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Let us declare a function f(x) to be of “slow-growth” compared to Gaussian decay if
lim‖x‖→∞ f(x)e−‖x‖

2/2σ2
= 0 for every σ <∞.

1. ONE OF TALAGRAND’S CONCENTRATION-OF-MEASURE RESULTS

Talagrand is a major contributor (or perhaps the major contributor) to the field of “concentration-
of-measure inequalities”. The strength of these inequalities is that they often bound fluctu-
ations of a random vector in a sufficiently strong way to allow nontrivial results, even when
the dimension of the random vector approaches ∞. A central work in the field is his IHES
review article [3]. But in this lecture we will present his Theorem 2.2.4 of [4]. This is a
newer version of an older concentration of measure results, which Talagrand actually credits
to Pisier [2]. But Talagrand has given a very simple new proof using quadratic interpolation,
and some extra very clever ideas, whereas, Pisier’s proof used linear interpolation.

Recall that a function ψ : Rn → R is called globally Lipschitz, with constant L, if it is true
that

|ψ(x)− ψ(y)|
‖x− y‖

≤ L ,

for all x 6= y. We will say that ψ is Lipschitz with the constant L, when we mean it is
“globally Lipschitz”. When we make this statement, we do not necessarily mean that L is the
smallest possible constant such that ψ is Lipschitz with that constant.

Let us mention a technical fact. If ψ is Lipschitz with constant L, then there is an approx-
imating family of smooth functions, ψε, for ε > 0, which are also Lipschitz with constant
L, and such that ψε → ψ, uniformly. Moreover, the family can be chosen such that for each
k ∈ Z>0, there are constants ak(ε), bk(ε) <∞ such that

‖∇kψ(x)‖ ≤ ak(ε)‖x‖+ bk(ε) ,
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where ∇kψ is the tensor of k-th order partial derivatives, and ‖ · ‖ is the `2-norm of the
components. Since ψε is Lipschitz, one can take a1 = 0 and b1 = L for all ε, because
by the very definition of “Lipschitz” it is apparent that supx ‖∇ψε(x)‖ ≤ L. For higher
derivatives there will be ε-dependence which may diverge as ε → 0. Of course, ψ itself
(without any derivatives), satisfies a linear bound like these because it is Lipschitz. (E.g.,
|ψ(x)| ≤ |ψ(0)| + L‖x‖.) So does each ψε. In particular this means that eλψε(x) is of slow-
growth compared to a Gaussian density, for each λ ∈ R, because it grows only exponentially.
The derivatives of eλψε are also of slow-growth for similar reasons.

Theorem 1.1 (Concentration-of-measure for Lipschitz functions of Gaussian r.v.’s) Suppose
ψ : Rn → R is Lipschitz with constant L. Also suppose that X ∈ Rn is a N(0, In) random
vector (where In is the identity matrix on Rn). Then for each t > 0,

P
{∣∣ψ(X)− E[ψ(X)]

∣∣ ≥ t
}
≤ 2e−t

2/4L2

. (1.1)

We will break Talagrand’s proof into two pieces. The first piece is a lemma.

Lemma 1.2 Suppose ψ : Rn → R is Lipschitz with constant L. Suppose that X and Y are
independent N(0, In) random vectors. Then for any λ ∈ R,

E
[
eλ[ψ(X)−ψ(Y)]

]
≤ eλ

2L2

. (1.2)

Theorem 1.1 follows easily from this lemma.

Proof. By Jensen’s inequality, and (1.2),

E
[
eλ(ψ(X)−E[ψ(Y)])

]
≤ E

[
eλ[ψ(X)−ψ(Y)]

]
≤ eλ

2L2

.

Note that this holds by convexity of eλx regardless of the sign of λ. By Chebyshev’s inequal-
ity, for t ≥ 0,

P{ψ(X)− E[ψ(Y)] ≥ t} ≤ eλ
2L2−λt ,

for every λ ≥ 0. Optimizing in λ gives

P{ψ(X)− E[ψ(Y)] ≥ t} ≤ e−t
2/(4L2) .

Taking λ < 0 and repeating the Chebyshev argument also leads to

P{ψ(X)− E[ψ(Y)] ≤ −t} ≤ e−t
2/(4L2) ,

for t > 0. Putting the two together gives (1.1). �

Now it is time to prove the lemma.

Proof. To begin with, assume that ψ is smooth and all derivatives of ψ satisfy linear bounds,
in addition to ψ being Lipschitz for constant L. Given λ ∈ R, let Ψλ : Rn × Rn → R be the
function

Ψλ(x, y) = eλ[ψ(x)−ψ(y)] .

Because of the linear bounds on ψ (which hold without further assumptions just because ψ
is Lipschitz) the function Ψλ is of slow growth compared to a Gaussian decay. (It grows at
most exponentially with exponent equal to λL.) Because ψ is smooth with linear bounds on
its derivatives, all derivatives of Ψλ are also of slow growth compared to the Gaussian decay.
Let us define a vector u ∈ R2n by u = (x, y). So ui = xi for i ≤ n, while un+i = yi.
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Let X,Y,Z be independent N(0, In) random variables. Define U = (X,Y) ∈ R2n which is
N(0, I2n). Also define V = (Z,Z). This of course is not N(0, I2n), rather

E[ViVj] = δij + δi,n+j + δj,n+1 .

Therefore,
E[UiUj]− E[ViVj] = −δi,n+j − δj,n+i .

By a calculation from Lecture 8, suitably generalized to functions of slow growth (whose
derivatives also have slow growth) we know that

E[Ψλ(U)]−E[Ψλ(V)] =
1

2

2n∑
i,j=1

(E[UiUj]− E[ViVj])

∫ 1

0

E
[
∂2Ψλ

∂ui∂uj
(
√
tU +

√
1− tV)

]
dt .

(1.3)
Note: I accidentally missed the factor 1

2
in the statement of Lemma 3.1 of Lecture 8.

Compare to Lemma 2.1 of that lecture. It did not matter before now, because we only worried
about the sign of the right-hand-side. But now it becomes important.

On the other hand, the sum is restricted to i, j such that i = n+ j or j = n+ i. Note that

∂2Ψλ

∂ui∂un+i

(u) =
∂2Ψλ

∂xi∂yi
(x, y) = −λ2 ∂ψ

∂xi
(x)

∂ψ

∂xi
(y) Ψλ(x, y) .

So (1.3) becomes

E[Ψλ(X,Y)]− E[Ψλ(Z,Z)] = λ2

n∑
i=1

∫ 1

0

E

[
∂ψ

∂xi
(x)

∂ψ

∂xi
(y) Ψλ(x, y)

∣∣∣x=√tX+
√

1−tZ
y=
√
tY+

√
1−tZ

]
dt .

But observe, first, that Ψ(z, z) = 1 by definition. Then observe that, bringing the sum inside
the integral and expectation,

E[Ψλ(X,Y)]− 1 = λ2

∫ 1

0

E

[
(∇ψ(x) · ∇ψ(y)) Ψλ(x, y)

∣∣∣x=√tX+
√

1−tZ
y=
√
tY+

√
1−tZ

]
dt .

Using Cauchy-Schwarz and the fact that supx ‖∇ψ(x)‖ ≤ L whenever ψ is Lipschitz with
constant L (and using the fact that Ψλ is positive) one has

E[Ψλ(X,Y)]− 1 ≤ λ2L2

∫ 1

0

E
[
Ψλ(

√
tX +

√
1− tZ,

√
tY +

√
1− tZ)

]
dt .

Defining

f(t) = E
[
Ψλ(

√
tX +

√
1− tZ,

√
tY +

√
1− tZ)

]
,

for 0 ≤ t ≤ 1, one can iterate this inequality, using the fact that for independent N(0, In)
random vectors Z and Z′, one has√

s(1− t)Z +
√

1− sZ′ D
=
√

1− stZ ,

to determine that

f(t) ≤ 1 + λ2L2

∫ t

0

f(s) ds .
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By a version of Gronwall’s inequality, this implies that

f(t) ≤ eλ
2L2t .

Setting t = 1 gives the desired result.
When ψ is not smooth, one can approximate ψ by smooth functions ψε, which are also all

Lipschitz with constant L, and such that the convergence is uniform, as mentioned before.
The inequality (1.1) then applies to each ψε. Uniform convergence is enough to guarantee
convergence of the right hand side to the desired limit, also using the fact that eψε(x) is of
slow-growth compared to a Gaussian. Therefore, one obtains the desired inequality for ψ in
the limit. �

2. APPLICATION TO THE PRESSURE OF THE SHERRINGTON-KIRKPATRICK MODEL

Recall that the random pressure for the SK model is

pN(β, x) =
1

N
log

[∑
σ∈ΩN

wN(σ;x) exp

(
− β√

2N

N∑
i,j=1

Ji,jσiσj

)]
.

Think of this as a function ψ((Ji,j : 1 ≤ i, j ≤ N)). Recall that in the context of the
Sherrington-Kirkpatrick model, the letter x is supposed to stand for βh. We will define the
function ψ to be ψ(z) in order to use the letter x for more than one thing, at one time. So
z ∈ RN2 and we like to label the components of z by two indices

z = (zij ∈ R : 1 ≤ i, j ≤ N) .

Note that ψ(z) is differentiable, and we have

∂

∂zi,j
ψ(z) =

1

N
·

∑
σ∈ΩN wn(σ;x) exp

(
− β√

2N

∑N
i,j=1 zi,jσiσj

)(
− β√

2N
σiσj

)
∑

σ∈ΩN wN(σ;x) exp
(
− β√

2N

∑N
i,j=1 zi,jσiσj

) ,

which we obtain by replacing each Ji,j by zi,j . Since wN(σ, x) is positive, and since |σiσj| =
1, we can bound∣∣∣∣ ∂ψ∂zi,j (z)

∣∣∣∣ ≤ 1

N
·

∑
σ∈ΩN wn(σ;x) exp

(
− β√

2N

∑N
i,j=1 zi,jσiσj

) ∣∣∣− β√
2N
σiσj

∣∣∣∑
σ∈ΩN wN(σ;x) exp

(
− β√

2N

∑N
i,j=1 zi,jσiσj

) =
β

21/2N3/2
.

Therefore, (
∂ψ

∂zi,j
(z)

)2

≤ β2

2N3
.

Summing over all N2 components zi,j , we obtain

‖∇ψ(z)‖2 =
N∑

i,j=1

(
∂ψ

∂zi,j
(z)

)2

≤ β2

2N
.
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But, because ψ is differentiable, we have precisely that ψ is Lipschitz with the smallest Lip-
schitz constant being

Lip(ψ) := sup
x∈Rn

‖∇ψ(x)‖ .

Indeed, if x, y ∈ Rn then

‖ψ(x)− ψ(y)‖ ≤
∫ 1

0

|∇ψ(tx+ [1− t]y) · (x− y)| dt

≤ ‖x− y‖
∫ 1

0

‖∇ψ(tx+ [1− t]y)‖ dt

≤ ‖x− y‖Lip(ψ) ,

by Cauchy-Schwarz.
Therefore, in the present case ψ is Lipschitz, with constant L = β√

2N
. Therefore, applying

Talagrand’s theorem, proves

P{|pN(β, x)− pN(β, x)| > t} ≤ 2e−2Nt2/β2

,

for each t > 0. This is a strong form of the “self-averaging” property as N → ∞. In
particular, this bound can be integrated to give

Var(pN(β, x)) ≤ β2

N
.

This recovers a result of Pastur and Shcherbina, but in a different, slightly easier way. (See the
appendix of [1].) On the other hand, one should not think of the variance bound as the final
result because if you are interested in more than just the second moment, the concentration
of measure inequality is strictly stronger.
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