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All measure spaces are compact, metric spaces.
M+,1 always refers to the set of Borel probability
measures on any such space. With the vague
topology this is, in turn, compact and metrizable.

Ω compact metric space.
For n ∈ N, let µn ∈M+,1(Ωn).
Let (Xn,1, . . . , Xn,n) be r.v.s with joint distr. µn.
If n > 0, define θ(µn) ∈M+,1(Ωn−1) as follows:
random combination 1 ≤ k(1) < · · · < k(n− 1) ≤ n,
independent of (Xn,1, . . . , Xn,n);
θ(µn) is distribution of (Xn,k(1), . . . , Xn,k(n−1)).
Call θ “thinning”.
Sequence (µn : n ∈ N) is θ-invariant if ∀n, µn = θ(µn+1).

Examples
1. The i.i.d. case. If µ ∈M+,1(Ω) define µn = µ⊗n, all n.
2. The exchangeable case. If ρ ∈M+,1(M+,1(Ω)), define
µn(E) =

∫
M+,1(Ω)

µ⊗n(E) ρ(dµ), all n.
3. If Ω = [0, 1] and µ ∈M+,1([0, 1]), let (Xn,1, . . . , Xn,n) be
order statistics for n i.i.d. µ-distr. r.v.s, and µn their distr.
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Examples continued
4. Let µ : [0, 1] →M+,1(Ω) be a Borel measurable mapping.
Let t = (tn,1, . . . , tn,n) be the order statistics for n i.i.d.
U([0, 1]).
Let µn be the measure such that, for any Borel A ⊂ Ωn,

µn(A) = Et[µ(tn,1)⊗ · · · ⊗ µ(tn,n)(A)] .

It turns out that this is the most general extreme point of
the thinning invariant simplex.

Let us define the entire set of all Borel maps
µ : [0, 1] →M+,1(Ω) by K.

Technicality – Topology: Given µ : [0, 1] →M+,1(Ω),
and Borel E ⊂ [0, 1], let µE ∈M+(Ω) by

µE(A) =
∫

E

µ(t)(A) dt

all Borel A ⊂ Ω.
For a sequence of µ(n) : [0, 1] →M+,1(Ω), say that it
converges iff, for all Borel E ⊂ [0, 1], it is true µ

(n)
E → µE .

This is the topology dual to the natural action of
L1([0, 1], dt; C(Ω)) on K.
Since latter is separable Banach space, K is compact and
metrizable (as in Banach-Alaoglu).
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Theorem. Let (µn : n ∈ N) be a thinning invariant
sequence. Then there exists a unique ρ ∈M+,1(K), such
that, for every n ∈ N and Borel A ⊂ Ωn,

µn(A) =
∫
K

Et[µ(tn,1)⊗ · · · ⊗ µ(tn,n)(A)] ρ(dµ) .

Example. Ω = {0, 1}.
Then M+,1(Ω) ∼= [0, 1] by p = µ({1}).
K ∼= the set of all Borel mappings p : [0, 1] → [0, 1].
Topology is the weak topology with respect to L1([0, 1]).
The same as vague topology restricted to the subset
{p(t)dt ∈M+,1([0, 1]) | p : [0, 1] → [0, 1],Borel}.
Since each p is bounded by 1, the set is compact in
M+,1([0, 1]).
Then M+,1(K) ∼= the subset of all Borel measures on
M+,1([0, 1]) supported on this small set of measures.
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Application 1.“Asymmetric mean-field” statistical
mechanics models.
Let r ∈ N and f : Ωr → R ∪ {+∞}.
Do not assume that f is symmetric in r variables.
Assume that f is bounded below.
Let α ∈M+,1(Ω) be the a priori measure.
Assume α⊗r(f) < ∞.

For each N , define HN : ΩN → R ∩ {+∞} by

HN (x) =
(

N

r

)−1 ∑
1≤i(1)<···<i(r)≤N

f(xi(1), . . . , xi(r)) .

The finite, volume= N approximation to the pressure is

pN (β) = N−1 log
(
α⊗N (e−βHN )

)
.

If it exists, the pressure is p(β) = limN→∞ pN (β).
The finite-volume Gibbs measures are ρβ,N ∈M+,1(ΩN )
such that

dρβ,N

dα⊗N
(x) = e−βHN (x)−NpN (β) .
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Motivation : Scaling There is a famous scaling for spin
systems: the Lebowitz-Penrose limit.
Means, (1) first take thermodynamic limit, (2) then take
coupled limit where range of interaction →∞, amplitude of
interaction → 0 so that L1 is preserved.
Necessarily recovers exchangeability.
This largely motivates mean-field models (e.g., van der
Waals or Curie-Weiss)
as well, it is an initial step for some perturbative results in
real short-range models (e.g., Lebowitz, Mazel, Presutti:
liquid-vapor transition in continuum model).

But consider another limit, where volume and range →∞
together, with amplitude → 0 so as to preserve L1.
This is equivalent to the asymmetric mean-field limit (using
Stone-Weierstrass).

This is connected to thinning-invariant arrays why?
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Little-known result : Fannes, Spohn and Verbeure
One of the most elegant solution of mean-field models was
done by Fannes, Spohn and Verbeure.
They actually did it for mean-field quantum models (e.g.
Dicke maser model following Hepp and Lieb) using
Stormer’s generalization of de Finetti’s theorem to
symmetric states on C∗-algebra, but let’s stick to classical
case.

Mean-field: Model is as before, but f is assumed to be
symmetric on Ωr.
Interested in p(β) and some constraints on the set of limit
points of the Gibbs states (ρβ,N : N ≥ r).

The finite approx. to pressure is given by the Gibbs
variational formula

pN (β) = sup
ρ∈M+,1(ΩN )

GN (β; ρ)

GN (β; ρ) = N−1[S(ρ, α⊗N )− βρ(HN )],

where S is relative entropy.
The functional GN is concave and upper semicontinuous.
The maximum is attained, and the unique argmax is the
Gibbs state (for N).
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The relative entropy is

S(ρ, α⊗N ) =
∫

ΩN

g

(
dρ

dα⊗N
(x)

)
α⊗N (dx) ,

where g(t) = −t log(t) for t > 0 and 0 at t = 0.
It satisfies:
(1) It is expressed as infimum of continuous functions
ranging over Borel partitions-of-unity (Ruelle and
Robinson);
(2) It is upper semicontinuous on M+,1(Ω);
(3) It is concave and “almost convex” i.e.,
S(tρ1 + (1− t)ρ2) ≤ tS(ρ1) + (1− t)S(ρ2) + g(t) + g(1− t)
independent of N ;
(4) It is strongly subadditive.

Strong subadditivity has the following consequence.
Let ρ ∈M+,1(ΩN ) and let n ≤ N .
Let ρ(n) denote the n-particle reduced measure in
M+,1(Ωn).
Then n−1S(ρ(n), α⊗n) ≤ N−1S(ρ, α⊗N ).
Mean density is decreasing.
Given any infinite exchangeable measure, the limit of the
mean entropies of the N -particle reduced states exists,
using subadditivity or monotonicity.
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But monotonicity implies (happy to explain privately) that

p(β) = sup
ρ∈M+,1(M+,1(Ω))

G(β; ρ)

G(β; ρ) = s(ρ)− βρ(µ⊗r(f)) ,

where s(ρ) is the mean entropy associated to infinite
exchangeable measure uniquely associated to ρ.
Note s is affine in the limit so G is affine and upper
semicontinuous.
Therefore, G is optimized on extreme points.
More generally the optimizers of G form a union of faces.
(Nonuniqueness can occur: phase transition.)
Using the property of Ruelle and Robinson one can even do
more by proving that

s(ρ) =
∫
M+,1(Ω)

S(µ, α) ρ(dµ) ,

from which it is obvious that the optimizers are a face.
Therefore, suffices to calculate optimizer of the “gap
equation”

γ(µ) = S(µ, α)− βµ⊗r(f) .

Every vague limit point of Gibbs measure is in the face
spanned by optimizers of γ.
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In the weakly asymmetric case, we have a similar set-up,
but do not require that f be symmetric.
Then we can take weak of Gibbs measures:
ρβ,Ni

converges iff Ni →∞ and for all n ∈ N, the sequences
θNi−n(ρβ,Ni

) converges in M+,1(Ωn).
Define limit as µn. Then (µn : n ∈ N) is θ-invariant by
construction.
Also, if µN ∈M+,1(ΩN ) then θN−n(µ)(Hn/n) = µ(HN/N).
Strong subadditivity still implies monotonicity of mean
entropy upon thinning.
Therefore, using the argument of Fannes, Spohn and
Verbeure, mutatis mutandis, we draw a similar conclusion.
One difference. Now µ : [0, 1] →M+,1(Ω) and

Γ(µ) =
∫ 1

0

S(µ(t), α) dt− βEt[µ(t1)⊗ · · · ⊗ µ(tr)(f)] .
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The simplest example turns out to be rather interesting:
Ω = R and f : Ω2 → R by f(x, y) = χx>y.
(Everything extends to Borel subsets of compact, metric
spaces – just let α have smaller support.)
Example is related to “Mallows model”:
Select permutations, not according to uniform distribution,
but with log of weights proportional to number of crossings
in diagram (modulo constant shift).
Action on appropriate vector in (C2)⊗N gives kink
groundstates of XXZ model, invariant measures for constant
coefficient nn ASEP on [1, N ]: scaling is weakly anisotropic.

Euler-Lagrange for Γ leads to PDE for u(x, t) if
µ(t)(dx) = u(x, t)dx

∂

∂x

∂

∂t
log(u(x, t)) = 2βu(x, t) .

Need solution for 0 < t < 1 and −∞ < x < ∞.
Assume travelling wave solution u(x, t) = U(x− ct).
Solution is U(z) = (λ/2) sech2(λz) where λ = β/2c.
Take c = β/2.
Get u(x, t) = 1

2 sech2(x− β
2 t) for 0 < t < 1.

It is a solution but requires a special choice of a priori
measure α(dx) = φ(x) dx with

φ(x) ∝ sech(x) sech(x− β/2) .
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Application 2. “Asymmetric mean-field” Simple
Exclusion Process (and generalizations???)

Consider the simple exclusion process on [1, N ] whose
generator is

Ωf(η) =
∑

x,y∈[1,N ]

χ[η(x) = 1, η(y) = 0] (f(ηxy)− f(η)) p(x, y) ,

where

ηxy(z) =


η(y) z = x,

η(x) z = y,

η(z) z ∈ {x, y}c,

and

p(x, y) =

q x < y,

1− q y < x.

For each pair of particles, (x, y) there are two Poisson clocks
with rates q and 1− q.
One transports particles from x to y at rings, the other
transports particles in the opposite direction.
Note |x− y| is irrelevant, but the order does matter.

Question: Can one identify all the (weak) limit points of
invariant measures (with a limiting density of particles) in
the N →∞ limit?
Answer: I don’t know.
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But one can determine all the extremal thinning-invariant
states which have the potential of being limit points.
Note now Ω = {0, 1}.
Let p(t) = µ(t)({1}) for t ∈ [0, 1].
Then a necessary condition for µ : [0, 1] →M+,1(Ω) to be a
limit point is that

0 =
∫ t

0

((1− q)p(t)[1− p(s)] + qp(s)[1− p(t)])ds

+
∫ 1

t

(qp(t)[1− p(s)] + (1− q)p(s)[1− p(t)])ds

for all t ∈ [0, 1].
Fix the density ρ =

∫ 1

0
p(t)dt.

The solution is presented in two steps.
Let u(t) = 1

2 (
∫ t

0
p(s)ds−

∫ 1

t
p(s)ds).

Then u′(t) = −p(t) and we determine

2p(t) =
1
2ρ + (2q − 1)u(t)

1
2 [(1− q)t + q(1− t)] + (2q − 1)u(t)

.

This is solved by

2u(t) = −
(

q

2q − 1
− t

)

+

[(
q

2q − 1
− t

)2

+ ρ

(
ρ +

2t− 2q

2q − 1

)]1/2

.
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