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1. DEFINITION OF THE CURIE-WEISS MODEL

In the last lecture we introduced the molecular field theory for the Ising model. It is not
exact in finite dimensions. But it does become exact if one considers the Ising model on a
complete graph, in the thermodynamic limit. The complete graph on N vertices is the graph
with every possible edge present. For example, the complete graph with 7 vertices looks like
this:

For each N , ΛN = {1, 2, . . . , N}, and ΩN = {+1,−1}N . So a general spin configuration is
σ = (σ1, . . . , σN), with each σj ∈ {+1,−1}. The Curie-Weiss Hamiltonian is

HN(σ) := − J

2N

N∑
j=1

N∑
k=1

σjσk − h
N∑

j=1

σj .

For convenience, we have included diagonal self-interaction terms. The thermodynamic limit
of the pressure is unaffected by this choice. Also, the finite-volume Gibbs states are unaf-
fected by this choice (although they do depend on the normalizing prefactor being J/2N
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instead of J/2(N − 1)). Recalling the magnetization function

mN(σ) :=
1

N

N∑
j=1

σj ,

the Curie-Weiss Hamiltonian can be rewritten as

HN(σ) = −N

[
J

2
mN(σ)2 + hmN(σ)

]
.

1.1 Thermodynamic Functions.

Let us break with convention and define the thermodynamic functions not in terms of β but
in terms of the two parameters t = βJ and x = βh. At least this way, nothing is lost; it
just means that if we ever want to take ∂β , instead we take J∂t + h∂x. Then let µN,t,x be the
probability measure on ΩN , defined as

µN,t,x(σ) :=
eN [(t/2)mN (σ)2+hmN (σ)]

ZN(t, x)
.

The normalization the partition function,

ZN(t, x) :=
∑

σ∈ΩN

eN [(t/2)mN (σ)2+hmN (σ)] .

The pressure is

pN(t, x) :=
1

N
log(ZN(t, x)) .

We call the limit the “thermodynamic pressure” if it exists:

p(t, x) := lim
N→∞

pN(t, x)) .

An interesting parameter is the average magnetization, which should be defined as

m̄(t, x) := ∂xp(t, x) ,

assuming the thermodynamic pressure exists and is differentiable. It is easy to see that, when-
ever the pressure does exist, it is convex. Hence it has left and right derivatives everywhere.
We define

m̄±(t, x) := lim
y→x±

p(t, y)− p(t, x)

y − x
.

By soft arguments regarding limits of convex functions,

m̄−(t, x) ≤ lim inf
N→∞

EµN,t,x [mN(σ)] ≤ lim sup
N→∞

EµN,t,x [mN(σ)] ≤ m̄+(t, x) .

In particular, whenever m̄(t, x) exists, it equals the thermodynamic limit of the average mag-
netization.

2. MAIN THEOREM

The model on the complete graph is called “solvable”. This does not mean that it is ex-
plicitly solvable in terms of elementary functions. But it can be expressed as the solution of
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a 1-dimensional variational problem. This represents significant progress over the “many-
body” problem we started with.

Theorem 2.1 For each value of x and t in R, the pressure p(t, x) does exist, and it equals

p(t, x) = max
m∈(−1,1)

[
t

2
m2 + mx− 1 + m

2
log

(
1 + m

2

)
− 1−m

2
log

(
1−m

2

)]
,

which is the same as

p(t, x) = max
x∗∈R

[
log(2 cosh(x∗))− (x∗ − x) tanh(x∗) +

t

2
tanh2(x∗)

]
,

the molecular field equation for all Ising models.

Remark 2.2 Going from the first to the second equation in the theorem is trivial, simply
substitute m = tanh(x∗) and do the necessary calculations.

Remark 2.3 Recall from Lecture 3′ (section 3.2) that this semi-implicit function is explicit
enough to allow one to obtain asymptotic formulas for several thermodynamic quantities of
interest near the critical point, (t, x) = (1, 0).

Remark 2.4 When t < 0, the function being optimized is strictly concave. Therefore, there
is a unique maximizer. Physically, this corresponds to the fact that the mean-field antiferro-
magnet never has a phase transition. In the present context, a phase transition means there
are multiple maximizers.

We will prove this simple theorem by using large deviations theory. We take the opportu-
nity to review some elementary aspects of that topic. Our two main references are Varadhan’s
short monograph [4] and Dembo and Zeitouni’s textbook [1]. We only scratch the surface
covering just the first sections of these excellent books.

2.1 Large Deviations Theorems: Statements.

Let X be a complete, separable metric space, and let F be the Borel σ-field. For each
N ∈ Z>0, let PN be a probability measure on the probability space (X , F ). Then Varadhan
says that the sequence (P1, P2, . . . ) satisfies the large deviation principle with rate function
I(·) : X → [0,∞] if and only if

• I(·) is lower semicontinuous, meaning that for each t ∈ [0,∞] the set {x : I(x) ≤ t}
is closed in X ;

• for each closed set F ⊆ X ,

lim sup
N→∞

1

N
log(PN(F )) ≤ − inf

x∈F
I(x) ;

• for each open set U ⊆ X ,

lim inf
N→∞

1

N
log(PN(U)) ≥ − inf

x∈U
I(x) .

This is not the most general formulation of the large deviation principle. (See the introduction
to [1].) But Varadhan immediately proves the following useful theorem, which has come to
be known as “Varadhan’s lemma”:
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Theorem 2.5 Let (P1, P2, . . . ) satisfy the LDP with rate function I(·). Then for any bounded
continuous function Φ : X → R,

lim
N→∞

1

N
log
(
EPN

[
eNΦ(x)

])
= sup

x∈X
[Φ(x)− I(x)] .

For us X = [0, 1] which satisfies the topological requirements. (It is even compact.)
The measures we start with are the counting measures on ΩN (not the Boltzmann-Gibbs
measures). These are not normalized, but after normalizing they yield the uniform measures
on ΩN :

µN,0,0(σ) = |ΩN |−1 = 2−N .

Then the measure PN is the induced measure on [0, 1] obtained from the map mN : ΩN →
[0, 1]. Hence, for any measurable subset E ⊂ [0, 1],

PN(E) = µN,0,0{σ : mN(σ) ∈ E} .

An equivalent way to get the same thing is to consider X1, X2, . . . to be i.i.d. random variables
with values in {+1,−1}with equal probabilities for both, so the distributions are µ1,0,0. Then
PN is the probability distribution for the random variable

X1 + · · ·+ XN

N
.

Therefore, the following result is applicable.

Theorem 2.6 (Cramér’s theorem for finite subsets of R) Let X1, X2, . . . be i.i.d. random
variables, with distribution P1 such that supp(P1) is a finite subset of R. For each N ∈ Z>0,
let PN be the probability distribution of

X1 + · · ·+ XN

N
.

This sequence of measures satisfies the LDP with rate function

I(x) = sup
λ∈R

[λx− Λ(λ)] ,

where Λ : R → R is the logarithmic moment generating function of P1,

Λ(λ) := log
(
EP1

[
eλx
])

.

Remark 2.7 The support of each measure is a subset of X = cch(supp(P1)), where cch
denotes “closed, convex hull”. For every x ∈ X {, I(x) = +∞.

We will follow Dembo and Zeitouni in proving this as a consequence of Sanov’s theorem.
But we will delay this until lecture 5, which we devote to the topic of proving Cramér’s
theorem. However, with the theorems as stated, we can prove Theorem 2.1.

2.2 Conditional Proof of Main Theorem.

We give the proof of the main theorem now. But it still must be considered a conditional
proof, because it relies on Theorem 2.5, which we will prove in the next section, and Theorem
2.6 which we will prove in the next lecture.
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As stated above, we can think of P1, P2, . . . as being defined on X = cch(supp(P1)).
Since supp(P1) = {+1,−1}, this means X = [−1, 1] as stated before. It is trivial to
calculate

Λ(λ) = log
(
EP1

[
eλm
])

= log(cosh(λ)) ,

since P1 = 1
2
δ+1 + 1

2
δ−1. We are writing the variable of integration as m, not x, because that

is what it is in our case. Therefore, Cramér’s theorem gives

I(m) = sup
λ∈R

[λm− log(cosh(λ))] ,

for each m ∈ [−1, 1]. But this optimum is attained when tanh(λ) = m; i.e.,

λ =
1

2
log(1 + m)− 1

2
log(1−m) .

(We allow for λ = ±∞, which occurs at m = ±1, because those are the limits that would be
obtained via a “supremizing” sequence.) Therefore by calculations from before,

I(m) =
1 + m

2
log(1 + m) +

1−m

2
log(1−m) .

As noted before, PN is the image of the uniform probability measure on ΩN under the
measurable mapping mN : ΩN → R. But the pressure is not defined with respect to the
uniform probability measure, it is defined with respect to the counting measure. Therefore,

pN(t, x) = log(2) +
1

N
log
(

EPN

[
eN [(t/2)m2+mx]

])
,

where PN is a measure on m (not x). By Varadhan’s lemma, the thermodynamic limit of the
pressure exists, and

p(t, x) = log(2) + max
m∈X

[
t

2
m2 + mx− I(m)

]
= max

m∈X

[
t

2
m2 + mx− 1 + m

2
log

(
1 + m

2

)
− 1−m

2
log

(
1−m

2

)]
.

We have written the max instead of sup, which is justified whenever X is compact, because
a lower semicontinuous function always attains its maximum on compact sets. Actually, in
the present context, it is easy to see that the maximum is never attained at m = 1 or m = −1
because the right-derivative of this function equals +∞ at m = −1 and the left-derivative
equals −∞ at m = 1. That is why in the theorem we restricted to m ∈ (−1, 1).

3. VARADHAN’S PROOF

Here we will simply restate Varadhan’s proof of his lemma, paraphrased from [4]. As is
common in analysis, an identity is actually proved as the conjunction of two inequalities.

The upper bound relies on a principle which is an essential element of large deviations
theory. Given a sequence of nonnegative numbers a = (a1, a2, . . . ), define

L(a) := lim sup
N→∞

1

N
log(aN) .
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Then, given n different sequences a(1), . . . ,a(n), one has

L
(
a(1) + · · ·+ a(n)

)
= max

{
L
(
a(1)
)
, . . . , L

(
a(n)

)}
.

This is easy to check and we encourage the reader to do it. So the function L turns the binary
operation of + into the binary operation of ∨.

With this in mind, given any finite number of sets F1, . . . , Fn ∈ F , whose union covers
X , it is obvious that

lim sup
N→∞

1

N
log
(
EPN

[
eNΦ(x)

])
= lim sup

N→∞

1

N

(∫
X

eNΦ(x) dPN(x)

)
≤ lim sup

N→∞

1

N

(
n∑

k=1

∫
Fk

eNΦ(x) dPN(x)

)

= max
1≤k≤n

lim sup
N→∞

1

N
log

(∫
Fk

eNΦ(x) dPN(x)

)
.

On the other hand, clearly

log

(∫
Fk

eNΦ(x) dPN(x)

)
≤ sup

x∈Fk

Φ(x) + log(PN(Fk)) ,

so that, if Fk is closed, the LDP gives

lim sup
N→∞

1

N
log

(∫
Fk

eNΦ(x) dPN(x)

)
≤ sup

x∈Fk

Φ(x)− inf
x∈Fk

I(x) .

If we also suppose that Φ has oscillation at most ε on Fk, then

sup
x∈Fk

Φ(x)− inf
x∈Fk

I(x) ≤ ε + sup
x∈Fk

[Φ(x)− I(x)] .

Therefore, with all the suppositions we have made, one concludes

lim sup
N→∞

1

N
log
(
EPN

[
eNΦ(x)

])
≤ ε + max

1≤k≤n
sup
x∈Fn

[Φ(x)− I(x)]

= ε + sup
x∈X

[Φ(x)− I(x)] .

So, proving

lim sup
N→∞

1

N
log
(
EPN

[
eNΦ(x)

])
≤ sup

x∈X
[Φ(x)− I(x)] ,

the upper bound for Varadhan’s lemma, is reduced to checking that, for each ε > 0, there is
an n ∈ Z>0 and closed sets F1, . . . , Fn, which cover X , and such that Φ has oscillation at
most ε on each one. But, since Φ : X → R is bounded and continuous, such sets are easy
to find. Namely, just cover the range of Φ by a finite number, n, of closed intervals each of
length ε. The preimage of each such set under Φ is still closed, their union covers X , and by
construction Φ has oscillation at most ε on each one.

To conclude Varadhan’s proof, we just have to establish the lower bound. He proves this
by an “ε/2” argument. First, given an arbitrary ε > 0, choose x0 ∈ X such that

Φ(x0)− I(x0) ≥ − ε

2
+ sup

x∈X
[Φ(x)− I(x)] .
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Let U be the open set {y ∈ X : |Φ(y)− Φ(x)| < ε/2}. Then

1

N
log

(∫
U

eNΦ(x) dPN(x)

)
≥ Φ(x0)−

ε

2
+

1

N
log(PN(U)) .

By the LDP,

lim inf
N→∞

1

N
log(PN(U)) ≥ − inf

x∈U
I(x) ≥ −I(x0) ,

since x0 is obviously in U . Therefore,

lim inf
N→∞

1

N
log
(
EPN

[
eNΦ(x)

])
≥ lim inf

N→∞

1

N
log

(∫
U

eNΦ(x) dPN(x)

)
≥ − ε

2
+ Φ(x0)− I(x0)

≥ −ε + inf
x∈X

[Φ(x)− I(x)] .

That is the lower bound. �

Remark 3.1 We state again, just to be clear, that this is the proof given in Varadhan’s book,
except that we have inserted many more words than he did, spoiling the elegance character-
istic of his writing.

4. COMMENT: THE MINIMAX THEOREM

One can observe that by combining Cramér’s theorem and Varadhan’s lemma, before solv-
ing, one obtains

lim
N→∞

1

N
log
(
EPN

[
eNΦ(x)

])
= sup

x∈X
inf
λ∈R

[Φ(x)− λx + Λ(λ)] .

In principle, one can ask whether it is allowed to exchange the order of first taking the min,
then taking the max. The answer is “yes” under certain conditions. We quote the following
theorem.

Theorem 4.1 (Kneser-Fan Theorem) Let X be a compact, convex subset of a Banach
space, and let Y be any convex subset of a vector space. Suppose that L is a function
on X × Y that is concave with respect to x ∈ X and convex with respect to y ∈ Y . Then,
if L is also upper semicontinuous on X , for each fixed y ∈ Y , one concludes

sup
x∈X

inf
y∈Y

L(x, y) = inf
y∈Y

sup
x∈X

L(x, y) .

This purely topogical result is proved, for example, in [3]. If X is compact, as in the
hypotheses of the theorem, and if Φ is concave, then we are allowed to switch the order of
optimization problems arising from Varadhan’s lemma and Cramér’s theorem. In our case,
where we are calculating the pressure of the Curie-Weiss model, Φ is concave only for the
antiferromagnet. It may seems a rather minor point to be allowed to exchange the order of
optimization problems, since both are solved more-or-less explicitly by finding critical points
through the derivative. In the present context it is a minor point. But, for the antiferromag-
netic Curie-Weiss model, the exchanged problem can also be derived by a different technique,
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called the extended variational principle. (See, for example, [2].) This technique is useful
when it comes to spin glasses.

Remark 4.2 The Kneser-Fan theorem, is a nice generalization of a famous result called “von
Neumann’s minimax theorem” which is the specialization to the case that L is bilinear and
the convex sets are both finite-dimensional simplexes, such as ∆n−1 = {(x1, . . . , xn) :
x1, . . . , xn ≥ 0 and x1 + · · · + xn = 1}. If X = ∆n−1 and Y = ∆m−1, then L is de-
rived from an n × m matrix. In that case, the two optimization problems correspond to
finding the best strategy for two different players in a “zero-sum, matrix game”. The equality
corresponds to the existence of a saddle-point or equilibrium. This problem is apparently
useful in economics, which is presumably why von Neumann’s minimax theorem is famous.
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