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All Gaussians are always assumed to be centered.

1. REVIEW OF THE SHERRINGTON-KIRKPATRICK SPIN GLASS

In this lecture we will discuss Guerra and Toninelli’s proof of the existence of the ther-
modynamic limit of the pressure for the Sherrington-Kirkpatrick model and many other spin
glass models. Let us start by reminding ourselves of the definition of the Hamiltonian. As
usual, Ω = {+1,−1} and ΩN is the set of all spin configurations σ = (σ1, . . . , σN) with each
σi ∈ Ω. The random Hamiltonian is

HN(σ;h) = − 1√
2N

N∑
i,j=1

Jijσiσj − h
N∑

i=1

σi .

where h ∈ R is a nonrandom number and (Jij : i, j = 1, . . . , N) are i.i.d. N(0, 1) random
variables. Therefore, HN(σ;h) is, itself a random variable. Let us define HN(σ) = HN(s; 0)
to be the Hamiltonian without external magnetic field. This can potentially be very confusing,
but as we will show, we can more easily treat the magnetic field separately by some tricks.
The advantage is that the Hamiltonian without magnetic field,

HN(σ) = − 1√
2N

N∑
i,j=1

Jijσiσj ,

is a pure Gaussian random variable, or rather it is a Gaussian centered random variable. So,
the joint distribution of the family HN = (HN(σ) : σ ∈ ΩN) is completely determined by
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the covariance. Let us calculate this.

E[HN(s)HN(σ′)] =
1

2N

N∑
i,j,k,`=1

E[JijJk`]σiσjσ
′
kσ
′
`

=
1

2N

N∑
i,j,k,`=1

δikδj`σiσjσ
′
kσ
′
`

=
1

2N

N∑
i,j=1

σiσjσ
′
iσ
′
j

=
1

2N

(
N∑

i=1

σiσ
′
i

)2

.

Recall that for the Curie-Weiss model, we had several different versions of the Hamiltonian,
which either included diagonal terms σiσi or only included off–diagonal terms σiσj for i < j.
In the form of the Curie-Weiss model that included diagonal terms, we could rewrite

HCW
N (σ) =

N

2
mN(σ)2 where mN(σ) =

1

N

N∑
i=1

σi .

This was crucial to the large-deviations approach to the Curie-Weiss model. In the version of
the Sherrington-Kirkpatrick model we just wrote down we also include diagonal terms. This
does not mean we are going to necessarily use large deviations to analyze it. But it is true
that, defining

qN(σ, σ′) :=
1

N

N∑
i=1

σiσ
′
i ,

we have

E[HN(σ)HN(σ′)] =
N

2
qN(σ, σ′)2 .

Note that, since the SK Hamiltonian HN = (HN(σ) : σ ∈ ΩN) is Gaussian, it is natural
to work with the covariance as much as possible. This is a trivial comment, but one which
seems worth making.

The function qN : ΩN × ΩN → [−1, 1] is called the spin-spin overlap. It has some simple
features which we would like to explicitly state now. First of all, and most importantly,

qN(σ, σ′) =
1

N
~σ · ~σ′ ,

where we put arrows over the spin configurations to remind ourselves that ΩN ⊂ RN . We
could define the scaled Euclidean distance

dN(σ, σ′) =
1

2N
‖~σ − ~σ′‖2 = 1− qN(σ, σ′) .

Of course, it is also the case that (qN(σ, σ′) : σ, σ′ ∈ ΩN) is a positive semidefinite kernel,
simply because it is the covariance of HN . For later reference, let us observe one more simple
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fact. If N = N1 +N2 for N1, N2 ≥ 1, then

qN(σ, σ̃) =
N1

N
qN1(σ

(1), σ̃(1)) +
N2

N
qN2(σ

(2), σ̃(2)) , (1.1)

where
σ(1) = (σ1, . . . , σN1) and σ(2) = (σN1+1, . . . , σN1+N2) ,

and similarly for σ̃(1) and σ̃(2), defined relative to σ̃. This is important to Guerra and Toninelli’s
convexity argument.

The real quantity of interest is the random pressure. First, define the random partition
function

ZN(β) =
∑

σ∈ΩN

e−βHN (σ) .

If we want to include the external magnetic field, then we can. Let us use the parameter x in
place of βh. Then we can define

ZN(β, x) =
∑

σ∈ΩN

wN(σ;x) e−βHN (σ) ,

where (wN(σ;x) : σ ∈ ΩN) is a weight-factor

wN(σ;x) = ex
PN

i=1 σi =
N∏

i=1

exσi

Note that this factorizes. In particular, if N = N1 +N2, as we considered before,

wN(σ;x) = wN1(σ
(1);x)wN2(σ

(2);x) .

The random pressure is

pN(β, x) =
1

N
log (ZN(β, x)) .

We can define pN(beta) = pN(β, 0). Also, we define the “quenched pressure” to be the
expectation

pN(β, x) = E[pN(β, x)] ,

which is nonrandom. Guerra and Toninelli proved that the following limit exists,

p(β, x) := lim
N→∞

pN(β, x) .

This is the thermodynamic limit of the quenched pressure. In the next lecture we will dis-
cuss what is called “self-averaging” of the random pressure, which proves that |pN(β, x) −
pN(β, x)| converges to 0, in the limit N →∞, in distribution (and in L2). Somewhat surpris-
ingly, the “self-averaging” property was proved, rigorously in 1991, long before the existence
of the thermodynamic limit of the quenched pressure. (Even then, it was a footnote on a pa-
per proving a more complicated result, and the authors, Pastur and Shcherbina claimed to
be surprised that the easy proof had not been found before.) The reason is that, using the
martingale method it is easier to handle the fluctuations of pN(β, h) than it is to hand the
expectation of pN(β, h), itself.
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2. GUERRA AND TONINELLI’S THEOREM FOR THE SK MODEL

Let us state the main theorem from [1], specialized to the SK model.

Theorem 2.1 For each β ∈ [0,∞) and x ∈ R, there is superadditivity of (NpN(β, x) :
N ∈ Z>0). Namely, if N1, N2 ≥ 1 then

(N1 +N2) pN1+N2(β, x) ≥ N1 pN1(β, x) +N2 pN2(β, x) .

Before proving this theorem, let us note the consequence. By Fekete’s lemma, applied to
the subadditive sequence, −N pN(β, x), we see that

p(β, x) = lim
N→∞

pN(β, x) ,

does exist, and it equals

p(β, x) = sup
N≥1

pN(β, x) ∈ R ∪ {+∞} .

In order to prove that p(β, x) 6= +∞, let us recall, from Lecture 2, the definition of the
“annealed pressure”,

pA
N(β, x) :=

1

N
log (E[ZN(β, x)]) .

Recall that, by Jensen’s inequality,

pN(β, x) ≤ pA
N(β, x) .

Also, recall that, by an explicit calculation (using the moment generating function for Gaus-
sians), we have

pA
N(β, x) =

β2

2
+ log(cosh(2x)) ,

independent ofN . (When we did the calculation before, there was a prefactor of N
N−1

because
we considered the version of the SK model that did not include diagonal terms. But it is
trivial to derive this identity from the previous one.) Therefore there is an upper bound for all
pN(β, x) which is uniform in N , so the limit cannot be +∞.

Proof. As in the statement of the lemma, letN1 andN2 be integers≥ 1, and letN = N1+N2.
Let RΩN be the set of all vectors v = (v(σ) : σ ∈ ΩN). Define ψ : RΩN → R by

ψ(v; β, x) = log

(∑
σ∈ΩN

wN(σ;x) e−βv(σ)

)
.

Note that, defining HN = (HN(σ) : σ ∈ ΩN), we have

ψ(HN ; β, x) = N pN(β, x) .

Therefore,
pN(β, x) = E [ψ(HN ; β, x)] .

This puts us in a position to apply the generalized Slepian’s lemma for the function ψ(·; β, x)
applied to the Gaussian family HN , if we can find another Gaussian family, and verify all
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the hypotheses of the theorem. We do have the conditions for the sign of the mixed partial
derivatives of ψ(·; β, x),

∂2

∂v(σ)∂v(σ′)
ψ(v; β, x) = −β2 wN(σ)wN(σ′)e−β[v(σ)+v(σ′)](∑

σ′′∈ΩN wN(σ′′)e−betav(σ′′)
)2 ,

as long as σ 6= σ′. This is obviously nonpositive (which uses in part that all the wN(σ) are
nonnegative). Suppose we find another Gaussian process Y = (Y(σ) : σ ∈ ΩN) such that

E[Y(σ)2] = E[HN(σ)2]

for all σ ∈ ΩN , and

E[Y(σ)Y(σ′)] ≥ E[HN(σ)HN(σ′)] ,

for all σ 6= σ′. Then, by the generalized Slepian’s lemma, with the subset of the index set
equal to A = {(σ, σ) : σ ∈ ΩN}, we will have

E[ψ(HN ; β, x)] ≥ E[ψ(Y; β, x)] .

In other words, NpN(β, x) ≥ E[ψ(Y; β, x)]. With the same decomposition of σ ∈ ΩN into
σ(1) ∈ ΩN1 and σ(2) ∈ ΩN2 that we did before, define

Y(σ) = H′N1
(σ(1)) + H′′N2

(σ(2)) ,

where we think of HN , H′N1
and H′′N2

as all being independent of one another, but having the
correct covariance for the SK Hamiltonian. Then

E[Y(σ)Y(σ̃)] =
N1

2
qN1(σ

(1), σ̃(1))2 +
N2

2
qN2(σ

(2), σ̃(2))2 .

Using equation (1.1), we see that

E[Y(σ)Y(σ̃)] ≥ E[HN(σ)HN(σ̃)] ,

is true for all σ, σ′ ∈ ΩN , either by completing-the-square, or else by just using convexity of
the map q 7→ q2. Moreover, if σ = σ′, we have

qN(σ, σ) = qN1(σ
(1), σ(1)) = qN2(σ

(2), σ(2)) = 1 .

The self-overlap is always 1. So in this case, we do have

E[Y(σ)2] = E[HN(σ)2]

Therefore, the general Slepian’s lemma applies,

NpN(β, x) ≥ E[ψ(Y; β, x)] .
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But now we observe that, by independence, and factorization ofwN(σ;x) = wN1(σ
(1);x)wN2(σ

(2);x),
we have

ψ(Y; β, x) = log

[∑
σ∈ΩN

wN(σ;x) exp
(
−β
[
H′N1

(σ(1)) + H′′N2
(σ(2))

])]

= log

 ∑
σ(1)∈ΩN1

wN1(σ
(1);x) exp

(
βH′N1

(σ(1))
)

+ log

 ∑
σ(2)∈ΩN2

wN2(σ
(2);x) exp

(
βH′N2

(σ(2))
)

= N1 p′N1
(β, x) +N2 p′′N2

(β, x) ,

where pN(β, x), pN1
(β, x) and pN2

(β, x) are independent random pressures. (Note that this
would be of potential interest, if, for example N1 and N2 were equal so that some confusion
could arise about the notation of pN1

(β, x) and pN2
(β, x) without the primes.) Therefore,

NpN(β, x) ≥ E[ψ(Y; β, x)]

= E
[
N1 p′N1

(β, x) +N2 p′′N2
(β, x)

]
= N1, pN1(β, x) +N2 pN2(β, x) ,

as claimed. �

Remark 2.2 Guerra and Toninelli’s theorem applies to many other spin glass models as well.
These include the p-spin models for even integers p ≥ 0, and Derrida’s Random Energy
Model. Let us delay the discussion of the extension until after we have introduced those
models, in a later lecture. Once the definitions have been made, it will be trivial to see how
the generalized proof goes through, using just the argument from above, and in particular,
convexity.
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