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All measure spaces are compact, metric spaces.
M 1 always refers to the set of Borel probability
measures on any such space. With the vague
topology this is, in turn, compact and metrizable.

() compact metric space.

For n € N, let pu,, € My 1(Q").

Let (Xp.1,-..,Xnn) be r.v.s with joint distr. .

If n > 0, define O(u,) € M4 1(Q"1) as follows:
random combination 1 < k(1) < --- < k(n—1) <mn,
independent of (X, 1,..., Xn.n);

0(pn) is distribution of (X, k(1) - -+, Xn k(n—-1))-
Call # “thinning”.
Sequence (py, : n € N) is f-invariant if Vn, p, = 0(tni1).

Examples

1. The i.i.d. case. If p € My 1(Q) define p,, = u®", all n.
2. The exchangeable case. If p € M4 1(M4 1(Q2)), define
pn(E) = [q, | #2"(E) p(dp), all n.

3. f Q@ =10,1] and pp € M4 1([0,1]), let (Xp.1,...,Xnn) be
order statistics for n i.i.d. p-distr. r.v.s, and pu,, their distr.
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Examples continued

4. Let p:[0,1] — M4 1(92) be a Borel measurable mapping.
Let t = (tn1,...,tnn) be the order statistics for n i.i.d.
U(0,1]).

Let u,, be the measure such that, for any Borel A C Q"

pn(A) = Et[ﬂ(tn,l) ® @ pultnn)(A)].

It turns out that this is the most general extreme point of

the thinning invariant simplex.

Let us define the entire set of all Borel maps
p:[0,1] = M4 1(2) by K.

Technicality — Topology: Given p : [0,1] — M4 1(),
and Borel £ C [0,1], let up € M () by

s (A) = [E u(t)(A) di

all Borel A C ).

For a sequence of u(™) :[0,1] — M, 1(Q), say that it
converges iff, for all Borel E C [0, 1], it is true ,u(g)

This is the topology dual to the natural action of
LY([0,1],dt;C(Q)) on K.

Since latter is separable Banach space, K is compact and

metrizable (as in Banach-Alaoglu).




Theorem. Let (u, : n € N) be a thinning invariant
sequence. Then there exists a unique p € M4 1(K), such
that, for every n € N and Borel A C Q"

) = [ Bltn) © & it ()] plai).

Example. Q = {0,1}.

Then M4 1(€2) = (0,1] by p = u({1}).

JC =2 the set of all Borel mappings p : [0, 1] — [0, 1].
Topology is the weak topology with respect to L([0,1]).
The same as vague topology restricted to the subset
{p(t)dt € M4 1(]0,1])|p:[0,1] — [0, 1], Borel}.

Since each p is bounded by 1, the set is compact in
M1([0, 1))

Then M 1(K) = the subset of all Borel measures on
M 1([0,1]) supported on this small set of measures.




Application 1.“Asymmetric mean-field” statistical
mechanics models.

Let r€e Nand f: Q" — RU {+00}.

Do not assume that f is symmetric in r variables.
Assume that f is bounded below.

Let a € M4 1(€2) be the a priori measure.

Assume a®"(f) < oo.

For each N, define Hy : Q¥ — RN {40} by

A L
<r) Z f(aji(l)v---axi(r))'

1<i(l)<-<i(r)<N

The finite, volume= NN approximation to the pressure is

pn(B) = N~ tlog (a®N(e_BHN)) .

If it exists, the pressure is p(8) = limy_ o0 pn(0).
The finite-volume Gibbs measures are pg v € M, 1(QV)

such that

dPB.N , \ _  _BHx(x)—Npn(B)
W(Q’)) = € .




Motivation : Scaling There is a famous scaling for spin
systems: the Lebowitz-Penrose limit.
Means, (1) first take thermodynamic limit, (2) then take

coupled limit where range of interaction — oo, amplitude of

interaction — 0 so that L' is preserved.

Necessarily recovers exchangeability.

This largely motivates mean-field models (e.g., van der
Waals or Curie-Weiss)

as well, it is an initial step for some perturbative results in
real short-range models (e.g., Lebowitz, Mazel, Presutti:

liquid-vapor transition in continuum model).

But consider another limit, where volume and range — oo
together, with amplitude — 0 so as to preserve L'.

This is equivalent to the asymmetric mean-field limit (using
Stone-Weierstrass).

This is connected to thinning-invariant arrays why?




Little-known result : Fannes, Spohn and Verbeure
One of the most elegant solution of mean-field models was
done by Fannes, Spohn and Verbeure.

They actually did it for mean-field quantum models (e.g.

Dicke maser model following Hepp and Lieb) using

Stormer’s generalization of de Finetti’s theorem to
symmetric states on C*-algebra, but let’s stick to classical

case.

Mean-field: Model is as before, but f is assumed to be
symmetric on 2.

Interested in p() and some constraints on the set of limit
points of the Gibbs states (pg.n : N > r).

The finite approx. to pressure is given by the Gibbs

variational formula

pn(B)= sup  Gn(B;p)
pEM 4 1 ()

GN(B;p) = N7 [S(p,a®Y) — Bp(Hy),

where S is relative entropy.
The functional Gy is concave and upper semicontinuous.

The maximum is attained, and the unique argmax is the
Gibbs state (for N).




The relative entropy is

$(0°) = [ (75 @) ®¥(as),

where g(t) = —tlog(t) for t > 0 and 0 at ¢ = 0.

It satisfies:

(1) It is expressed as infimum of continuous functions
ranging over Borel partitions-of-unity (Ruelle and
Robinson);

(2) It is upper semicontinuous on M 1(£2);

(3) It is concave and “almost convex” i.e.,

S(tpr + (1 —t)p2) <tS(p1) + (1 —¢)S(p2) + g(t) + g(1 — 1)
independent of NV;

(4) It is strongly subadditive.

Strong subadditivity has the following consequence.
Let pe M, 1(QV) and let n < N.

Let p{™ denote the n-particle reduced measure in
M1 (7).

Then n=1S(p™,a®") < N=15(p, a®N).

Mean density is decreasing.

Given any infinite exchangeable measure, the limit of the
mean entropies of the N-particle reduced states exists,

using subadditivity or monotonicity.




But monotonicity implies (happy to explain privately) that

sup G(5; p)
pEM 4 1 (M4 1(92))

G(B;p) = s(p) — Bo(r®"(f))

where s(p) is the mean entropy associated to infinite
exchangeable measure uniquely associated to p.

Note s is affine in the limit so G is affine and upper
semicontinuous.

Therefore, GG is optimized on extreme points.

More generally the optimizers of G form a union of faces.
(Nonuniqueness can occur: phase transition.)

Using the property of Ruelle and Robinson one can even do

more by proving that

s(p) = /M+,1(9) S (s ) p(dp)

from which it is obvious that the optimizers are a face.
Therefore, suffices to calculate optimizer of the “gap

equation”
v(1) = S, ) = Bu®"(f).

Every vague limit point of Gibbs measure is in the face

spanned by optimizers of ~.




In the weakly asymmetric case, we have a similar set-up,
but do not require that f be symmetric.

Then we can take weak of Gibbs measures:

ps,N, converges iff N; — oo and for all n € N, the sequences
0Ni="(pg.n,) converges in M 1(Q7).

Define limit as . Then (p, : n € N) is #-invariant by
construction.

Also, if uy € My 1(QY) then 08" (u)(H,/n) = u(Hy/N).
Strong subadditivity still implies monotonicity of mean
entropy upon thinning.

Therefore, using the argument of Fannes, Spohn and

Verbeure, mutatis mutandis, we draw a similar conclusion.
One difference. Now p : [0,1] — M4 1(€2) and

/0 S(u(t), ) dt — BE'[u(tr) ® -~ © pult,) (f)]




The simplest example turns out to be rather interesting:
Q=Rand f:0Q% > Rby f(z,y) = Xa>y-

(Everything extends to Borel subsets of compact, metric
spaces — just let a have smaller support.)

Example is related to “Mallows model”:

Select permutations, not according to uniform distribution,
but with log of weights proportional to number of crossings

in diagram (modulo constant shift).

Action on appropriate vector in ((C2)®N gives kink

groundstates of XXZ7 model, invariant measures for constant

coefficient nn ASEP on [1, N]: scaling is weakly anisotropic.

Euler-Lagrange for I' leads to PDE for u(x,t) if
w(t)(dr) = u(z, t)dx

o0 0

- log(u(z, 1) = 2Bu(,1).

Need solution for 0 <t <1 and —oo < z < 0.
Assume travelling wave solution u(z,t) = U(x — ct).
Solution is U(z) = (\/2) sech®(\z) where X\ = (/2c.
Take ¢ = 3/2.

Get u(x,t) = %SeChZ(x — gt) for 0 <t < 1.

It is a solution but requires a special choice of a priori

measure a(dz) = ¢(x) dr with

¢(x) o sech(x)sech(x — (3/2) .
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Application 2. “Asymmetric mean-field” Simple

Exclusion Process (and generalizations???)

Consider the simple exclusion process on [1, N| whose

generator is

Qf(n) =

z,yc[1,N]

nmy(z) = 9 =Y,
z € {x,y}°,

q <Yy,
l—q y<uz.

p(z,y) =

For each pair of particles, (x,y) there are two Poisson clocks
with rates ¢ and 1 — q.
One transports particles from z to y at rings, the other

transports particles in the opposite direction.

Note |z — y| is irrelevant, but the order does matter.

Question: Can one identify all the (weak) limit points of
invariant measures (with a limiting density of particles) in
the N — oo limit?

Answer: I don’t know.
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But one can determine all the extremal thinning-invariant
states which have the potential of being limit points.

Note now 2 = {0, 1}.

Let p(t) = u(t)({1}) for t € [0, 1].

Then a necessary condition for p : [0,1] — M4 1(Q) to be a
limit point is that

0= / (1 — p(t)[1 — p(s)] + qp(s)[1 — p(t)])ds

-+[(%ﬁﬂl—ﬂ@%+ﬂ—qmwﬂl—ﬂﬂhk

for all ¢ € [0, 1].
Fix the density p = fol p(t)dt
The solution is presented in two steps.

Let u(t :§f0 ds—ft ds).
Then u'(t) = —p(t) and we determme

Lo+ (2¢ — Du(t)
=)t +q(0 — )] + (2¢ — Du(t)

This is solved by

2u(t) = — (qu_l —t)

. 1/2
() (et L
2 — 1 PA\PT 901 |
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p=1/2, q O [1/2,1]

| | |
0.4 0.5 0.6
t

p=1/4, q O [1/2,1]
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