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1. SANOV’S THEOREM

In this lecture we will review the most elementary aspects of large deviations theory. This
is the large deviation theory for i.i.d. random variables taking only finitely many values. Fol-
lowing Dembo and Zeitouni [2], we start with Sanov’s theorem. We will basically reproduce
Dembo and Zeitouni’s proof of Sanov’s theorem, and its corollary, Cramér’s theorem. The
interested reader is referred to their book for many deeper results.

Let Ω = {a1, . . . , an} be a finite set. This is simply a finite sample space. But Dembo and
Zeitouni also refer to it as a finite alphabet, presumably because of the importance of Sanov’s
theorem in information theory. Let M1(Ω) be the space of probability measures on Ω. Every
such measure can be written as

µ =
n∑

i=1

θi δai
,

where δai
is the point-mass at ai ∈ Ω, and

θ1, . . . , θn ≥ 0 and θ1 + · · ·+ θn = 1 .

The map µ 7→ (θ1, . . . , θn) is an affine bijection between M1(Ω) and Σn := {(θ1, . . . , θn) :
∀i , θi ≥ 0 and

∑n
i=1 θi = 1}, the finite-dimensional simplex.

A natural topology on M1(Ω) is the total-variation distance. Actually, on the extended
family of signed measures, the total-variation distance is a norm:

‖µ− ν‖TV = max
A⊆Ω

|µ(A)− ν(A)| = 1

2

n∑
i=1

|µ{ai} − ν{ai}| .

Date: October 6, 2006.
1



2 S. STARR

In particular, its restriction to M1(Ω) is a valid metric. The topology is identical to the
standard topology inherited from Rn, through the isomorphism M1(Ω) ∼= Σn. Modulo an
overall scaling, the total-variation norm is the image of the `1-norm on Rn.

Given any N -tuple y = (y1, . . . , yN) with y1, . . . , yN ∈ Ω, the empirical measure is
defined as

LN(y) = LN(y1, . . . , yN) =
1

N

N∑
k=1

δyk
.

This can be written as

LN(y) =
n∑

i=1

θi δai
for θi =

#{k ∈ [1, N ] : yk = ai}
N

,

where we write [1, N ] for the discrete interval {1, . . . , N}. This is a measure in M1(Ω).
Since M1(Ω) is, itself, a compact metric space, one can consider the large deviation problem
on it.

The set-up for Sanov’s theorem is that one chooses an element µ ∈ M1(Ω), and then lets
Y1, Y2, . . . be i.i.d. random variables, distributed according to µ. Let Pµ denote the i.i.d prod-
uct measure. Sanov’s theorem describes the large deviation properties of the sequence of
random measures, LN(Y1, . . . , YN), for N ∈ Z>0. The following is a simple observation.

Lemma 1.1 Let µ ∈ M1(Ω) be any measure. Suppose y ∈ ΩN and let ν = LN(y). Then

Pµ{(Y1, . . . , YN) = y} = eN [S(ν|µ)−H(ν)] ,

where S(ν|µ) is the relative entropy and H(ν) is just the “entropy”:

S(ν|µ) = −
n∑

i=1

ν{ai} log

(
ν{ai}
µ{ai}

)
and H(ν) = −

n∑
i=1

ν{ai} log(ν{ai}) .

(As before, “0 log(0) = 0”.)

Remark 1.2 Our sign convention for relative entropy is the opposite of Dembo and Zeitouni’s
choice, but is made to be consistent with our definitions from earlier lectures.

Proof. Using product measure, Pµ, on Y1, . . . , YN , one has, for y = (y1, . . . , yN) ∈ ΩN ,

Pµ{(Y1, . . . , YN) = y} =
N∏

k=1

µ{yk}

=
n∏

i=1

(µ{ai})#{k∈[1,N ] : yk=ai}

=
n∏

i=1

(µ{ai})Nν({ai}) .

The last equation is because LN(y) = ν, which gives precisely those identities. So,

Pµ{(Y1, . . . , YN) = y} = eN
Pn

i=1 ν{ai} log(µ{ai}) .
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But, by definition,
n∑

i=1

ν{ai} log(µ{ai}) = S(ν|µ)−H(µ) .

�

For each N ∈ Z>0, Dembo and Zeitouni let LN ⊂ M1(Ω) be the subset consisting of all
ν which can be expressed as

ν =
n∑

i=1

θi δai
such that θ1, . . . , θn ∈

{
0, 1

N
, 2

N
, . . . , 1

}
.

This is the set of all measures ν which can be realized as LN(y) for some y ∈ ΩN . Dembo
and Zeitouni also define TN(ν) to be the preimage under LN of ν for each ν ∈ LN :

TN(ν) :=
{
y ∈ ΩN : LN(y) = ν

}
.

The lemma shows that, for ν ∈ LN ,

Pµ{LN(Y1, . . . , YN) = ν} =
∑

y∈TN (ν)

Pµ{(Y1, . . . , YN) = y} = eN [S(ν|µ)−H(ν)] #TN(ν) .

Moreover, by elementary combinatorics, it is clear that

#TN(ν) =

(
N

Nν{a1}, Nν{a2}, . . . , Nν{an}

)
.

Therefore, one could extract the asymptotics related to Pµ{LN(Y1, . . . , YN) = ν} by re-
sorting to Stirling’s formula, if one has learned this from a course on asymptotic analysis.
(See, for example, Section 1.4 in [1].) But Dembo and Zeitouni present a different and more
elegant solution. It consists in bounding #TN(ν) by making clever use of Lemma 1.1:

Lemma 1.3 For every ν ∈ LN ,

eNH(ν)

#LN

≤ #TN(ν) ≤ eNH(ν) . (1.1)

Remark 1.4 Note that H(ν) is a concave function. It is well-known that, in finite dimensions,
concave functions, defined on compact, convex domains, always attain their minima on the
extreme points of those domains. The set M1(Ω) is compact and convex: in fact it is a
simplex. The extreme points of M1(Ω) are the point-masses δai

, for i ∈ {1, . . . , n}. It is easy
to see that H(δai

) = 0. Therefore, the “entropy” is always nonnegative.

Proof. The upper bound is obtained by direct application of Lemma 1.1. Recall that S(ν|ν) =
0. Therefore, taking ν ∈ LN , we have

Pν{(Y1, . . . , YN) = y} = e−NH(ν) ,

for y ∈ TN(ν). This follows from Lemma 1.1, just replacing µ by ν. But then clearly

#TN(ν) ≤ eNH(ν) ,

because by our previous calculation

e−NH(ν) #TN(ν) = Pν{LN(Y1, . . . , YN) = ν} ,
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and no probability can be greater than 1. The lower bound is slightly trickier and uses the
following elementary exercise.
Exercise. Given λ ≥ 0, define the discrete probability mass function fλ : Z≥0 → [0, 1] as

fλ(x) = e−λ λx

x!
.

I.e., this is the p.m.f. of the Poisson(λ) random variable. Then this distribution is “unimodal”,
in the sense that {

fλ(x) ≤ fλ(y) if x ≤ y ≤ λ;
fλ(x) ≥ fλ(y) if λ ≤ x ≤ y.

Figure 1 shows the p.m.f. for a particular choice of λ, wherein one sees plainly that there
is only a single “mode” in the graphical sense that there is a single “hump”. For most values
of λ there is also only one statistical mode (absolute maximum for fλ) for the distribution.
But for λ = n ∈ Z>0 there are two statistical modes, at n and n− 1.

The consequence of this inequality when λ = k ∈ Z≥0 is that

kk

k!
≥ kj

j!
, (1.2)

for any other j ∈ Z≥0 (with equality if j = k − 1). This inequality will be used to prove that

Pν{LN(Y1, . . . , YN) = ν} ≥ Pν{LN(Y1, . . . , YN) = ν ′} (1.3)

for any other ν ′ ∈ LN , for which supp(ν ′) ⊆ supp(ν). By Lemma 1.1, and properties of
S(·|ν), the right hand side of (1.3) is zero if supp(ν ′) 6⊆ supp(ν).

In proving (1.3) we can assume that supp(ν) = Ω. Otherwise, we would just reduce our
alphabet to be supp(ν), which does not affect either side of (1.3) as long as supp(ν ′) ⊆
supp(ν). Then a straightforward calculation with the multinomial distribution gives

Pν{LN(Y1, . . . , YN) = ν}
Pν{LN(Y1, . . . , YN) = ν ′}

=

(
N

Nν{a1},...,Nν{an}

)∏n
i=1(ν{ai})Nν{ai}(

N
Nν′{a1},...,Nν′{an}

)∏n
i=1(ν{ai})Nν′{ai}

=
n∏

i=1

(Nν ′{ai})!
(Nν{ai})!

(ν{ai})N [ν{ai}−ν′{ai}] .

0 1 2 3 4 5 6 7 8 9 10 11 12
. . .

FIGURE 1. fλ(x) for Poisson r.v. with λ = 5, for x = 0, . . . , 12. (Note
whenever λ = n for some n ∈ Z>0, one has fn(n − 1) = fn(n). This does
not violate unimodality, which allows for equality as well as strict inequality.)
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By (1.2), with k = Nν{ai} and j = Nν ′{ai}, we see that

(Nν ′{ai})!
(Nν{ai})!

≥ (Nν{ai})N [ν′{ai}−ν{ai}] .

Therefore, plugging this back into the inequality for the ratio yields

Pν{LN(Y1, . . . , YN) = ν}
Pν{LN(Y1, . . . , YN) = ν ′}

≥
n∏

i=1

NN [ν′{ai}−ν{ai}]

= NN[
Pn

i=1 ν′{ai}−
Pn

i=1 ν{ai}]

= 1 .

This proves (1.3).
Now this can be used to prove the lower bound, because

1 =
∑

ν′∈LN

Pν{LN(Y1, . . . , YN) = ν ′}

≤ Pν{LN(Y1, . . . , YN) = ν}#LN

= e−NH(ν) #TN(ν) #LN .

�

Combining Lemma 1.1 and Lemma 1.3 gives:

Corollary 1.5 For any µ ∈ M1(Ω) and any ν ∈ LN ,

eNS(ν|µ)

#LN

≤ Pµ{LN(Y1, . . . , YN) = ν} ≤ eNS(ν|µ) .

Remark 1.6 Recall that S(ν|µ) is always nonpositive, because for a fixed µ the maximizer
of S(ν|µ) is ν = µ, which gives 0. This was proved in the “addendum on entropy”.

Note that, on the exponential scale, #LN does not contribute. The reason is that it only
grows as a polynomial with N , as the following exercise shows.

Exercise. Let L ′
N = {(k1, . . . , kn) : k1, . . . , kn ∈ Z≥0 and k1 + · · · + kn = N}, which

is in bijection to LN , basically just dividing by N . Show that #L ′
N =

(
N+n−1

n−1

)
.

(HINT: A common approach is to use the “stars-and-bars” representation. For example
(1, 0, 3, 2) would be represented as |∗||∗∗∗|∗∗|.)

Theorem 1.7 (Sanov’s Theorem) For arbitrary subsets, Γ ⊆ M1(Ω),

lim sup
N→∞

1

N
log (Pµ{LN(Y1, . . . , YN) ∈ Γ}) ≤ sup

ν∈Γ
S(ν|µ) .

For open subsets, U ⊆ M1(Ω),

lim inf
N→∞

1

N
log (Pµ{LN(Y1, . . . , YN) ∈ U}) ≥ sup

ν∈U
S(ν|µ) .
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We will not prove this result but here are some ideas. Because of Corollary 1.5 and the
exercise,

lim
N→∞

[
1

N
log (Pµ{LN((Y1, . . . , YN)) ∈ ΓN}) − sup

ν∈ΓN

S(ν|µ)

]
= 0 ,

for any sequence of sets Γ1, Γ2, . . . with ΓN ⊆ LN for each N ∈ Z>0. Letting ΓN = Γ∩LN

leads easily to the upper bound because

lim sup
N→∞

sup
ν∈Γ∩LN

S(ν|µ) ≤ sup
ν∈Γ

S(ν|µ) .

The lower bound is a little more tricky. One wants to prove

lim inf
N→∞

sup
ν∈U∩LN

S(ν|µ) ≥ sup
ν∈U

S(ν|µ) ,

for open sets U . An optimizing sequence ν1, ν2, . . . , for getting the sup on the right hand side
of the inequality may be chosen in the subset U ∩M1(supp(µ)), because on the complemen-
tary subset of U , the relative entropy is −∞. Therefore, it is of fundamental importance that
S(·|µ) is continuous on the set M1(supp(µ)). So the desired inequality basically follows by
showing that, for any ν ∈ M1(supp(µ)), there is a sequence of measures ν(1), ν(2), . . . with:

• ν(N) ∈ M1(supp(µ)) ∩ LN for all N ; and
• limN→∞ ‖ν − ν(N)‖TV = 0. (In fact one can choose ‖ν − ν(N)‖TV ≤ n/N .)

These few words do not prove the theorem of course. For the real proof consult [2].

2. CRAMÉR’S THEOREM

The following is a stronger version of Cramér’s theorem than appeared in Lecture 4. (We
recall that cch denotes “closed, convex hull”.)

Theorem 2.1 (Cramér’s theorem for finite subsets of R) Let X1, X2, . . . be i.i.d. random
variables, with distribution P1 such that supp(P1) is a finite subset of R. For each N ∈ Z>0,
let PN be the probability distribution of

X1 + · · ·+ XN

N
.

Let X = cch(supp(P1)). For x ∈ X , define the rate function

I(x) = sup
λ∈R

[λx− Λ(λ)] ,

where Λ : R → R is the logarithmic moment generating function of P1,

Λ(λ) := log
(
EP1

[
eλx
])

.

Then, for every subset Γ ⊆ X ,

lim sup
N→∞

1

N
log(PN(Γ)) ≤ − inf

x∈Γ
I(x) ,

and for each open subset U ⊆ X ,

lim inf
N→∞

1

N
log(PN(U)) ≥ − inf

x∈U
I(x) .
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Suppose supp(P1) = {r1, . . . , rn} ⊂ R. In order to fit with the previous section, let
Ω = {a1, . . . , an} and define f : Ω → R so that f(ai) = ri. One can extend the map to
f∗ : M1(Ω) → X by defining

f∗(ν) := Eν [f ] =
n∑

i=1

f(ai)ν(ai) .

Then, defining µ = P1 ◦ f , for any subset Γ ⊆ X ,

PN(Γ) = Pµ{LN(Y1, . . . , YN) ∈ f−1
∗ (Γ)} . (2.1)

Indeed, taking Y1, Y2, . . . to be i.i.d. random variables distributed by µ, as before, we can
define Xi = f(Yi) so that X1, X2, . . . are i.i.d. random variables with distribution P1. But

f∗(LN(Y1, . . . , YN)) =
1

N

N∑
k=1

f(Yk) =
X1 + · · ·+ XN

N
.

Therefore, with this coupling between (Yk)
∞
k=1 and (Xk)

∞
k=1, the following events are equal

{LN(Y1, . . . , YN) ∈ f−1
∗ (Γ)} =

{
X1 + · · ·+ XN

N
∈ Γ

}
.

That certainly implies (2.1). Also, the map f∗ is continuous (in fact affine). So, for an open
subset U ⊂ X , one has f−1

∗ (U) is also open. Thus, by Sanov’s theorem, one obtains: for
every subset Γ ⊆ X ,

lim sup
N→∞

1

N
log(PN(Γ)) ≤ sup

ν∈f−1
∗ (Γ)

S(ν|µ) ;

and for every open subset U ⊆ X ,

lim inf
N→∞

1

N
log(PN(U)) ≥ sup

ν∈f−1
∗ (U)

S(ν|µ) .

Then, defining
I(x) = − sup

ν∈f−1
∗ (x)

S(ν|µ) ,

one has
sup

ν∈f−1
∗ (Γ)

S(ν|µ) = − inf
x∈Γ

I(x) .

Therefore, one obtains the result of Cramér’s theorem except that the rate function is as above.
The only thing left to prove is that this definition also matches the other one, namely that, for
each x ∈ X ,

sup
ν∈f−1

∗ (x)

S(ν|µ) = − sup
λ∈R

[λx− Λ(λ)] = inf
λ∈R

[Λ(λ)− λx] .

Proof. The proof of this result will use a variant of the Gibbs variational principle. Observe
first that

Λ(λ) = log
(
EP1 [eλx]

)
,
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and this can be rewritten as

Λ(λ) = log

(
n∑

i=1

eλf(ai)µ{ai}

)
.

This looks very much like a pressure, where λf is playing the role of −βH . Indeed, the most
important difference is that µ, which is playing the role of the a priori measure, need not be
uniform. But that does not nullify the result of the Gibbs variational principle. Indeed, since
the a priori measure is at least normalized, we lose the nuisance factor of log(|Ω|) which we
would have had if we took counting measure, instead. By the Gibbs variational principle, we
obtain

Λ(λ) = sup
ν∈M1(Ω)

(S(ν|µ) + λEν [f ]) = sup
ν∈M1(Ω)

[S(ν|µ) + λf∗(ν)] .

Therefore, substituting back into the function we actually want to optimize, we have

inf
λ∈R

[Λ(λ)− λx] = inf
λ∈R

sup
ν∈M1(Ω)

[S(ν|µ) + λ(f∗(ν)− x)] .

Now we are in a position to use the Kneser-Fan theorem, which we introduced in Lecture 4,
and which is proved, for example, in [3]. The function

L(λ, ν) = S(ν|µ) + λ(f∗(ν)− x)

is convave in ν and convex in λ. Indeed it is linear in λ. The reason it is concave in ν is that
S(ν|µ) is concave, and f∗(ν) is linear (or more appropriately affine), therefore convex-and-
concave. The set M1(Ω) is compact and convex. Therefore, by the Kneser-Fan theorem,

inf
λ∈R

sup
ν∈M1(Ω)

[S(ν|µ) + λ(f∗(ν)− x)] = sup
ν∈M1(Ω)

inf
λ∈R

[S(ν|µ) + λ(f∗(ν)− x)] .

But, except when f∗(ν) = x, one has

inf
λ∈R

[S(ν|µ) + λ(f∗(ν)− x)] = −∞ .

This will surely not contribute to the supremum in ν ∈ M1(Ω) (unless that supremum is−∞,
in which case making further restrictions will cause no harm). Therefore, one must restrict to
ν such that f∗(ν) = x. I.e., one must restrict to ν ∈ f−1

∗ (x). Thus one has

sup
ν∈M1(Ω)

inf
λ∈R

[S(ν|µ) + λ(f∗(ν)− x)] = sup
ν∈f−1

∗ (x)

inf
λ∈R

[S(ν|µ) + λ(f∗(ν)− x)]

= sup
ν∈f−1

∗ (x)

S(ν|µ) .

This is what we wanted to prove. �

Remark 2.2 This proof used the Kneser-Fan theorem, but we did not prove that theorem.
A more direct proof, which is even simpler can be found in [2]. Also, one should usually
mention at this point that what we are doing is taking the Legedre-Fenchel transform, which
is partially involutive. One could do a much better job of stressing the connections between
these points, and it usually is done in a course on large deviations, for example.
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