A Thinning Analogue of de Finetti's Theorem

Shannon Starr Department of Mathematics, UCLA

"A Thinning Analogue of de Finetti's Theorem" http://front.math.ucdavis.edu/math.PR/0406364

All measure spaces are compact, metric spaces. $\mathcal{M}_{+,1}$ always refers to the set of Borel probability measures on any such space. With the vague topology this is, in turn, compact and metrizable.

 Ω compact metric space.

For $n \in \mathbb{N}$, let $\mu_n \in \mathcal{M}_{+,1}(\Omega^n)$. Let $(X_{n,1}, \ldots, X_{n,n})$ be r.v.s with joint distr. μ_n . If n > 0, define $\theta(\mu_n) \in \mathcal{M}_{+,1}(\Omega^{n-1})$ as follows: random combination $1 \leq k(1) < \cdots < k(n-1) \leq n$, independent of $(X_{n,1}, \ldots, X_{n,n})$; $\theta(\mu_n)$ is distribution of $(X_{n,k(1)}, \ldots, X_{n,k(n-1)})$. Call θ "thinning". Sequence $(\mu_n : n \in \mathbb{N})$ is θ -invariant if $\forall n, \ \mu_n = \theta(\mu_{n+1})$.

Examples

1. The i.i.d. case. If $\mu \in \mathcal{M}_{+,1}(\Omega)$ define $\mu_n = \mu^{\otimes n}$, all n. 2. The exchangeable case. If $\rho \in \mathcal{M}_{+,1}(\mathcal{M}_{+,1}(\Omega))$, define $\mu_n(E) = \int_{\mathcal{M}_{+,1}(\Omega)} \mu^{\otimes n}(E) \rho(d\mu)$, all n. 3. If $\Omega = [0, 1]$ and $\mu \in \mathcal{M}_{+,1}([0, 1])$, let $(X_{n,1}, \ldots, X_{n,n})$ be order statistics for n i.i.d. μ -distr. r.v.s, and μ_n their distr.

Examples continued

4. Let $\mu : [0,1] \to \mathcal{M}_{+,1}(\Omega)$ be a Borel measurable mapping. Let $\mathfrak{t} = (t_{n,1}, \ldots, t_{n,n})$ be the order statistics for n i.i.d. U([0,1]).

Let μ_n be the measure such that, for any Borel $A \subset \Omega^n$,

$$\mu_n(A) = \mathbb{E}^{\mathfrak{t}}[\mu(t_{n,1}) \otimes \cdots \otimes \mu(t_{n,n})(A)].$$

It turns out that this is the most general extreme point of the thinning invariant simplex.

Let us define the entire set of all Borel maps $\mu: [0,1] \to \mathcal{M}_{+,1}(\Omega)$ by \mathcal{K} .

Technicality - **Topology:** Given $\mu : [0, 1] \to \mathcal{M}_{+,1}(\Omega)$, and Borel $E \subset [0, 1]$, let $\mu_E \in \mathcal{M}_+(\Omega)$ by

$$\mu_E(A) = \int_E \mu(t)(A) \, dt$$

all Borel $A \subset \Omega$.

For a sequence of $\mu^{(n)} : [0,1] \to \mathcal{M}_{+,1}(\Omega)$, say that it converges iff, for all Borel $E \subset [0,1]$, it is true $\mu_E^{(n)} \to \mu_E$. This is the topology dual to the natural action of $L^1([0,1], dt; \mathcal{C}(\Omega))$ on \mathcal{K} .

Since latter is separable Banach space, \mathcal{K} is compact and metrizable (as in Banach-Alaoglu).

Theorem. Let $(\mu_n : n \in \mathbb{N})$ be a thinning invariant sequence. Then there exists a unique $\rho \in \mathcal{M}_{+,1}(\mathcal{K})$, such that, for every $n \in \mathbb{N}$ and Borel $A \subset \Omega^n$,

$$\mu_n(A) = \int_{\mathcal{K}} \mathbb{E}^{\mathfrak{t}}[\mu(t_{n,1}) \otimes \cdots \otimes \mu(t_{n,n})(A)] \rho(d\mu).$$

Example. $\Omega = \{0, 1\}.$ Then $\mathcal{M}_{+,1}(\Omega) \cong [0, 1]$ by $p = \mu(\{1\}).$ $\mathcal{K} \cong$ the set of all Borel mappings $p : [0, 1] \to [0, 1].$ Topology is the weak topology with respect to $L^1([0, 1]).$ The same as vague topology restricted to the subset $\{p(t)dt \in \mathcal{M}_{+,1}([0, 1]) \mid p : [0, 1] \to [0, 1], \text{Borel}\}.$ Since each p is bounded by 1, the set is compact in $\mathcal{M}_{+,1}([0, 1]).$ Then $\mathcal{M}_{+,1}(\mathcal{K}) \cong$ the subset of all Borel measures on

Then $\mathcal{M}_{+,1}(\mathcal{K}) \cong$ the subset of all Borel measures on $\mathcal{M}_{+,1}([0,1])$ supported on this small set of measures.

Application 1. "Asymmetric mean-field" statistical mechanics models.

Let $r \in \mathbb{N}$ and $f : \Omega^r \to \mathbb{R} \cup \{+\infty\}$.

Do not assume that f is symmetric in r variables. Assume that f is bounded below.

Let $\alpha \in \mathcal{M}_{+,1}(\Omega)$ be the a priori measure. Assume $\alpha^{\otimes r}(f) < \infty$.

For each N, define $H_N : \Omega^N \to \mathbb{R} \cap \{+\infty\}$ by

$$H_N(x) = \binom{N}{r}^{-1} \sum_{1 \le i(1) < \dots < i(r) \le N} f(x_{i(1)}, \dots, x_{i(r)}).$$

The finite, volume = N approximation to the pressure is

$$p_N(\beta) = N^{-1} \log \left(\alpha^{\otimes N} (e^{-\beta H_N}) \right)$$

If it exists, the pressure is $p(\beta) = \lim_{N \to \infty} p_N(\beta)$. The finite-volume Gibbs measures are $\rho_{\beta,N} \in \mathcal{M}_{+,1}(\Omega^N)$ such that

$$\frac{d\rho_{\beta,N}}{d\alpha^{\otimes N}}(x) = e^{-\beta H_N(x) - Np_N(\beta)}$$

Motivation : Scaling There is a famous scaling for spin systems: the Lebowitz-Penrose limit.

Means, (1) first take thermodynamic limit, (2) then take coupled limit where range of interaction $\rightarrow \infty$, amplitude of interaction $\rightarrow 0$ so that L^1 is preserved.

Necessarily recovers exchangeability.

This largely motivates mean-field models (e.g., van der Waals or Curie-Weiss)

as well, it is an initial step for some perturbative results in real short-range models (e.g., Lebowitz, Mazel, Presutti: liquid-vapor transition in continuum model).

But consider another limit, where volume and range $\rightarrow \infty$ together, with amplitude $\rightarrow 0$ so as to preserve L^1 . This is equivalent to the asymmetric mean-field limit (using Stone-Weierstrass).

This is connected to thinning-invariant arrays why?

Little-known result : Fannes, Spohn and Verbeure One of the most elegant solution of mean-field models was done by Fannes, Spohn and Verbeure.

They actually did it for mean-field quantum models (e.g. Dicke maser model following Hepp and Lieb) using Stormer's generalization of de Finetti's theorem to symmetric states on C^* -algebra, but let's stick to classical case.

Mean-field: Model is as before, but f is assumed to be symmetric on Ω^r .

Interested in $p(\beta)$ and some constraints on the set of limit points of the Gibbs states $(\rho_{\beta,N} : N \ge r)$.

The finite approx. to pressure is given by the Gibbs variational formula

$$p_N(\beta) = \sup_{\rho \in \mathcal{M}_{+,1}(\Omega^N)} G_N(\beta;\rho)$$
$$G_N(\beta;\rho) = N^{-1} [S(\rho, \alpha^{\otimes N}) - \beta \rho(H_N)],$$

where S is relative entropy.

The functional G_N is concave and upper semicontinuous. The maximum is attained, and the unique argmax is the Gibbs state (for N). The relative entropy is

$$S(\rho, \alpha^{\otimes N}) = \int_{\Omega^N} g\left(\frac{d\rho}{d\alpha^{\otimes N}}(x)\right) \, \alpha^{\otimes N}(dx) \,,$$

where $g(t) = -t \log(t)$ for t > 0 and 0 at t = 0. It satisfies:

(1) It is expressed as infimum of continuous functions ranging over Borel partitions-of-unity (Ruelle and Robinson);

(2) It is upper semicontinuous on $\mathcal{M}_{+,1}(\Omega)$;

(3) It is concave and "almost convex" i.e.,

 $S(t\rho_1 + (1-t)\rho_2) \le tS(\rho_1) + (1-t)S(\rho_2) + g(t) + g(1-t)$ independent of N;

(4) It is strongly subadditive.

Strong subadditivity has the following consequence. Let $\rho \in \mathcal{M}_{+,1}(\Omega^N)$ and let $n \leq N$.

Let $\rho^{(n)}$ denote the *n*-particle reduced measure in $\mathcal{M}_{+,1}(\Omega^n)$.

Then $n^{-1}S(\rho^{(n)}, \alpha^{\otimes n}) \leq N^{-1}S(\rho, \alpha^{\otimes N}).$

Mean density is decreasing.

Given any infinite exchangeable measure, the limit of the mean entropies of the N-particle reduced states exists, using subadditivity or monotonicity.

But monotonicity implies (happy to explain privately) that

$$p(\beta) = \sup_{\rho \in \mathcal{M}_{+,1}(\mathcal{M}_{+,1}(\Omega))} G(\beta; \rho)$$
$$G(\beta; \rho) = s(\rho) - \beta \rho(\mu^{\otimes r}(f)),$$

where $s(\rho)$ is the mean entropy associated to infinite exchangeable measure uniquely associated to ρ . Note s is affine in the limit so G is affine and upper semicontinuous.

Therefore, G is optimized on extreme points.

More generally the optimizers of G form a union of faces.

(Nonuniqueness can occur: phase transition.)

Using the property of Ruelle and Robinson one can even do more by proving that

$$s(\rho) = \int_{\mathcal{M}_{+,1}(\Omega)} S(\mu, \alpha) \,\rho(d\mu) \,,$$

from which it is obvious that the optimizers are a face. Therefore, suffices to calculate optimizer of the "gap equation"

$$\gamma(\mu) = S(\mu, \alpha) - \beta \mu^{\otimes r}(f)$$
.

Every vague limit point of Gibbs measure is in the face spanned by optimizers of γ .

In the weakly asymmetric case, we have a similar set-up, but do not require that f be symmetric.

Then we can take weak of Gibbs measures:

 $\rho_{\beta,N_i} \text{ converges iff } N_i \to \infty \text{ and for all } n \in \mathbb{N}, \text{ the sequences} \\
\theta^{N_i - n}(\rho_{\beta,N_i}) \text{ converges in } \mathcal{M}_{+,1}(\Omega^n).$

Define limit as μ_n . Then $(\mu_n : n \in \mathbb{N})$ is θ -invariant by construction.

Also, if $\mu_N \in \mathcal{M}_{+,1}(\Omega^N)$ then $\theta^{N-n}(\mu)(H_n/n) = \mu(H_N/N)$. Strong subadditivity still implies monotonicity of mean entropy upon thinning.

Therefore, using the argument of Fannes, Spohn and Verbeure, mutatis mutandis, we draw a similar conclusion. One difference. Now $\mu : [0,1] \to \mathcal{M}_{+,1}(\Omega)$ and

$$\Gamma(\mu) = \int_0^1 S(\mu(t), \alpha) \, dt - \beta \mathbb{E}^{\mathfrak{t}}[\mu(t_1) \otimes \cdots \otimes \mu(t_r)(f)] \, .$$

The simplest example turns out to be rather interesting: $\Omega = \mathbb{R}$ and $f: \Omega^2 \to \mathbb{R}$ by $f(x, y) = \chi_{x>y}$.

(Everything extends to Borel subsets of compact, metric spaces – just let α have smaller support.)

Example is related to "Mallows model":

Select permutations, not according to uniform distribution, but with log of weights proportional to number of crossings in diagram (modulo constant shift).

Action on appropriate vector in $(\mathbb{C}^2)^{\otimes N}$ gives kink

ground states of XXZ model, invariant measures for constant coefficient nn ASEP on [1,N]: scaling is weakly anisotropic.

Euler-Lagrange for Γ leads to PDE for u(x,t) if $\mu(t)(dx) = u(x,t)dx$

$$\frac{\partial}{\partial x}\frac{\partial}{\partial t}\log(u(x,t)) = 2\beta u(x,t)$$

Need solution for 0 < t < 1 and $-\infty < x < \infty$. Assume travelling wave solution u(x,t) = U(x - ct). Solution is $U(z) = (\lambda/2) \operatorname{sech}^2(\lambda z)$ where $\lambda = \beta/2c$. Take $c = \beta/2$. Get $u(x,t) = \frac{1}{2} \operatorname{sech}^2(x - \frac{\beta}{2}t)$ for 0 < t < 1. It is a solution but requires a special choice of a priori measure $\alpha(dx) = \phi(x) dx$ with

 $\phi(x) \propto \operatorname{sech}(x) \operatorname{sech}(x - \beta/2)$.

Application 2. "Asymmetric mean-field" Simple Exclusion Process (and generalizations???)

Consider the simple exclusion process on $\left[1,N\right]$ whose generator is

$$\Omega f(\eta) = \sum_{x,y \in [1,N]} \chi[\eta(x) = 1, \eta(y) = 0] \left(f(\eta_{xy}) - f(\eta) \right) p(x,y) \,,$$

where

$$\eta_{xy}(z) = \begin{cases} \eta(y) & z = x, \\ \eta(x) & z = y, \\ \eta(z) & z \in \{x, y\}^c, \end{cases}$$

and

$$p(x,y) = \begin{cases} q & x < y, \\ 1 - q & y < x. \end{cases}$$

For each pair of particles, (x, y) there are two Poisson clocks with rates q and 1 - q.

One transports particles from x to y at rings, the other transports particles in the opposite direction.

Note |x - y| is irrelevant, but the order does matter.

Question: Can one identify all the (weak) limit points of invariant measures (with a limiting density of particles) in the $N \to \infty$ limit?

Answer: I don't know.

But one can determine all the extremal thinning-invariant states which have the potential of being limit points.

Note now $\Omega = \{0, 1\}$. Let $p(t) = \mu(t)(\{1\})$ for $t \in [0, 1]$. Then a necessary condition for $\mu : [0, 1] \to \mathcal{M}_{+,1}(\Omega)$ to be a limit point is that

$$0 = \int_0^t ((1-q)p(t)[1-p(s)] + qp(s)[1-p(t)])ds$$
$$+ \int_t^1 (qp(t)[1-p(s)] + (1-q)p(s)[1-p(t)])ds$$

for all $t \in [0, 1]$. Fix the density $\rho = \int_0^1 p(t) dt$. The solution is presented in two steps. Let $u(t) = \frac{1}{2} (\int_0^t p(s) ds - \int_t^1 p(s) ds)$. Then u'(t) = -p(t) and we determine

$$2p(t) = \frac{\frac{1}{2}\rho + (2q-1)u(t)}{\frac{1}{2}[(1-q)t + q(1-t)] + (2q-1)u(t)}$$

This is solved by

$$2u(t) = -\left(\frac{q}{2q-1} - t\right) + \left[\left(\frac{q}{2q-1} - t\right)^2 + \rho\left(\rho + \frac{2t-2q}{2q-1}\right)\right]^{1/2}$$

