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Let us begin to write matrices using boldfaced symbols such as q = (ql]):‘ =1

1. SHERRINGTON AND KIRKPATRICK’S ANSATZ

Last time we used the letters a and b to indicate indices running from 1 to n, and we put
such indices in the superscript. This was to avoid confusion with indices running from 1 to
N, which we put in the subscript. Those latter are no longer present, so let us now write ¢
and j for the indices from 1 to n and put them in the subscript.

Last time we defined

P(B,z:n) = ]Vljg})o%log (E[(Zn(8,2))"] ),

and we proved that

P(B,z;n) = sup [—% Z qizj + log (Z e? T it X qiﬂ'"l‘"ﬂ')] ,

qe€0v(n) ij=1 oeQn

where Ov(n) consists of those n x n real matrices ¢ = (g;;),—; which are positive semi-
definite, and have ¢;; = 1 forall « = 1,...,n. (It is better not to think of the matrix q as
an algebraic object with the usual rules of matrix multiplication, but as an n x n array of
numbers, or as a bilinear form.) Let us define

Fo(B,2;q) = FV(B,2;q9) — FP(B;q)

where

oeQn
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and
n

2) /1. _ 62 2
F,7(Bq) = ZZQU'

ij=1
Then
P(B,z;n) = sup F,(B,7;q).

qeOv(n)

Sherrington and Kirkpatrick knew this formula, although they arrived at it by different
means than we did. They then considered the ansatz that

)1 ifi=g;

S T R
for some real number ¢y € [0, 1]. This is a major restriction, when all one knows a priori is
that ¢ € Ov(n), but it has the advantage that it is then easier to calculate F;,(q). Let us define

new matrices Q) and Q" so that

(0) o (1) 1 ifi=y;
. = 1 foralli,j € {1,...,ny, and @, = o
Q’L] j { } Q ¥i {0 lf Z % ].

Then g = qOQ(O) + (1 - qO)Q(l). Recall the definition of the inner product of two matrices
that we defined before,

(A,B) = > AyBi.
i,5=1

Because of the form of these two matrices,

1QV|* = n* while |QW|? = (QV, QW) = n.

Therefore
lall* = @lQI* + (1 — @) 1Q™I* + 2¢o(1 — 20)(Q™, QW)
= n’q5 +n[(1 — g0)* + 2q0(1 — qo)]
= g5 +n(l —qj).
Hence,
62 62
F2(8:9) = T lall* = - lagn® + (1= g3)n].

We will use the same decomposition, g = ¢oQ” —i—(l—qo)Q(l), for calculating o (6,x;q).
We see that

n n 2 n
Z Qa,pTa0b = Qo (Z 0a> + (1 —q) 202-
a,b=1 a=1 a=1

Of course, the second sum is trivially n. But instead of writing it as n, let us leave it the
way it is. To some extent, this keeps the second term looking as much like the first term as
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possible. Then we have
2
2 n
(1 ﬁ qO ) 6 (]' — qO) 2
E) = log Z exp [ x ZO’Z (Z O’Z> t— Z(Jl)
oceQn =1 =1
The following calculation is involved enough to warrant setting it apart as a lemma.

Lemma 1.1 Let X© and XV pe i.i.d., N(0,1) random variables, and let E© and EM
denote the expectation with respect to these two random variables. Then

FO(8,2:q) = log (E<O> [(E(l) [2 cosh <:1: + BV X0 1 8T — g x<1>)] )"]) .

Proof. Note the simple, but important, identity
6902/2 _ E[exX} 7

valid for every real x, where X is a standard normal random variable. We introduce n + 1
i.i.d. standard normal random variables X'*) and x§1>, ey Xfll), and write E(O),Egl), ey EY
to denote the average over these random variables. Then

exp ZL‘ZUZ 6% (Zm) Jrﬁ(lT_qo)Z(Ui)Q

i=1 i=1

= exp (x z": 0,~> E© exp (ﬁ@x@ z”: ai)

i=1 1=1
[0 (00850 5]
i=1

If we now consider the sum over all o, and interchange the sum with E©, first, and then with

n

H E© [exp <ﬁ\/1——qoxl(-1)aiﬂ

E©

all the Egl), next, we obtain (we are writing every small step of this calculation)

5 20 [0 o (- VB V=) )
oeqn =1
-0 [T o (e e« av=n?) )|

LocQm =1

=TT > 5 [on ((e+ avaX® + svT- 0 X))
i=1 \o;e{+1,~1} )

= EO© ﬁEEl) Z exp ((I + ﬁ\/%x(o) + ﬁ\/l——qoxz(l)> Ui)

i=1 oie{+1,-1}

= E© ﬁEEl) [COSh (93 + 8y X + 5\/1—7%&4”)]] .
Li=1
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Now, introducing a new, independent N (0, 1) random variable XY and letting E() denote
its expectation, we have

Egl) [COSh (x—i—ﬁ\/_X +5ﬂx( ))} = E( )[cosh (:L‘—FB\/%X(O)—l—ﬁ\/l—qOX(l))} ,

forallz = 1,...,n. Therefore, we have

E©

ﬁEZ(-l) [COSh (m N ﬁ\/l——qoxgl)ﬂ]
i=1
= E© [(E(l) [cosh (x + 5\@X(0> + 6B/ 1 —qo X(l))Dn] )

Putting this together with the previous formulas, and inserting in the definition of rY gives

the desired formula. Il

Although we already have a simpler formula for F? ( 3; q), we can also write it in a similar
form

Remark 1.2 If time had permitted we would have talked about this approach, called the
Hubbard-Stratonovich transformation, to give yet another solution of the Curie-Weiss model.
Indeed, the method was the beginning step of an important investigation by Ellis and Newman
[1] that we should have discussed.

F?(8;q) = log (E(O)

2
exp | 0 EO X© + 0

This will be important later on.

Exercise: Prove that formula.

2. THE “REPLICA TRICK”

We will present the version of the replica trick as in the paper of van Hemmen and Palmer.
We begin, for finite /V, by generalizing the definition of the nth moment forn = 0,1,2,....
Indeed, for arbitrary r» € R, define

Pa(Bair) = ylog (B [(@x(5,2)])

Actually, even for ¢ € C, one can define this function, simply by taking

Pa(,:0) = - log (B 5= Br0)] )

which is completely unambiguous because Zy (3, z) > 0. Note that this function is analytic
in (. (For this, one only needs to make elementary use of the dominated convergence theorem
to deal with the technicalities involved in interchanging the derivative and the expectation.)
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Moreover,

E [ec tog (25 (6)) 1o (Zn (P, 1’))} ‘

1. =
-0 N E [eclog (zNw,w))] ‘

%PN(ﬁvx; C)

¢=0

= E [log (Zx(5,2))]

= pN(ﬁjl’)-

So this gives one method of calculating the quenched pressure. Also note that, by L’Hospital’s
rule,

P50 =t tPy(amn),

dg
where the limit is taken along real 7.
We should note two points. Firstly, we cannot calculate Py (3, z; ) exactly for any real ,
other than 0 and 1. We can calculate P((, z;n) = limy_ Py (5, z;n) forn =1,2,3,....
Secondly, we are interested in p(3, ) = limy_. pn (3, x). Therefore, the following lemmas
are of some interest.

(=0

Lemma 2.1 For each real r,
lm Py(B.a:r) = P(G,a:7)
exists.

Lemma 2.2 [fthe two-sided limit
o1
lll)% ;P<ﬁ> x5 T)
exists, then it equals p(3, x). More precisely,

fim 1P(3,2:7) < p(5.0) < lim L3, r)

r—0- T r—0t T
and the one-sided limits are guaranteed to exist.
We will not prove Lemma 2.1. Itis a straightforward generalization of Guerra and Toninelli’s

theorem proving the existence of the thermodynamic limit p(5,z) = limy_. pn(0, ).
More precisely, for » > 1 or » < 0, one has

(Nl + NQ)PN1+N2(ﬁ7x;T) S NIPNl(ﬁax;r) + N2PN2(57‘T;T) ;
while for 0 < r < 1, one has
(N1 + No)Pnyn, (B, 257) > NiPw, (B, 257) + NoPn, (8, ;7).

Note that this means that for » = 0,1 one must have constancy in N. But that is easy to
check directly, anyway. The reason for super-additivity for some r and sub-additivity for
other r is because of the convexity/concavity properties of the function ¢ — ¢". The function
is convex or concave depending on whether r(r — 1) = 2(;) 1S nonnegative or nonpositive.
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This convexity or concavity enters into Guerra and Toninelli’s theorem because it determines
the signs of the off-diagonal entries of Hessian matrix for the relevant function.
Let us prove Lemma 2.2.

Proof. We have mentioned before the fact, which is easy itself to prove, that if f,, is a se-
quence of differentiable, convex functions on R, converging pointwise to f, then

D~ f(x) < liminf fi(z) < limsup f,(z) < DT f(x),

n—oo

where

.St h) = f(@)
D*f(z) = lim
f< ) h—0%* h
are the one-sided derivatives, which are guaranteed to exist because f is convex (being the
pointwise limit of convex functions, and convexity being a pointwise property). This is easy
to see, for example, in the sequence of functions

Y

1
fu(x) = —log(cosh(nz)),
n
which converges pointwise to f(z) = |z|. Note that
D f(0) = —1 and DT f(0) = +1,

but f/(0) = 0 for all n. So this example has strict inequality. This fact can be applied
to the sequence Py (5, z;7) and its pointwise limit P (3, z;r) (guaranteed to exist by our
unproven Lemma 2.1) if we check that each Py ([, x;r) is convex in r. But that is true
just because Py (3, x;r) is a logarithmic moment generating function. One can use either
Holder’s inequality or Jensen’s inequality to prove that. Let us use Cauchy-Schwarz to prove
a specific case of convecity. Namely, suppose that r, s € R, then

Py (ﬁ,x; %7‘ + %s) ~ L (IE [6(;r+;s)1og (ZN(ﬁ,w))D
10g <E |:€érlog (ZN(ﬁ,a:)) e%slog (ZN(B7J;)):| )
log (]E {erlog (ZN(ﬁ,I)):| 1/2 & |:eslog (ZN(ﬁ,x))} 1/2)

= —log (E e o8 (ZN(ﬂ’m))}) 4 1 log (]E [eslog (Lv(ﬁ@))})

2N 2N

IA
- 2= 2= =

1 1
O

Because of the lemma, if one could prove that the two-sided limit exists, and calculate it
somehow, then one would have the pressure for the Sherrington-Kirkpatrick model. That is
what Sherrington and Kirkpatrick purported to do, somehow.
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3. SHERRINGTON AND KIRKPATRICK’S “SOLUTION”

Everything which has come previously was rigorous. Everything which follows is not.

There is some Euler-Lagrange or critical point equation which must be satisfied by ¢, to
give the optimal value for F),(/3,z; q). This is assuming that Sherrington and Kirkpatrick’s
ansatz is correct. (But come to class for the explanation of why to take it.) Let us suppose
that somehow this leads to a determination of the optimal qo- Now consider the formal limit
n — oo, obtained by taking the new formulas for i (ﬁ x;q) and oS (ﬁ; q), derived in
Section 1, and then treating n as a parameter. By L'Hospital’s rule again, and a derivative
calculation, one sees that

fYB, 2:q0) = %log <]E(0) {(E(l) [2 cosh (w + BV X 5\/1——610)((1)” >TD
= E© [log (]E(l) [2 cosh (3: + Bya X9 + ﬁ\/l——qOX(l)ﬂ ﬂ .

£(350) 1=~ log (E@ (E“ exp (ﬁ Vs q° X >>D D
log <E(1) exp (ﬁ qo X945 2% X )>] >] )

Note that we no longer write q because, since we are now replacing n by r, which ultimately
approaches 0, there is no matrix anymore. At best our interpretation would have to be that
the matrix was fractional-dimensional, which is clearly not sensible. (On the other hand, for
an array, if one probes the array through only statistical information, it is possible to arrive at
something sensible for non-integer parameters. Indeed, this is closely related to the hyperge-
ometric distribution, which is well-known from elementary probability. An investigation into
that direction would ultimately lead us to a particular type of point process called the random
probability cascade of Ruelle, or the Bolthausen-Sznitman coalescent. But we do not have
time for that, now.)

One should evaluate £V (3, x; qo) — f®(3; qo) at the g given by the Euler-Lagrange equa-
tion. But now we come to an interesting question. Will this give a local max or a local min?
The answer, as we will see next time, is a local min. The reason this is so surprising is that for
n = 1,2,3,... the Euler-Lagrange equations arise from taking maxima not minima. Parisi
was the first to propose solving the opposite optimization problem when 0 < r < 1. Here is
a justification analogous to his. The function ¢ — ¢" is convex when r € (1, c0) and concave
when r € (0,1). We solved the maximization problem when that function was convex. So
we should solve the minimization problem when that function is concave.

It may seem that whether » > 1 or 0 < r < 1, we should solve the opposite problem
because, after all, concave functions are more closely associated with maximum problems
and convex functions are more closely associated with minimum problems. There are two
things to note. First of all, the function which is being maximized or minimized is a difference
of two functions f™M (3, x:qy) — f@(3; ). Therefore, it would not be convex or concave
even if both f()(3,z;-) and £ (3;-) were. Second of all, recall that from Slepian’s lemma
there is a counterintuitive dependence on the sign of the second-derivative matrix.

Similarly,

— E©




S. STARR

REFERENCES
[1] R. S. Ellis and C. M. Newman. The Statistics of Curie-Weiss Models. J. Statist. Phys. 19, 149-161
(1978).
[2] D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792-1796
(1975).

[3] J. L. van Hemmen and R. G. Palmer. The Replica Method and a Solvable Spin Glass Model.
J. Phys. A: Math. Gen. 12, 563-580 (1979).

MATHEMATICS DEPARTMENT, UNIVERSITY OF ROCHESTER, ROCHESTER, NY 14627
E-mail address: sstarr@math.rochester.edu



