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All Gaussians are always assumed to be centered.

1. QUADRATIC INTERPOLATION

In 2000 to 2001 Guerra and Toninelli invented an important new idea in the context of spin
glasses. This was quadratic replica coupling. Prior to their discovery, linear interpolation was
a well-known tool. Namely, if one starts with independent Gaussians X and Y, then defining
Zt = tX + (1 − t)Y, for 0 < t < 1, one obtains a 1-parameter family of Gaussian random
variables, interpolating between X and Y. (We should say that we will never make use of
the explicit coupling. I.e., what is important is to have probability distributions interpolating
between the distributions of X and Y, not actual interpolating sample paths.) Guerra and
Toninelli’s observation was that, for spin glasses, many things work better (or actually only
work at all) if you take an interpolation instead Wt =

√
tX +

√
1− tY. In particular, this

means that the variances are linearly interpolated

Var[Wt] = tVar[X] + (1− t)Var[Y] .

Since the variance is quadratic in X and Y, this may be called quadratic interpolation.
In this first lecture on the topic of quadratic coupling, we will present a generalization

of Slepian’s lemma. This lemma is somewhat distinct from spin glasses. Slepian’s lemma
is supposedly important in the subject of “probability on Banach spaces”. (Talagrand is an
expert on this topic, for example.) But the generalized Slepian’s lemma, that we will present,
was derived before Guerra and Toninelli’s breakthrough, and it seems that nobody realized
that it applies to spin glasses. On the other hand, after Guerra and Toninelli’s results, it
was quickly rederived, and now it seems that it allows a pedagogical introduction to the
technique. Therefore, we present this first, but the reader should in no way let this detract

Date: November 7, 2006.
1



2 S. STARR

from the importance, or originality, of Guerra and Toninelli’s results which we will discuss
in subsequent lectures.

2. A GAUSSIAN DIFFERENTIATION LEMMA

For λ ∈ Rn, the notation ∂
∂λ

denotes the divergence and ∂2

∂λ2 denotes the Hessian. The
Laplacian is denoted ∆. We denote C k

κ (Rn) to be functions on Rn which are k-times con-
tinuously differentiable with compact support. By C k

0 (Rn) we mean the functions which are
k-times continuously differentiable, and such that the function and all its derivatives up to
kth order vanish at ∞. We denote the inner-product on Rn by 〈·, ·〉.

Lemma 2.1 (Infinitesimal Generator) For 0 < t < 1, let there be Gaussian random vectors
Xt ∈ Rn, with covariances Ct ∈ Mn(R), such that Ċt = d

dt
Ct is continuous on (0, 1).

Suppose ψ ∈ C 2
0 (Rn). Then

d

dt
E[ψ(Xt)] = E [(Gtψ)(Xt)] where Gt =

1

2

〈
∇, Ċt∇

〉
.

Lemma 2.2 (Wick’s rule) Let X ∈ Rn be a Gaussian random vector with covariance matrix
C ∈Mn(R). Suppose N ∈ Z>0, and suppose a1, . . . , a2N ∈ Rn. Then

E

[
2N∏
k=1

〈ak,X〉

]
=

∑
π∈P2N

N∏
k=1

〈aπ(2k−1), Caπ(2k)〉 ,

where P2N ⊂ S2N is the set of all 2−N
(
2N
N

)
“pairing” permutations, π, satisfying

π(1) < π(3) < π(5) < · · · < π(2N − 1) and

π(1) < π(2) , π(3) < π(4) , . . . , π(2N − 1) < π(2N) .

Proof. For µ ∈ M1(Rn) and ψ ∈ C0(Rn), define the Fourier transforms

µ̂(λ) =

∫
Rn

e−2πi〈λ,x〉 µ(dx) and ψ̂(λ) =

∫
Rn

e−2πi〈λ,x〉 ψ(x) dx .

Then Plancherel’s formula implies that∫
Rn

ψ(x)µ(dx) =

∫
Rn

ψ̂(λ) µ̂(λ) dλ .

For µt the distribution of Xt, we have µ̂t(λ) = e−2π2〈λ,Ctλ〉. Therefore,

d

dt

∫
Rn

ψ̂(λ) µ̂t(λ) dλ =

∫
Rn

(−2π2〈λ,Ctλ〉) ψ̂(λ) µ̂t(λ) dλ .

But by I-B-P, when ψ ∈ C 2
0 (Rn), ( ∂2

∂λ2ψ)̂ (λ) = −4π2(λ⊗ λ)ψ̂(λ), where λ⊗ λ denotes the
outer-product matrix (λ⊗ λ)ij = λiλj . Therefore, by the Plancherel formula again,∫

Rn

(−2π2〈λ,Ctλ〉) ψ̂(λ) µ̂t(λ) dλ =
1

2

∫
Rn

(〈
∇, Ċt∇

〉
ψ
)
(x)µ(dx) .

That proves Lemma 2.1.
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For Lemma 2.2, note that

E

[
2N∏
k=1

〈ak,X〉 e−2πi〈λ,X〉

]
= (−4π2)−N

[
2N∏
k=1

〈
ak,

∂

∂λ

〉]
E
[
e−2πi〈λ,X〉]

= (−4π2)−N

[
2N∏
k=1

〈
ak,

∂

∂λ

〉]
e−2π2〈λ,Cλ〉 .

By induction, one can prove that[
2N∏
k=1

〈
ak,

∂

∂λ

〉]
e−2π2〈λ,Cλ〉

∣∣∣∣∣
λ=0

= (−4π2)N
∑

π∈P2N

N∏
k=1

〈aπ(2k−1), Caπ(2k)〉 .

�

3. A GENERALIZATION OF SLEPIAN’S LEMMA

Lemma 3.1 Suppose that X ∈ Rn and Y ∈ Rn are independent Gaussian vectors. Suppose
that ψ ∈ C 2

0 (Rn). Then

E[ψ(X)]− E[ψ(Y)] =
n∑

j,k=1

(E[XjXk]− E[YjYk])

∫ 1

0

E
[

∂2ψ

∂xj∂xk

(
√
tX +

√
1− tY)

]
dt .

Proof. For each t ∈ [0, 1], let Zt =
√
tX +

√
1− tY. Then Zt has covariance Ct = tCX +

(1 − t)CY, where CX and CY are the covariance matrices for X and Y, respectively. So
Ċt = CX − CY. Therefore, by Lemma 2.1, we know that for 0 < t1 < t2 < 1,

E[ψ(Zt2)]− E[ψ(Zt1)] =

∫ t2

t1

n∑
j,k=1

(E[XjXk]− E[YjYk]) E
[

∂2ψ

∂xj∂xk

(Zt)

]
dt .

But also, it is clear that there are distributional limits

D− lim
t→1

Zt = X and D− lim
t→0

Zt = Y .

�

Next we will state a result of Joag-dev, Perlman and Pitt [1].

Lemma 3.2 (A generalized Slepian’s lemma) Suppose that X ∈ Rn and Y ∈ Rn are Gauss-
ian vectors. Suppose that ψ ∈ C 2(Rn), and that for some N ∈ Z+ and c <∞,

max

{
|ψ(x)|,

∥∥∥∥∂ψ∂x (x)

∥∥∥∥ , ∥∥∥∥∂2ψ

∂x2
(x)

∥∥∥∥} ≤ c(1 + ‖x‖2N) .

Furthermore, suppose that there is a subset A ⊂ {1, . . . , n} × {1, . . . , n} such that: for
(j, k) ∈ A,

E[XjXk] = E[YjYk] ;



4 S. STARR

while for (j, k) 6∈ A,

E[XjXk] ≤ E[YjYk] and
∂2ψ

∂xj∂xk

(x) ≥ 0 , for all x ∈ Rn.

Then
E[ψ(X)] ≤ E[ψ(Y)] .

Proof. If ψ is actually in C 2
0 (Rn), then this is a straightforward consequence of Lemma 3.1.

Therefore, all that is required is to see how to approximate ψ when it is not in C 2
0 (Rn). Let

η ∈ C2
κ(Rn) be any function with η(0) = 1. Let

ψε(x) = η(εx)ψ(x) .

Then ψε ∈ C2
κ(Rn) for each ε > 0, and∣∣∣∣ ∂2ψε

∂xj∂xk

(x)− η(εx)
∂2ψ

∂xj∂xk

(x)

∣∣∣∣ ≤ εKmax

{∥∥∥∥∂ψ∂x (x)

∥∥∥∥ , ∥∥∥∥∂2ψ

∂x2
(x)

∥∥∥∥} ≤ εcK(1+‖x‖2N) .

By Lemma 2.2, the right-hand-side is ε times an integrable function, relative to the distri-
bution of Zt =

√
tX +

√
1− tY, for all t. This converges pointwise to 0, which means

that by DCT the integral converges to 0, as ε → 0+. On the other hand, the left hand side
is also dominated by a constant times an integrable function, and it converges pointwise to
something positive. Therefore, by the Dominated Convergence Theorem, we still have

E[ψ(X)]− E[ψ(Y)] = lim
ε→0+

(E[ψε(X)]− E[ψε(Y)]) ≤ 0 .

�

Corollary 3.3 (Slepian’s lemma) Suppose that X ∈ Rn and Y ∈ Rn are Gaussian vectors.
Suppose that

Var(Xk) = Var(Yk)

for k = 1, . . . , n, while
E[XjXk] ≤ E[YjYk] ,

for 1 ≤ j < k ≤ n. Then

E [max{X1, . . . ,Xn}] ≥ E [max{Y1, . . . ,Yn}] .

Proof. For each β <∞, the function

ψβ(x) =
1

β
log

(
n∑

k=1

eβxk

)
,

satisfies
∂2ψβ

∂xj∂xk

(x) = −β eβxjeβxk

(
∑n

i=1 e
βxi)

2 ≤ 0 ,

for j 6= k. Therefore, by Lemma 3.2,

E[ψβ(X)] ≥ E[ψβ(Y)] ,

for each β. But, by an argument similar to that used in the LDP lectures, we know that

lim
β→∞

ψβ(x) = max
1≤k≤n

xk ,
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and the convergence is uniform. Therefore, by DCT, we obtain the result. �
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