to get this theorem then.

The extreme points, which we will denote MI,E
1 (F ), are the measures which cannot be

written as any nontrivial mixture of any other measures in MI
1 (F ). I.e., µ ∈ MI,E

1 (F ) if
and only if: first, µ ∈ MI

1 (F ); and, second, for every θ ∈ (0, 1), the only pair of measures
ν1, ν2 ∈MI

1 (F ) for which µ = θν1 + (1− θ)ν2 are ν1 = ν2 = µ.
Even more compelling is the fact that every measure in MI

1 (F ) is a unique mixture of
ergodic measures. In other words MI

1 (F ) is a “Choquet simplex”.

Definition 3.2 (Specialized definition of Choquet simplex) Suppose K ⊂ MI
1 (F ) is a

convex subset, which is closed relative to the weak (or equivalently vague) topology. Also
suppose that the set of extreme points KE is Borel measurable relative to that topology on
MI

1 (F ). Then K is a Choquet simplex if any only if, for each µ ∈ K, there is a unique
Borel probability measure ρ on MI

1 (F ) (Borel with respect to the weak topology) which is
concentrated on KE , ρ(KE) = 1, and such that for every continuous function f on ΩZd , one
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has ∫
Ω(Zd)

f dµ =

∫
MI

1 (F )

(∫
Ω(Zd)

f dν

)
dρ(ν) .

Note that the map ν 7→
∫
f dν is continuous in the weak topology, for any continuous

f : ΩZd → R, therefore it is certainly measurable. Thus the integral on the right hand side of
the display makes sense. Also note, if ρ were not required to be concentrated on KE it would
be easy to satisfy the equation by taking ρ to be a point-mass at µ. If µ ∈ KE that is what
ρ is, anyway. But if µ is not in KE that is not the decomposition: good thing, because the
decomposition has to be unique.

This is a funny definition if you have not thought much about measures-on-measures be-
fore. But there are two things to keep in mind. First, this is in some sense a stronger version
of the conlcusion of the Krein-Milman theorem for closed convex sets. (Note, we have not
proved, and will not prove in this lecture, that MI

1 (F ) is a Choquet simplex.) But now one
does not need to take limits – every measure µ ∈ K has a fixed decomposition, but in place
of a finite “convex combination” of extreme points, there is a probability measure on the pre-
sumably infinite set KE – and moreover that decomposition is unique. The second thing to
keep in mind is that sometimes one does consider measures-on-measures, without realizing
it. For example, random point processes, such as the Poisson point process, are measures-on-
measures. A point configuration, on R for instance, is actually a locally-finite integer-valued
measure (which forces it to be a countable sum of point-masses). But since one considers a
random point process, the distributional law is a measure on the set of these. For most pur-
poses it is important that if xn is a sequence of points converging to x, then we think of the
point-masses at xn as converging to the point-mass at x. This is the reason we consider the
weak topology. Because the underlying space ΩZd is compact, the topological space M1(F ),
with the weak topology is compact. So, in some senses, it is really a small set.

Let us also mention that there are finite-dimensional Choquet simplices, as well as infinite
ones. In finite dimensions, these are exactly the usual simplices. I.e., the n-dimensional
simples is an invertible affine transformation of the standard simplex:

∆n = {(a1, . . . , an+1) : a1, . . . , an+1 ≥ 0 and a1 + · · ·+ an+1 = 1} .

In order to state the Gibbs variational principle on MI
1 (F ), we need to say how to take

the relative entropy density of a measure µ ∈MI
1 (F ). Given any measure µ ∈M1(F ), and

given any X ∈ Pf , we can restrict µ to the σ-algebra FX . This is equivalent to a measure
on the finite set ΩX . Let us call that measure µ � X . The following theorem is an important
result, which we won’t prove.

Theorem 3.3 For each n, let Λn = [−n, n]d ∈ Zd. Given any µ ∈ M I
1 (F ), the following

limit exists:

s(µ) := lim
n→∞

|Λn|−1SΛn(µ � Λn) ,

although it may take the value −∞. The function s is affine (the analogue of linearity for
convex sets) and upper semicontinuous. It is also bounded above by 0, and it equals 0 if
and only if µ is the product measure which assigns equal probability to {σx = +1} and
{σx = −1} for all x ∈ Zd.
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Excellent references for this theorem, as well as the Gibbs principle, to follow, are the
monographs by Israel or Simon.

It remains to state what is the Gibbs variational principle for measures µ in MI
1 (F ). The

function s gives us a way to calculate the entropy density for any such measure. We need a
way to calculate the energy density. Define

Hh,J(σ) = −J
2

∑
x∈Zd

‖x‖=1

σxσ0 − hσ0 .

Because of translation invariance, the energy density of the measure µ really is Eµ[Hh,J(σ)].
Also, we should have mentioned before now that p(β, h, J) always does exist, although we

previously left open the possibility thatit might fail to exist at some point (β, h, J). The proof
of this important fact can be found in any of the monographs of Ruelle, Israel, or Simon (or
many others). It relies only on approximate subadditivity of pΛn(β, h, J). (When we consider
mean-field spin glasses, this will be one of the first tricky points to overcome, proving that
the limiting pressure exists.)

Now, the Gibbs variational principle on MI
1 (F ) states that

p(β, h, J) = log(2) + sup
µ∈MI

1 (F )

(
s(µ)− Eµ[β Hh,J(σ)]

)
.

Moreover, the supremum is attained. Compare this to Corollary 1.3.
Any measure attaining the supremum is called a translation-invariant equilibrium measure.

The set of translation-invariant equilibrium measures is, itself, another Choquet-simplex.
There is always at least one equilibrium measures, a result one can prove relatively eas-
ily in the present context, using compactness and the semicontinuity of the right hand side
above. If there is more than a single translation-invariant equilibrium measure, then one says
that there is a phase transition. More generally, there are other types of equilibrium measures
than translation invariant ones, but we do not have to worry about that here. What we would
like to say is that this notion of phase transition matches the previous one: i.e., if there are
multiple equilibrium measures, then one can prove that some derivative of the pressure is dis-
continuous. (The mathematically fancy way of saying this is that there are multiple tangent
functionals, since one knows that the pressure is always convex, and therefore supports such
tangent planes/functionals.)

Let us make a final point. When looking for the maximum value, one can restrict to the set
of extreme points. It seems reasonable to guess this result (but not entirely trivial to prove)
because one is trying to optimize an affine function. At least in finite dimensions, affine
functions on convex sets are always optimized at the extreme points. In infinite dimensions it
is also true, but only because of the semicontinuity. So one can restrict to µ ∈MI,E

1 (F ). One
might, initially, hope that restricting thus simplifies the optimization problem. Unfortunately
that is not true. For one thing, MI,E

1 (F ) is actually dense in MI
1 (F ). Refer to Israel or

Simon for this truly bizarre fact. This is sometimes put as saying that MI
1 (F ) is a Poulsen

simplex. (Up to isomorphisms there is only one Poulsen simplex. E.g., there is obviously no
finite Poulsen simplex.)

On the other hand, there are cases where that type of ambition can be realized. When
we consider mean-field models, in a few lectures, the analogue of translation invariance will
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be full permutation invariance. For measures, this is called “exchangeability”. Then the
extreme points, instead of being ergodic, will actually be i.i.d., product measures. It is easy
to imagine that for such simple measures calculating things like the relative entropy density
does simplify drastically. As we will see that is the case, and that is why classical mean-field
models are actually solvable.

4. HOMEWORK EXERCISES

1. For any finite lattice Λ, calculate pΛ(β;h; 0).
2. For Λ = KN , derive a PDE satisfied by pΛ(β;h; J) involving ∂

∂J
, ∂

∂h
and ∂2

∂h2 .
3. Check that ψΛ(β;µβ) = pΛ(β).
4. For any finite lattice Λ, calculate minν∈M1(ΩΛ) |Λ|−1SΛ(ν|µ0), where µ0 is the uniform
probability measure on ΩΛ.
5. Suppose that ν1 and ν2 inM1(ΩΛ) are mutually singular. (They are concentrated on disjoint
sets.) Prove that, for any θ ∈ [0, 1],

SΛ

(
θν1 + (1− θ)ν2

∣∣µ0

)
= θSΛ(ν1|µ0) + (1− θ)SΛ(ν2|µ0)− θ log(θ)− (1− θ) log(1− θ) .

6. (a) Give an example of an event in the tail algebra, F∞. (b) Give an example of a
translation-invariant measure µ ∈M I

1 (F ) which is ergodic, but not trivial at infinity. (c) Give
an example of a measure which is translation invariant, but not ergodic.
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