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1. INTRODUCTION

In the last lecture we introduced the Sherrington-Kirkpatrick mean-field model of a spin
glass, as well as the Edwards-Anderson model. There we stated that Sherrington and Kirk-
patrick invented their model, to some extent, to justify the “molecular field theory” of Ed-
wards and Anderson. Such a statement may seem mysterious to the mathematician and prob-
abilist unfamiliar with such models and approximations.

In order to give some background, we will now consider the analogous ideas in the context
of the Ising spin system. We will also continue this investigation for the next few lectures.
In this lecture we will consider the “molecular field theory”, and in the next few lectures we
will consider the exactly solvable “mean-field” version of the Ising model: the Curie-Weiss
model. By a “mean-field” model we mean a statistical mechanical system on a complete
graph. In contradistinction, a “molecular field theory” is not a statistical mechanical model,
but is more of a phenomenological model of the thermodynamics.

The molecular field theory of Weiss (following ideas of Curie and Langevin, his student)
predated the Ising model by many years. However, the explanation we give here will be his-
torically inaccurate, as we will start with the Ising model. In fact, we will motivate Weiss’s
modification of the Langevin equation as deriving from a lower bound to the exact thermody-
namic pressure of the d-dimensional Ising model. (It is well-known that the molecular field
equations lead to lower bounds on the pressure, i.e. upper bounds on the free energy.)
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In case the reader is more interested in learning about magnetism in general, especially
in the context of a historical description, I would highly recommend Chapter 1 of Mattis’s
textbook [1]. I also found another nice article online, [2].

2. THE ISING MODEL REDUX

Let us start by redefining the Ising model on a d-dimensional lattice. The d-dimensional
lattice is ΛN = Zd

N . See Figure 1 for an example in two-dimensions. At each site x ∈ ΛN ,

FIGURE 1. A two-dimensional lattice: Z2
10

there is a spin σx ∈ {+1,−1}. Therefore, a spin configuration on the whole lattice is a
collection of spins, σ = (σx : x ∈ ΛN). The set of all spin configurations is ΩN =
{+1,−1}ΛN . The Ising model then assigns the energy

HN(σ) := − J

2d

∑
〈x,y〉

σxσy − h
∑

x

σx ,

to a spin configuration σ ∈ ΩN . (Recall that the sum with index 〈x, y〉 means to sum over
all pairs {x, y} in ΛN which are nearest-neighbors.) The real number J is the interaction
strength between nearest-neighbor spins, and h is the strength of an external magnetic field.
Our current normalization is a little different than what we defined in Lecture 1 because we
divide by 2d. But the present normalization is much more convenient, and only amounts to a
redefinition of J .

2.1 Thermodynamic Functions.

It is important to know what are the quantities of interest. Of course, the most interesting
object is the Boltzmann-Gibbs distribution, µN,β which is a probability measure on ΩN , such
that

µN,β(σ) :=
e−βHN (σ)

ZN(β)
,

where ZN(β) is the normalization

ZN(β) :=
∑

σ∈ΩN

e−βHN (σ) ,
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known as the “partition function”. From the Boltzmann-Gibbs distribution, one can calculate
everything else; for example one can calculate all the so-called correlation functions. But the
second most interesting object is the partition function itself, and thermodynamic quantities
derivable from it.

For example, we call the quantity,

pN(β) :=
1

|ΛN |
log(ZN(β)) ,

the “pressure”. In principle, one would like to know

p(β) := lim
N→∞

pN(β) ,

if it exists. One can also define some other quantities. The magnetization is

m̄(β) :=
1

β
· ∂

∂h
p(β, J, h) .

When it exists, this is the limit of the finite-volume magnetizations

m̄N(β) :=
1

β
· ∂

∂h
pN(β, J, h) .

The fact that one can commute the derivative through the limit is just because, by definition,
pN(β, J, h) is convex in h, and such a result holds for limits of convex functions. (For a
review of elementary properties of convex functions, see for example Section I.3 of [3].) Of
course the most interesting points are where the magnetization does not exist, because it has
a jump discontinuity. The reason for calling this the magnetization is just that

m̄N = EµN,β [mN(σ)] where mN(σ) =
1

|ΛN |
∑

x

σx .

This is an identity that the reader should check as an exercise. Another quantity of interest is
the following

χ(β) := β−1 ∂

∂h
m̄(β, J, h) .

We will call this the isothermal susceptibility, although we may be off by a factor of β.

3. MOLECULAR FIELD THEORY

Let us consider one approach to the molecular field theory, which is somewhat systematic.
We return our attention to the actual Ising Hamiltonian HN , and its Boltzmann-Gibbs mea-
sure µN,β . We will recall the Gibbs variational principle. Let µN,0 be the uniform probability
measure on ΩN . Then relative entropy of ν ∈ M1(ΩN), relative to µ ∈ M1(ΩN), is defined
as

SN(ν|µ) :=

∫
ΩN

u

(
dν

dµ

)
dµ =

∑
σ∈ΩΛ

u

(
ν({σ})
µ({σ})

)
µ({σ}) ,

where

u(x) =

{
−x log(x) for x ∈ (0,∞] ;

0 for x = 0 .
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(We interpret u(ν(σ)/µ(σ)) µ(σ) = ∞ if µ(σ) = 0 and ν(σ) 6= 0.) Then the Gibbs varia-
tional principle says that

pN(β) = max
ν∈M1(ΩN )

|ΛN |−1
(
SΛ(ν|µN,0)− Eν [βHN(σ)] + log(|ΩN |)

)
. (3.1)

Here M1(ΩN) is the set of all probability measures on ΩN . Moreover, the unique optimizing
ν is ν = µN,β , the Boltzmann-Gibbs measure.

This is very easy to prove. One first notes that u is strictly concave. Therefore, SN(ν|µ) is
strictly concave in ν, for each µ. But the Gibbs functional on the right hand side of equation
(3.1) is actually just pN(β) + SN(ν|µN,β), as a calculation shows. Therefore, if it has any
local maximizer, then it that is the unique maximizer. On the other hand, SN(ν|µ) is always
bounded above by 0, because of Jensen’s inequality applied to the concave function u.

Therefore, if we want to know pN(β) exactly, we only have to maximize the right hand
side of equation (3.1) over all measures ν ∈ M1(ΩN). Now the approximation that brings us
back to the molecular field equations is to maximize, but only over i.i.d. product measures.
Thus we will not get the actual pressure pN(β), but only a lower bound. Every i.i.d. product
measure is characterized by an external field. I.e., given η ∈ R, let νN,βη be the measure such
that

νN,βη(σ) =
eβη|ΛN |mN (σ)

[2 cosh(βη)]|ΛN | .

It is easy to calculate

|ΛN |−1SΛ(νN,βη|µN,0) = log(cosh(βη))− βη tanh(βη) ,

as well as

−EνN,βη [βHN(σ)] =
βJ

2
tanh2(βη) + βh tanh(βη) .

Therefore, the molecular field approximation to the pressure, which is now independent of
N , is

p̃(β) = max
η∈R

[
log(2 cosh(βη))− βη tanh(βη) +

βJ

2
tanh2(βη) + βh tanh(βη)

]
. (3.2)

Let us call the left hand side G(η), where G stands for Gibbs functional. Then we easily
find,

G′(η) = [β(h− η) + βJ tanh(βη)] sech2(βη) .

In order to have a critical point, one should require

η − h

J
= tanh(βη) ,

and that is the main equation of molecular field theory. We will call this the self-consistent
molecular field equation, although in the present framework, we have derived it from a vari-
ational approach, not a self-consistent one.

3.1 Graphical analysis.

Let us define a few new variables. Let x∗ = βη, let x = βh and let t = βJ . Then the
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self-consistent molecular field equation

tanh(x∗) =
x∗ − x

t
.

Also, let m = (η − h)/J = (x∗ − x)/t, which is the average magnetization. This is hard to
solve explicitly analytically, but easy to solve graphically. One simply graphs y = tanh(x∗)

x∗

y

y = tanh(x∗)

y = x∗ − 2 y = x∗ y = x∗ + 2

FIGURE 2. Plot of y = tanh(x∗) and three lines. This corresponds to t =
βJ = 1 and x = βh = −2, 0, 2. One would look for the x∗-coordinate of the
intersection point.

and then graphs the line y = (x∗ − x)/t, where x and t are constants determined by β, J and
h. Then the points of intersection give the solution to the molecular field equation.

x∗

y

y = tanh(x∗)

y = x∗ y = x∗/2

FIGURE 3. Plot of tanh(x) and the corresponding lines for βh = 0 and two
values of βJ : 1 and 2. At βJ = 1 the unique intersection point is (0, 0), but at
βJ = 2, there are three points of intersections. One needs an external criterion
for deciding which of these solutions is/are correct.

If one is willing to accept the self-consistent molecular field equation, then one still faces
an obstacle: for certain values of x and t there are multiple solutions of x∗. For example,
while in Figure 1 there are three values of x and t which lead to unique solutions of x∗, in
Figure 2 there is one value (t, x) = (2, 0) that has multiple solutions of x∗. Hence, one needs
an external method of determining which is (are) the right solution(s). Let us illustrate this
in another way. One can easily parametrize the solutions of m as a function of x, for a fixed
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value of t, if one is willing to accept parametric solutions of both x and m. Namely, let s be
the parametric variable, and

x = s− t tanh(s) and m = tanh(s) .

Then, since x∗ = x + tm, this gives x∗ = s, and of course

x = s− t tanh(s) ⇒ tanh(s) =
s− x

t
,

which is the right equation upon substitution s = x∗. Plotting such functions, one again sees

-1

-0.5

 0

 0.5

 1

-4 -2  0  2  4

FIGURE 4. One can easily plot m as a function of x, using the parametric
equation explained above. Here we have plotted m(x) for fixed t: red, t = 0;
green, t = 0.5; blue, t = 1 (which is the critical time when a shock first
occurs); maroon, t = 2; and cyan, t = 3. The problem is that after t = 1, the
waveforms obtained this way are multi-valued. I.e., they have overhangs.

that for some values of t and x, there are multiple solutions for m. In the present plots, this
shows up as overhangs. This starts to be a problem at t = 1. For example see Figure 4.

There is a standard resolution of this problem called the Maxwell construction. By spin-
flip symmetry, one has HN(σ) = HN(−σ) for all σ ∈ ΩN . This implies that pN(1, t, x) =
pN(1, t,−x). In particular, this means that∫ R

−R

m̄N(1, t, x) dx = 0 ,

independent of t. Therefore, if we are going to make a vertical cut in the multivalued pro-
files, in order to make them single valued (everywhere except at the vertical cut where it is
undefined), then it should be done so as to chop off equal areas in the overhangs to the left
and right of the cut. Otherwise the integral above would begin to have a t-dependence. In this
problem, that means that the cut must be made at x = 0, which is also the most symmetric
choice. See Figure 5. This construction holds in greater generality than what we used here.
But now we know what we are aiming for.
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(b)

FIGURE 5. Here we make a cut-off satisfying the Maxwell construction,
equal area rule. The green curve is the one obtained by the parametric, mul-
tivalued curves, and the blue curve is the correct one with a single jump dis-
continuity at x = 0. (a) “Time” t = 1.5. (b) “Time” t = 2.

3.2 Thermodynamic functions at the critical point.

The real purpose of molecular field theory is to allow calculation of various thermodynamic
functions. We will make some calculations near the critical points.

In order to proceed further, let us make the substitution m = tanh(βη) in equation (3.2).
Note that this gives

βη =
1

2
log

(
1 + m

2

)
− 1

2
log

(
1−m

2

)
,

and

log(2 cosh(βη)) = −1

2
log

(
1 + m

2

)
− 1

2
log

(
1−m

2

)
.

Thus, the Gibbs variational principle, restricted to i.i.d. product measures becomes

p̃(β, J, h) = max
m∈[−1,1]

[
−1 + m

2
log

(
1 + m

2

)
− 1−m

2
log

(
1−m

2

)
+

m2t

2
+ mx

]
.

We will try to solve this, to find m(t, x). Defining the left-hand-side as g(m) we see that

g′(m) =
1

2
log

(
1−m

1 + m

)
+ mt + x ,

and

g′′(m) = − 1

1−m2
+ t .

Particularly, when m = 0, this is negative only for t < 1. For t > 1, the critical point m = 0
is no longer a minimizer of g(m), it is a maximizer. That is why the critical value of t = βJ
is 1.

Supposing t is greater than 1, and supposing x is equal to 0, there are two solutions: m+(t)
and m−(t). One can calculate these asymptotically for t− 1 positive, but small. The critical
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point equation becomes
1

2
log

(
1−m

1 + m

)
+ tm = 0 .

Expanding the logarithm to third-order gives

tm = m +
1

3
m3 + O(m5) .

Therefore, one has
m±(t) = ±

√
3(t− 1)(1 + o(1))

for t > 1, where o(1) is a quantity vanishing as t− 1 approaches 0.
Actually, what the equations are telling us is that m(t, 0) does not exist for t > 1. But the

limits m±(t) = limx→0± m(t, x) do exist. These are called the spontaneous magnetizations,
because, at least within the framework of molecular field theory, the system magnetizes even
for a vanishingly small amount of external field. I.e., it magnetizes spontaneously.

At t = 1 and x 6= 0, but small, the same expansion of the logarithm gives

x =
1

3
m3 + O(m5) .

Therefore
m(1, x) = (3x)1/3(1 + o(1)) ,

asymptotically, for small x. Finally, by implicit differentiation of the critical point equation

1

2
log

(
1−m

1 + m

)
+ mt + x = 0 ,

one obtains
∂m

∂x
=

1−m2

1− t(1−m2)
.

In particular, for t < 1 and x = 0, we know that m(t, x) = 0. Therefore, this leads to

χ(t, 0) = (1− t)−1 ,

(exactly) for t < 1.
For each of these quantities, near the critical point there is a power-law behavior. The

various exponents are called critical exponents. Critical exponents are generally dimension
dependent, as well as dependent on some features of the microscopic model, such as the
symmetries of the lattice. Here one would expect that as the dimension d approaches ∞,
the critical exponents approach the values listed above. This is because, in some sense, the
molecular field theory is supposed to become exact in “infinite dimensions”. We will explain
this more in the next lectures after we introduce the Curie-Weiss model.
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