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1. ABSTRACT NONSENSE

In this lecture, I will freely state some topological and analytical facts. In a companion
lecture, I will give the complete proofs of the facts needed in a concrete setting. Most of these
facts follow from high-power general theorems that may use, for example, Zorn’s lemma,
the Deus-ex-machina of choice in point-set topology. Of course, in concrete situations, one
should never have to use that. If I can figure them out, I will give the concrete proofs instead
of referring to general theorems. But also, we will not have time or inclination to discuss that
promised lecture in class. So basically, just take these facts at face-value, only one of them
contains anything important.

A good reference for point-set topology and basic analysis, as well as measure theory and
probability, is Dudley’s monograph, [3]. Other books on analysis are Royden [6], Kelley [5],
Choquet [1], and Dunford and Schwartz [2], and Simon [7].

Let Ω = {+1,−1}. The only thing that is important for us about this set is that it can
be considered as a compact metric space. Namely, let the metric be d1(σ, σ′) = 1

2
|σ − σ′|.

Then this leads to the discrete topology: every one of the four possible subsets of Ω is both
open and closed. Of course, every set is also measurable. Let M1(Ω) be the set of all Borel
probability measures on Ω.

Let us introduce some notation now. Note that M1(Ω) is isomorphic to [0, 1]. Namely,
given p ∈ [0, 1], define αp ∈ M1(Ω) such that

αp{+1} = p and αp{−1} = 1− p .

Since we are considering Ω as a compact metric space, we can ask what are the continuous
functions into R. They are all functions. In this case C (Ω), is isomorphic to R2. Namely,
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a continuous function is given by a pair (f(+1), f(−1)), The topology on C (Ω) is the sup-
norm topology. So ‖f − g‖∞ = max{|f(+1)− g(+1)|, |f(−1)− g(−1)|}.

Let M±(Ω) denote the set of signed measures. So for µ ∈ M±(Ω), one has that µ{+1}
and µ{−1} are arbitrary numbers in R. Thus M±(Ω) is also isomorphic to R2. Given µ ∈
M±(Ω) and f ∈ C (Ω), one can define a pairing

〈f, µ〉 =

∫
Ω

f dµ = f(+1)µ{+1}+ f(−1)µ{−1} .

As vectors, this is the inner-product. One puts the weak topology on M±(Ω). This means
that a sequence µ1, µ2, · · · ∈ M±(Ω) converges to a measure µ ∈ M±(Ω) if and only if, for
each f ∈ C (Ω), one has

lim
n→∞

∫
Ω

f dµn =

∫
Ω

f dµ .

Of course, on a finite-dimensional vector space like R2, essentially all nondegnerate topolo-
gies are equivalent. But this is not true for infinite-dimensional vector spaces.

For each N ∈ Z>0, let ΩN be the usual product space. Also, define a metric dN(·, ·) on
ΩN by

dN(σ, σ′) =
N∑

n=1

2−n|σn − σ′n| ,

for σ = (σ1, . . . , σN) and σ′ = (σ′1, . . . , σ
′
N) in ΩN . Then, once again, the topology as-

sociated to this metric is discrete. All sets are open and closed. Let M1(Ω
N), C (ΩN) and

M±(ΩN) be the sets of all Borel probability measures on ΩN , all continuous functions from
ΩN to R, and all signed Borel measures on ΩN . Of course, in this case, because the topology
is discrete, all measures are Borel, and all functions are continuous. Given p ∈ [0, 1], define
α⊗N

p ∈ M1(Ω
N) to be the product measure. In other words,

α⊗N
p {σ} =

N∏
n=1

αp{σn} .

There is, of course, a better way of saying this. If X = (X1, . . . , XN) ∈ ΩN is random and
distributed according to α⊗N

p , then this is exactly the same as that X1, . . . , XN are i.i.d. and
distributed by αp. So we will say α⊗N

p is an i.i.d. product measure.
Let Ω∞ be the set of all infinite sequences σ = (σ1, σ2, . . . ) with all σ1, σ2, · · · ∈ Ω.

Let Ω∞ have the product topology. This means the following. For each N ∈ Z>0, let
φN : Ω∞ → ΩN be the standard projection, φN(σ) = (σ1, . . . , σN) for σ ∈ Ω∞. Then the
product topology on Ω∞ is the smallest/weakest/coarsest topology such that each of the maps
φN is continuous. In other words, a sub-base of the topology is given by the set of all sets:
for N ∈ Z>0 and (σ′1, . . . , σ

′
N) ∈ ΩN , the set φ−1

N ({(σ′1, . . . , σ′N)}) = {σ ∈ Ω∞ : σn =
σ′n for n = 1, . . . , N}. In the context of measure theory, we might be comfortable calling
these “cylinder sets”. Recall that the definition of sub-base for a topology means that a base
for the topology is given by all finite intersections of sets in the sub-base. The definition of
base for a topology means that all open sets are arbitrary unions of sets in the sub-base.

Fact 1. With the topology given, Ω∞ is a compact topological space. More than this it is
metrizable, meaning that there is a metric such that the associated metric topology is the
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same as the product topology. Specifically, let

d(σ, σ′) =
∞∑

n=1

2−n|σn − σ′n| .

Then this is a good metric, compatible with the topology on Ω∞.

We let C (Ω∞) denote the Banach space of all continuous functions from Ω∞ to R, with
the sup-norm. Let M1(Ω

∞) denote the set of all Borel probability measures on Ω∞. The
good topology on M1(Ω

∞) is the weak topology. Let us again define the pairing between
f ∈ C (Ω∞) and µ ∈ M1(Ω

∞),

〈f, µ〉 =

∫
Ω∞

f dµ .

The weak topology on M1(Ω
∞) is the smallest/weakest/coarsest topology on M1(Ω

∞) such
that the map 〈f, ·〉 : M1(Ω

∞) → R is continuous for each f ∈ C (Ω∞). This has nice
features.

Fact 2. M1(Ω
∞) ⊂ M±(Ω∞), with the weak topology, is compact and metrizable.

Note that M1(Ω
∞) has a convex structure: if µ1 and µ2 are both probability measures,

and if θ ∈ [0, 1], then of course θ · µ1 + (1 − θ)µ2 is also a probability measure. Recall
the definition of an extreme point of a convex set C. It is a point x ∈ C such that for any
θ ∈ (0, 1), the only y, z ∈ C solving the identity x = θ · y + (1 − θ)z are y = z = x. Also,
given a set A in a convex topological space, recall the definition of the closed convex hull:

cch(A) := cl({x : ∃N ∈ Z>0 , ∃x1, . . . , xN ∈ A , ∃θ1, . . . , θN ∈ [0, 1]

such that θ1 + · · ·+ θN = 1 and x = θ1x1 + · · ·+ θNxN}) ,

where cl(E) = E is the closure operation.

Fact 3. Let K be a compact, convex subset of M1(Ω
∞). Then K is a subset of the closed

convex hull of its extreme points.

2. DE FINETTI’S THEOREM

Suppose that π : Z>0 → Z>0 is an injection. Then we can define a mapping π∗ : Ω∞ →
Ω∞ such that

π∗(σ) = (σπ(1), σπ(2), . . . ) .

Fact 4. The mapping π∗ : Ω∞ → Ω∞ is continuous. Therefore, the mapping from M1(Ω
∞) →

M1(Ω
∞) given by µ 7→ µ ◦ π−1

∗ is (weakly) continuous.

Definition 2.1 A measure µ ∈ M1(Ω
∞) is called “exchangeable” if

µ = µ ◦ π−1
∗ ,

for every injection π : Z>0 → Z>0.
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Theorem 2.2 (de Finetti) Let µ ∈ M1(Ω
∞) be an exchangeable measure. Then there is a

unique ρ ∈ M1([0, 1]) such that

µ ◦ φ−1
N (·) =

∫ 1

0

α⊗N
p (·) dρ(p) ,

for each N ∈ Z>0.

3. THE CHOQUET-THEORETIC PROOF

The argument of this section is due to Hewitt and Savage [4]. Let K be the set of all
exchangeable measures in M1(Ω

∞). It is obvious that K is convex because the condition
µ = µ ◦ π−1

∗ is linear in µ, for each injection π : Z>0 → Z>0.

Lemma 3.1 E (K) ⊆ {α⊗∞p : p ∈ [0, 1]}.

Proof. Suppose µ ∈ E (K). Then one of three things happens:

(1) µ ◦ φ−1
1 {+1} = 1;

(2) µ ◦ φ−1
1 {+1} = 0; or

(3) 0 < µ ◦ φ−1
1 {+1} < 1.

It is easy to see that (1) implies µ = α⊗∞1 , and (2) implies µ = α⊗∞0 . Let us prove this,
because it is also a warm-up for the argument for case (3).

Suppose µ satisfies (1). Suppose N ∈ Z>0 and (σ1, . . . , σN) ∈ ΩN is anything other
than (+1, . . . , +1). Then we want to prove that µ ◦ φ−1

N {(σ1, . . . , σN)} = 0. That family of
conditions would be sufficient to prove that µ ◦ φ−1

N {(+1, . . . , +1)} = 1. Moreover, proving
that for each N ∈ Z>0 is precisely equivalent to: µ = α⊗∞1 . Therefore, let k1 be the first index
in [1, N ] such that σk1 = −1. Then, define the injection π : Z>0 → Z>0 by π(1) = k1, π(2) =
N+1, π(3) = N+2, . . . . By exchangeability and (1), µ◦π−1◦φ−1

1 {−1} = µ◦φ−1
1 {−1} = 0.

But clearly, π−1 ◦ φ−1
1 {−1} ⊇ φ−1

N {(σ1, . . . , σN)}, so this proves just what we wanted. A
symmetric argument works for case (2).

Suppose µ satisfies (3). Let π : Z>0 → Z>0 be the injection π(n) = n + 1, for each
n ∈ Z>0. Define two new measures µ1, µ2 ∈ M1(Ω

∞) by

µ1(·) =
µ(φ−1

1 {+1} ∩ π−1(·))
µ ◦ φ−1

1 {+1}
and µ2(·) =

µ(φ−1
1 {−1} ∩ π−1(·))
µ ◦ φ−1

1 {−1}
,

which are well-defined because of (3). Obviously

µ = µ ◦ φ−1
1 {+1} · µ1 + µ ◦ φ−1

1 {−1} · µ2 ,

which is a convex combination with θ = µ◦φ−1
1 {+1} ∈ (0, 1). Therefore, since µ is supposed

to be extremal in K, if it can be proved that µ1, µ2 ∈ K, it will follow that µ1 = µ2 = µ. But
indeed, it is easy to see that µ1, µ2 ∈ K. For, if π1 : Z>0 → Z>0 is any injection, defining
π2 : Z>0 → Z>0 so that π2(1) = 1 and π2(n + 1) = π1(n) for all n ∈ Z>0, it is easy to see
that

φ−1
1 {+1} ∩ π−1 ◦ π−1

1 (·) = π−1
2

(
φ−1

1 {+1} ∩ π−1(·)
)

.
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Therefore,

µ1 ◦ π−1
1 (·) def

=
µ(φ−1

1 {+1} ∩ π−1 ◦ π−1
1 (·))

µ ◦ φ−1
1 {+1}

=
µ ◦ π−1

2 (φ−1
1 {+1} ∩ π−1(·))

µ ◦ φ−1
1 {+1}

=
µ(φ−1

1 {+1} ∩ π−1(·))
µ ◦ φ−1

1 {+1}
(by exchangeability of µ)

= µ1(·) .

A symmetric argument works for µ2 (or observe that by linearity, if µ, µ1 ∈ K, it must be
that µ2 ∈ K).

Therefore, µ1 = µ2 = µ. This means that µ = αp ⊗ µ ◦ π−1, for p = µ ◦ φ−1
1 {+1} and

π : Z>0 → Z>0 the injection above. But, using exchangeability and iterating the argument,
this implies that µ = α⊗∞p . �

For each injection, π : Z>0 → Z>0, the set {µ : µ = µ ◦ π−1
∗ } is closed in M1(Ω

∞). (in
part because µ 7→ µ ◦ π−1

∗ is continuous). The intersection of an arbitrary family of closed
sets is closed. Therefore, K is closed. So it is a closed subset of the compact set M1(Ω

∞).
Therefore, it is compact. Therefore, it is a compact, convex subset of M1(Ω

∞). So by Fact
4, K is the closed convex hull of its extreme points. What this literally means is that, for
any µ ∈ K, there is a sequence of measures ρ1, ρ2, · · · ∈ M1([0, 1]), each of which is purely
atomic with finite support, such that

µ(·) = w − lim
n→∞

∫ 1

0

α⊗∞p (·) dρn(p) .

But this is not the type of representation one wants: one does not want to know merely that µ
is a limit point of a sequence of mixtures of i.i.d. product measures; one wants to prove that
µ is an i.i.d. product measure.

Fact 5. The mapping from M1([0, 1]) to M1(Ω
∞), given by

ρ 7→
∫ 1

0

α⊗∞p (·) dρ(p) ,

is a homeomorphism onto its image.

Before finishing the Hewitt and Savage proof of de Finetti’s theorem, let us mention that
there is an alternative, somewhat more constructive proof, which uses Doob’s reversed mar-
tingale convergence theorem, and Kolmogorov’s extension principle.

Let us state another fact, which we will need next lecture.

Fact 6. For each M, N ∈ Z>0, with M ≤ N , define φN
M : ΩN → ΩM by φN

M(σ1, . . . , σN) =
(σ1, . . . , σM). Suppose there is a sequence of measures µ1, µ2, . . . , such that µN ∈ M1(Ω

N)
for each N ∈ Z>0 which is consistent in the sense that

µN ◦ (φN
M)−1 = µM

for each M ≤ N . Then there is a unique measure µ ∈ M1(Ω
∞), such that µN = µ ◦ φ−1

N for
each N .
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Now for the proof of de Finetti’s theorem. Suppose that ρ1, ρ2, . . . is a sequence, as above.
Then, since M1([0, 1]) is compact, there is a convergent subsequence, which, without loss of
generality, we may take to be the original sequence. By continuity,

µ(·) =

∫ 1

0

α⊗∞p (·) dρ(p) ,

where ρ = limn→∞ ρn. But by invertibility, there is no other choice for such a ρ than this one.
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