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1. GUERRA’S REPLICA SYMMETRY “UNBROKEN” BOUNDS

We are going to present this lecture out of all chronological order, mainly because it seems
the presentation is easier if one starts by applying Guerra’s bounds to the replica symmetric
solution of Sherrington and Kirkpatrick.

Last lecture we did calculus type manipulations to arrive at the function of q0 ∈ [0, 1],

f(β, x; q0) = f (1)(β, x; q0)− f (2)(β; q0) ,

where

f (1)(β, x; q0) = E(0)
[
log
(
E(1)

[
2 cosh

(
x + β

√
q0 X(0) + β

√
1− q0 X(1)

)])]
,

and

f (2)(β; q0) = E(0)

[
log

(
E(1)

[
exp

(
β

√
q2
0

2
X(0) + β

√
1− q2

0

2
X(1)

)])]
.

This was extrapolated from the n = 1, 2, 3, . . . moments, where there was a rigorous con-
nection between maximizing the function Fn(β, x; q) and calculating P(β, x; n). Taking,
formally, limn→0

1
n
Fn(β, x; q), is supposed to give information on p(β, x). But as we alluded

to last time, one solves a minimization problem not a maximization problem. This fact is
easiest to see by introducing Guerra’s completely rigorous theorem, in the context of Sher-
rington and Kirkpatrick’s ansatz. Later on we will state Parisi’s ansatz and state how Guerra’s
theorem generalizes to it.

Theorem 1.1 (Guerra 2001 (specialization))

p(β, x) ≤ min
0≤q0≤1

[
f (1)(β, x; q0)− f (2)(β; q0)

]
.
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More precisely, for every N > 0,

pN(β, x) ≤ min
0≤q0≤1

[
f (1)(β, x; q0)− f (2)(β; q0)

]
.

This is specialization of Guerra’s main replica symmetry breaking bounds. But even this
simpler result involves a lot of notation. Let us define a 1-parameter family of Gaussian
vectors, which are all coupled in the simplest way

GN(σ; t) =
√

t HN(σ) +
√

t KN +
√

1− t LN(σ) ,

where HN(s) is the regular Sherrington-Kirkpatrick Hamiltonian, while

KN =

√
q2
0

2
K(0)

N +

√
1− q2

0

2
K(1)

N ,

and
LN(σ) =

√
q0 L(0)

N (σ) +
√

1− q0L
(1)
N ,

and all of the following Gaussian random variables and/or vectors are independent of one
another: (HN(σ) : σ ∈ ΩN), (L(0)

N (σ) : σ ∈ Ω), (L(1)
N (σ) : σ ∈ Ω), K(0)

N , and K(1)
N . The

covariances are as follows,

E[HN(σ)HN(σ′)] =
N

2
[qN(σ, σ′)]2 ,

where qN(σ, σ′) = 1
N

∑N
i=1 σiσ

′
i is the usual spin-spin overlap. Also,

E[L(i)
N (σ)L(i)

N (σ′)] = NqN(σ, σ′) for i = 1, 2 .

Finally,

E[(K(i)
N )2] =

N

2
for i = 1, 2 .

We are going to define an interpolated pressure function. Let us recall that

wN(σ; x) = ex
PN

i=1 σi ,

which is the factor in the Gibbs weight coming from a pure external magnetic field. Now we
define

WN(σ; β, x; t) = wN(σ; x)e−βGN (σ;t) ,

which is the full random Gibbs weight. And define the interpolated pressure

pN(β, x; t) =
1

N
EE(0)

[
log

(
E(1)

[∑
σ∈ΩN

WN(σ; β, x; t)

])]
,

where E(1) is the expectation over (L(1)
N (σ) : σ ∈ Ω) and K(1)

N , E(0) is the expectation over
(L(0)

N (σ) : σ ∈ Ω) and K(0)
N , and E is the expectation over (HN(σ) : σ ∈ ΩN). We

will abbreviate WN(σ; β, x; t) by WN(σ; t) since it causes no confusion. We will begin by
showing that pN(β, x; 0) ≥ pN(β, x; 1).
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By interchanging the derivative and expectations, by the usual claim that all can be justified
from DCT, we have

d

dt
pN(β, x; t) =

1

N
EE(0)

(Ẽ(1)

[∑
eσ∈ΩN

W̃N(σ̃; t)

])−1

E(1)

[∑
σ∈ΩN

d

dt
WN(σ; t)

] .

We define G̃N(β; t) to be defined just as GN(β; t), but replacing (L(1)
N (σ) : σ ∈ Ω) and K(1)

N

by independent replicas of those random variables, (L̃
(1)

N (σ) : σ ∈ Ω) and K̃
(1)

N . The tilde
expectation takes the expectation over these new random variables. We define W̃N(σ; t) as
WN(σ; t) was defined, but relative to G̃N(β; t) instead of GN(β; t). Of course, σ̃ is just an-
other spin configuration than σ. We need both expectations by the definition of the derivative
and the chain rule. We introduce the new random variables because momentarily we will
want to put the two random variables together under the same expectation.

Note that
d

dt
WN(σ; t) = −βWN(σ; t)

d

dt
GN(σ; t) .

We could simplify d
dt

GN(σ; t), but we choose not to. The only important thing is that it is
a Gaussian and therefore Wick’s rule applies. Remember Wick’s rule, also called Gaussian
integration by parts, says

E[X0 ϕ(X1, . . . , Xn)] =
n∑

i=1

E
[

∂ϕ

∂xi

(X1, . . . , Xn)

]
E[X0Xi] ,

when (X0, X1, . . . , Xn) are jointly Gaussian random variables and ϕ is smooth enough (and
not growing too fast at ∞; e.g., polynomial growth is fine). (Also note that it is perfectly
acceptable for X0 to be a dependent function of some of the X1, . . . , Xn. It is not required for
all these components of the Gaussian vector to be independent.)

Therefore,

d

dt
pN(β, x; t) =

1

N
EE(0)E(1)

∑
σ∈ΩN

(
−β

d

dt
GN(σ; t)

)
WN(σ; t)

(
Ẽ(1)

[∑
eσ∈ΩN

W̃N(σ̃; t)

])−1


=
1

N

∑
σ∈ΩN

EE(0)E(1)

(−β
d

dt
GN(σ; t)

)
WN(σ; t)

(
Ẽ(1)

[∑
eσ∈ΩN

W̃N(σ̃; t)

])−1


=
1

N

∑
σ∈ΩN

EE(0)E(1) [A(σ; t) + B(σ; t)] .

The last step is merely anticipating what we will get from Wick’s rule, knowing that there are
two terms and that they are fairly messy. The first term involves the derivative of WN(σ; t).
Since

WN(σ; t) = wN(σ; x)e−βGN (σ;t) ⇒ ∂WN(σ; t)

∂GN(σ; t)
= −βWN(σ; t) ,
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we obtain

A(σ; t) = β2 EE(0)E(1)

[
GN(σ; t)

d

dt
GN(σ; t)

]
WN(σ; t)

(
Ẽ(1)

[∑
eσ∈ΩN

W̃N(σ̃; t)

])−1

.

Note that the first expectation is the covariance term coming from Wick’s rule. But on the
other hand,

EE(0)E(1)

[
GN(σ; t)

d

dt
GN(σ; t)

]
=

1

2
· d

dt
EE(0)E(1)

[
(GN(σ; t))2

]
,

and

EE(0)E(1)
[
(GN(σ; t))2

]
=

N

2
(t[qN(σ, σ)]2 + t + 2(1− t)qN(σ, σ)) = N ,

independent of t, because qN(σ, σ) = 1. Therefore the covariance term alone makes A(σ; t) =
0. The second term is more complicated.

By introducing double-tilde random variables in complete analogy to the tilde random
variables, we have

B(σ; t) = −

˜̃E(1)

∑
eeσ∈ΩN

˜̃WN(˜̃σ; t)

−2

Ẽ(1)

[∑
eσ∈ΩN

C(σ, σ̃; t)

]
WN(σ; t) ,

where

C(σ, σ̃; t) = β2 W̃N(σ̃; t) EE(0)E(1)Ẽ(1)

[
G̃N(σ̃; t)

d

dt
GN(σ; t)

]
.

Again, the expectation term here comes from the covariance in Wick’s rule. But now we
have, by a straightforward calculation involving the covariances we wrote before

EE(0)E(1)Ẽ(1)

[
G̃N(σ̃; t)

d

dt
GN(σ; t)

]
=

N

4

(
[qN(σ, σ̃)]2 + q2

0 − 2q0qN(σ, σ̃)
)

.

Exercise: This calculation is critically important to understanding Guerra’s theorem. Do it
carefully.

Putting this all together, and again noting that A(σ; t) is identically zero, we have

d

dt
pN(β, x; t) = − 1

N
EE(0)E(1)Ẽ(1)

 ∑
σ,eσ∈ΩN

WN(σ; t)W̃N(σ̃; t)(˜̃E(1)
[∑eeσ∈ΩN

˜̃WN(˜̃σ; t)

])2

(
β2N

4
[qN(σ, σ̃)− q0]

2

) .

Let us agree to represent by E the expectation over all the random variables. Also, let us
define a new random variable, which is the “partially annealed” Gibbs weight, normalized,

U(0)
N (σ; t) =

WN(σ; t)

E(1)
[∑

σ∈ΩN WN(σ; β, x; t)
] .
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We no longer bother to write the denominator with a double tilde because we are not going
to apply Wick’s rule anymore. Then we can rewrite

d

dt
pN(β, x; t) = −β2

4
E

 ∑
σ,eσ∈ΩN

U(0)
N (σ; t) Ũ

(0)

N (σ̃; t) [qN(σ, σ̃)− q0]
2

 .

Note that U(0)
N (σ; t) and Ũ

(0)

N (s̃; t) are densities. I.e., summing over σ and taking the ex-
pectation of this random variable gives 1, and the random variable is always nonnegative.
Francesco Guerra writes a new symbol for the expectation, thinking of this as a function on
ΩN × ΩN . For any function f(σ, σ̃), define

〈f(σ, σ̃)〉(0)
t = E

 ∑
σ,eσ∈ΩN

U(0)
N (σ; t) Ũ

(0)

N (σ̃; t) f(σ, σ̃)

 .

Then one gets the even more concise notation

d

dt
pN(β, x; t) = −β2

4

〈
[qN(σ, σ̃)− q0]

2
〉(0)

t
.

In particular,
d

dt
pN(β, x; t) ≤ 0 .

It remains to finish the proof, by evaluating pN(β, x; 0) and pN(β, x; 1). Since we haven’t
formally started the proof before now, let us do that.

Proof. At t = 0, we have just
GN(σ; t) = LN(σ) .

But notice that one way to produce the random variable LN(σ) is to start with i.i.d. N(0, 1)

random variables X(0)
1 , . . . , X(0)

N and X(1)
1 , . . . , X(1)

N , and take

LN(σ) = −
N∑

i=1

(√
q0 X(0)

i +
√

1− q0 X(1)
i

)
σi .

Therefore,

WN(σ; β, x; 0) = wN(σ; x) e−βGN (σ;0)

= wN(σ; x) exp

[
β

N∑
i=1

(√
q0 X(0)

i +
√

1− q0 X(1)
i

)
σi

]

= exp

[
N∑

i=1

(
x + β

√
q0 X(0)

i + β
√

1− q0 X(1)
i

)
σi

]

=
N∏

i=1

exp
[(

x + β
√

q0 X(0)
i + β

√
1− q0 X(1)

i

)
σi

]
.
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Therefore, by calculations which are now very familiar to us, we have

pN(β, x; 0) =
1

N
EE(0)

[
log

(
E(1)

[∑
σ∈ΩN

WN(σ; β, x; t)

])]

=
1

N
EE(0)

[
log

(
E(1)

[∑
σ∈ΩN

N∏
i=1

exp
[(

x + β
√

q0 X(0)
i + β

√
1− q0 X(1)

i

)
σi

]])]

=
1

N
EE(0)

[
log

(
E(1)

[
N∏

i=1

(
2 cosh

[
x + β

√
q0 X(0)

i + β
√

1− q0 X(1)
i

])])]
.

Note that this does not depend at all on the random variables whose expectation is E. So we
can take E away. Also, by using the independence of the X(0)

i and X(1)
i for various i, we can

take the product outside the expectation, then with the logarithm it becomes a sum, which
we can also take outside the expectation. This gives us, at first, a power of N , but after the
logarithm a factor of N . This cancels the 1

N
. Therefore,

pN(β, x; 0) = E(0)
[
log
(
E(1)

[
2 cosh

(
x + β

√
q0 X(0) + β

√
1− q0 X(1)

)])]
.

Or, in other words,
pN(β, x; 0) = f (1)(β, x; q0) .

The calculation of pN(β, x; 1) is similar, so let us leave it as an exercise.
Exercise: Prove that pN(β, x; 1) = pN(β, x) + f (2)(β; q0).

One may be slightly surprised by the fact that there are two terms for pN(β, x; 1) instead
of just one. First of all, this is exactly what we need, as we will see momentarily. Second of
all, one can understand this without great difficulty. Namely,

GN(σ; 1) = HN(σ) + KN ,

and KN does not depend on σ at all. On the other hand HN(σ)) is completely independent of
the random variables going into E(0) and E(1). Therefore, essentially one can decompose as
follows

EE(0)

[
log

(
E(1)

[∑
σ∈ΩN

wN(σ; x)e−βGN (σ;1)

])]
= E

[
log

(∑
σ∈ΩN

wN(σ; x)e−βHN (σ)

)]
+ E(0)

[
log
(
E(1)

[
e−βKN

])]
.

We leave it to the reader to fill in the details, and find a good way to produce the random
variable KN .

Because we know that pN(β, x; 0) ≥ pN(β, x; 1), due to the fact that d
dt

pN(β, x; t) ≤ 0,
we have

f (1)(β, x; q0) ≥ pN(β, x) + f (2)(β; q0) ⇒ pN(β, x) ≤ f (1)(β, x; q0)− f (2)(β; q0) .

Since this is true for every q0 ∈ [0, 1], we see that

pN(β, x) ≤ min
q0∈[0,1]

[
f (1)(β, x; q0)− f (2)(β; q0)

]
,
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which is what we wanted to prove. (We do need that 0 ≤ q0 ≤ 1 in order to take all the
square-roots such as

√
q0 and

√
1− q0.) �

Guerra also pointed out an important identity by exactly characterizing the remainder in the
inequality. This is often called a “sum-rule” in mathematical physics, although one usually
hears that term used in connection with subjects such as spectral theory for Schrödinger
operators. In the present case, this takes the following form, whose proof is contained in the
proof of the previous theorem.

Corollary 1.2 For any q0 ∈ [0, 1],

f (1)(β, x; q0)− f (2)(β; q0)− pN(β, x) =
β2

4

∫ 1

0

〈
[qN(σ, σ̃)− q0]

2
〉(0)

t
dt .

Therefore, if one wanted to prove that Sherrington and Kirkpatrick’s ansatz gave the correct
value, then one could proceed as follows. Identify the conjectured optimal q0. Then prove
that

lim
N→∞

∫ 1

0

〈
[qN(σ, σ̃)− q0]

2
〉(0)

t
dt = 0 .

In fact, this works. There is a region of β and x where Sherrington and Kirkpatrick’s “solu-
tion” is correct. The boundary of this region is called the Almeida-Thouless line. In their first
paper on the subject, Guerra and Toninelli proved that Sherrington and Kirkpatrick’s solution
is correct, although they could not push their argument all the way to the Almeida-Thouless
line. In later work Guerra improved this. See the papers [3, 2].
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