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Abstract: We report on room temperature gain-switched and Q-switched Fe:ZnSe lasers 
tunable over 3.60–5.15 µm pumped by radiation of an 2.94 µm Er:YAG laser. The maximum 
output energy was measured to be 5 mJ under 15 mJ of pump energy in gain-switched 
regime. We also demonstrated a mechanically Q-switched regime of oscillation of Fe:ZnSe 
lasers. This approach could be attractive for the development of high-energy short-pulse 
solid-state mid-IR systems operating over 3.6–5.2 µm spectral range. 
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1. Introduction 

The development of middle infrared (mid-IR) tunable solid-state lasers is of considerable 
interest for a variety of scientific, industrial, and medical applications. Iron-doped binary 
(e.g., ZnSe, ZnS, CdSe, CdS, ZnTe) and ternary (e.g., CdMnTe, CdZnTe, ZnSSe) 
chalcogenide crystals are very promising for tunable solid-state lasers operating over the 3-8 
μm spectral range [1–3]. The most significant results have been reported for iron doped ZnSe 
crystals. The output power up to 9.6 W from a CW Fe:ZnSe laser was demonstrated in a non-
selective cavity at 4.2 μm [4]. The lifetime of the upper laser level 5T2 of the Fe2+ ion in a 
ZnSe matrix falls with temperature from τ = 55 µs at 77 K to 370 ns at room temperature 
(RT) due to the increase of non-radiative relaxation [5]. The RT Fe:ZnSe lasing in a gain-
switched operation mode was proposed and demonstrated in [6,7]. The progress in RT Fe2+ 
lasers strongly depends on availability of high-energy nanosecond pump lasers operating near 
the maximum of the Fe2+ absorption band (2.7-3.2 μm). The output energy of the Fe:ZnSe 
laser at RT reached 1.4 J at ~150 ns pulse duration when pumped by the radiation of HF laser 
[8]. However, HF chemical lasers toxicity to humans limits a number of their possible 
applications. 

One of the applications of Fe:ZnSe lasers is to optically pump ultra-short CO2 lasers and 
amplifiers. A carbon dioxide gas laser possesses a unique (multi-Joule) energy storage 
capability for amplification of 10 μm pulses but does not have the bandwidth necessary to 
amplify ultra-short pulses. Its bandwidth can be increased through the collisional broadening 
of spectral lines at high pressures, but traditional discharge pumped CO2 lasers are extremely 
difficult to build at pressures above 10 atm as the electric discharge becomes unstable. 
Optically pumped CO2 lasers face no such pressure limitation, and offer a potentially efficient 
and compact alternative [9,10]. 

In our paper we report on development of RT 3.60-5.15 μm tunable mid-IR Fe:ZnSe laser 
pumped by a radiation of mechanically Q-switched Er:YAG laser. This nanosecond Fe:ZnSe 
laser is a first stage of future master oscillator - power amplifier (MOPA) system for optical 
excitation of CO2 lasers and amplifiers of sub-ps pulses. In addition, we also report on Q-
switched operation of Fe:ZnSe laser pumped by a radiation of free running Er:YAG. 
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2. Mechanically Q-switched Er:YAG pump laser 

An Er:YAG laser operating at 2.94 μm is a convenient pump source for a Fe:ZnSe laser. The 
2.94 μm oscillation wavelength nicely overlaps with the absorption band of Fe2+ ions in II-VI 
materials. The output energy of Er:YAG laser could exceed 25 J from a single oscillator in 
free running regime. The Fe:ZnSe laser with output energy up to 7.5 J @ 4.3 µm pumped by 
Er:YAG laser was reported in [11]. 

The effective free running operation of a Fe:ZnSe laser requires cooling of the gain 
element to at least ~220 K due to temperature quenching of the upper laser level. On the other 
hand the effective RT operation of Fe:ZnSe laser requires pump pulses to be shorter than the 
upper laser level lifetime (380 ns [6,12]). While, there are numerous publications on Q-
switching of 2.9 µm Er:YAG laser cavities by all the known techniques (such as electro-
optics [13], acousto- optics [14], saturable absorber [15]), a stable effective operation of Q-
switched Er:YAG laser is still a challenge due to a low optical damage threshold and resource 
of work of the used mid-IR Q-switch materials. Therefore, several mechanical Q-switches 
which are not sensitive to the wavelength were proposed and developed. The Er:YSGG laser 
at 2.79 µm with a Q-switch based on frustrated total internal reflection (FTIR) was reported 
in [16] and demonstrated several tenths of mJ in a single pulse. The major disadvantages of 
FTIR Q-switches are relatively large switching times, high required operation voltage, and 
difficult control of the beam quality. Recently, very compact devices with low consumption 
power, high repetition rate (~1 kHz), and high threshold for optical damage were reported in 
several publications [17,18]. For one of these experiments [18], a compact mirror scanner, 
based on a torsion bar spring, was used as the mechanical Q-switch of the laser cavity. The 
resonant oscillation of a compact mirror at 4.6 kHz was achieved by 5 V sinusoidal signal 
applied to wire coil with average electric drive power of 62 mW. However, due to a limited 
angular speed, the maximum output energy in flashlamp pumped Er:YAG laser was limited to 
~6 mJ. Further increase of the pump energy results in multi-pulse oscillation. 

The mechanical Q-switch based on rotation prism or mirror have been studied for many 
decades [19]. Modern brushless DC motors feature good torque characteristic, adjustable 
speed range with maximum above 80000 rpm, and long life span. A Q-switched Er:YAG 
laser developed for medical applications with a pulse duration of ~300 ns was reported in 
[20]. 

In our experiments, we focused on development of mechanically Q-switched Er:YAG 
laser as a pump source for tunable RT Fe:ZnSe with a pulse duration shorter than 150 ns. The 
scheme of Q-switched Er:YAG laser is shown in Fig. 1. 

 

Fig. 1. Basic scheme of mechanically Q-switched Er:YAG laser. 

In our experiments we use 100 mm long Er(50%):YAG crystal with 4 mm diameter. The 
rod had AR-coatings on both end surfaces. The laser cavity was formed by a flat back mirror 
and a flat output coupler with reflectivity 75%. The laser stability was provided by a thermal 
lens in the Er:YAG crystal. The mechanical Q-switching was demonstrated using rotation of a 
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flat back mirror. He-Ne laser radiation reflected from the rotating mirror was detected by Si 
photodiode and formed input pulses for a pulse generator. The repetition rate of the triggering 
pulse was decreased to 10 Hz by digital generator. The pulse generator also provides 
adjustable delay for triggering of flash lamp driver. We used KALD 20-10 (MegaWatt 
Lasers) flashlamp driver, capable to form up to 120 J pulses with 200 µs pulse duration. The 
rotation rate of a back mirror was optimized to generate a single Er:YAG pulse with a 
maximum output energy. 

 

Fig. 2. Temporal profiles of the mechanically Q-switched Er:YAG laser for different pump 
energies and rotation rates of the back mirror. 

Figure 2 shows the temporal profiles and output energies of the mechanically Q-switched 
Er:YAG laser with 220 Hz and 544 Hz rotation rates of the back mirror. As one can see from 
the Fig. 2, at low pump energy laser oscillation consists of a single pulse with 150-200 ns 
pulse duration. An increase of the rotational speed results in increase of the laser threshold; 
however, it allows a higher energy in a single pulse. It is noteworthy that the time interval 
between spikes was decreased from ~500 to ~200 ns when rotation rate was increased from 
220 Hz to 544 Hz. It results in overlapping of the first and second spikes with formation of a 
single pulse with ~400 ns pulse duration. The maximum output energy in single 300 ns pulses 
was measured to be up to 55 mJ at 2.94 μm in multi-mode regime of operation. 

 

Fig. 3. (a) The output energy of Q-switched Er:YAG laser versus pump energy; (b) Er:YAG 
laser output beam profile at 40 J pump and 12mJ output energies. 
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To control the output beam quality, we installed an intracavity aperture near the output 
coupler. The output energy dependence versus pump energy is depicted in Fig. 3(a). There 
was a roll-off from linear dependence for pump energy above 35 J and 10 mJ of output 
energy. The laser generates up to 17 mJ in a single pulse of 150 ns duration. The output laser 
beam profiles were measured by PyroCam III (Spiricon). The beam profile at 40 J pump (12 
mJ output energy) is depicted in Fig. 3(b). The shape of the output beam does not feature any 
hot spot and was close to a Gaussian profile. This Er:YAG laser was used as a pump source 
for RT Fe:ZnSe laser in our further experiments. 

3. Experimental characterization of tunable Fe:ZnSe laser 

Polycrystalline Fe:ZnSe gain elements (10x5x2mm3) were used for laser development. ZnSe 
doping was accomplished in a sealed vacuumed ampoule by post-growth thermal diffusion of 
iron from metal films deposited on crystal grown by chemical vapor transport technique. The 
Fe2+ ion concentration was calculated from the absorption measurements and absorption cross 
section value σ = 1.0 × 10−18 cm2 at 3.1 µm. The calculated concentration in the fabricated 
sample was measured to be N = 1.5 × 1019 cm−3. A 2 mm thick gain element with an anti-
reflection coating at pump wavelength and over 3.9-5.0 µm spectral range was used. The 
initial absorption at pump wavelength was 95%. Initially, the gain element was tested in a 
nonselective flat-flat cavity with 75% reflectivity of the output coupler. The maximum output 
energy was measured to be 5 mJ under 15 mJ of pump energy. 

 

Fig. 4. Optical scheme of gain-switched Fe:ZnSe laser: OC- output coupler; DM- dichroic 
mirror; SM- pump steering mirror; T- intracavity lens telescope; G diffraction grating; Fp 
focusing lens. 

The optical scheme of tunable Fe:ZnSe laser is shown in Fig. 4. We used a folded cavity 
design to avoid incidence of the pump radiation on the diffraction grating and to decrease the 
energy density on the folded mirror. The input dichroic mirror has >95% transmission at the 
pump wavelength and a high reflectivity over 3.5-5.0 µm spectral range. The same dichroic 
mirrors were used after output coupler to separate residual pump radiation and oscillation of 
Fe:ZnSe laser. To obtain a narrow line, tunable oscillation, the back mirror was replaced by a 
diffraction grating operating in Littrow mount auto-collimation regime with diffraction 
efficiency >80% in the first diffraction order. The major advantages of this scheme are in a 
stable direction of the output radiation during oscillation wavelength tuning and circularly-
symmetric (non-astigmatic) output beam. Using zero order diffraction as an output and a 
highly reflective back mirror will increase the total efficiency of the laser but will introduce 
the astigmatism into the output beam as well as a spatial shift of the output beam under 
scanning of the oscillation wavelength. The intracavity telescope based on AR coated CaF2 
lenses was installed into the cavity to reduce the energy density on the diffraction grating and 
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to increase the grating resolving power. The output coupler has ~70% reflectivity over the 
Fe:ZnSe tuning range. The pump-focusing lens and steering mirror were used to control the 
pump area on the surface of the gain element. 

The maximum output energy in dispersive cavity was measured to be 3 mJ. The tuning 
curve of the Fe:ZnSe laser under 11 mJ pump energy is shown in the Fig. 5(a). As one can see 
from the Fig. 5(a), the tuning range spans over 3.60-5.15 µm spectral range. A wide dip over 
the 4.2-4.4 μm spectral range is due to intracavity absorption by atmospheric CO2 and can be 
mitigated by cavity purging with Ar or N2 (curve ii). During the measurement, it was 
observed that the AR coating of the gain element was damaged by lasing at 4.5 µm, when 
output energy was higher than 2 mJ. We believe that it was due to the residual organic on the 
surface. Therefore, we skipped this region during the wavelength scanning in the purged 
cavity. The output linewidth was measured to be smaller than 1.5 nm over the whole range of 
tunability. Figure 5(b) depicts spectral line of the tunable laser at 4098 nm measured by Acton 
Research Corporation SpectraPro-300i monochromator with spectral resolution < 0.7 nm. 

 

Fig. 5. (a) A characteristic tuning curve of the RT gain-switched Fe:ZnSe laser under 11 mJ 
pump energy and ambient condition (i), (ii) represents the same tuning curve of Fe:ZnSe laser 
with cavity purged with N2; (b) Fe:ZnSe laser linewidth at 4098 nm. 

The temporal profile of the Fe:ZnSe pulse at 4300 nm is shown in Fig. 6(a). The laser 
pulse consists of the sharp spike followed by a longer, ~50 ns, decay. The spike duration was 
smaller than 10 ns. It indicates a fast growth of the round-trip gain under pump radiation. It 
could be explained by a strong overlap of the emission and absorption spectra of Fe2+ ions at 
RT. In this case, the fast dynamic of the oscillation spectra results not only from the fast gain 
growth under the pump pulses but also due to the decrease of the absorption at the oscillation 
wavelength. The relative intensity of the spike is decreased with oscillation wavelength tuned 
to the edge of the tuning curve. The laser oscillates in TEM00 mode. The beam diameter at the 
output coupler and the output beam divergence at 4.4 µm were measured to be 3 mm and 5 
mrad, respectively. The typical beam profile measured by PyroCam III is depicted in Fig. 
6(b). The interference pattern in the pictures is due to interference on the input window of 
pyrocamera. 
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Fig. 6. Temporal (a) and spatial (b) profiles of the Fe:ZnSe pulse near 4300 nm. 

Fe:ZnSe gain medium features a long upper level lifetime (55 µs over 77-140 K [21]) 
which is sufficient for high energy storage capability when pumped by a radiation of free 
running Er:YAG lasers. To test this approach, we used the same gain elements as were used 
for the gain-switched regime of operation. The optical scheme of Q-switched Fe:ZnSe laser is 
shown in Fig. 7. The Fe:ZnSe crystal was installed in a liquid nitrogen cryostat in these 
experiments. The non-selective laser cavity was formed by a flat high reflector and a flat OC 
with reflectivity 70% over 3.0-5.0 µm spectral range. The free running Er:YAG laser 
operating at 10 Hz repetition rate with a pulse duration of 200 μs was used for quasi-collinear 
pumping. The pump beam diameter at Fe:ZnSe gain element was measured to be ~3 mm. The 
rotating back mirror provided a mechanical Q-switching of the Fe:ZnSe laser cavity. 

 

Fig. 7. Optical scheme of Q-switched Fe:ZnSe laser: OC- output coupler; BM- back mirror 
DM- dichroic mirror; SM- pump steering mirror. 

In the free running regime, the slope efficiency of the Fe:ZnSe laser was measured to be 
~35% with respect to the pump energy with lase threshold below 10 mJ. The spectrum of the 
Fe:ZnSe laser was centered at 4.15 µm and had bandwidth ~70 nm. Typical pulse duration of 
the Fe:ZnSe free-running lasers was usually within 150 μs pulse duration. The mechanical Q-
switch based on rotation of back mirror was used in the experiments. Er:YAG free running 
laser was triggered at 10 Hz using approach described above for Q-switched Er:YAG laser. 
The rotation frequency was adjusted between 200 Hz and 600 Hz. The efficiency of the 
Fe:ZnSe laser with mechanical Q-switch was ~4 times smaller than in free-running mode. 
The maximum output energy in a single pulse of mechanically Q-switched Fe:ZnSe laser was 
measured to be ~3 mJ with a pulse duration of 150 ns. The output energy was several orders 
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of magnitude higher than the previously reported result for the Fe:ZnSe laser in passive Q-
switch and CW pumping [22]. This output energy was not sensitive to rotation speed. An 
increase of the pump energy resulted in increase of the output energy but was accompanied 
by formation of multiple pulses. It should be noted that the gain element was not specifically 
optimized for the Q-switched regime of operation. The measured output beam diameter in the 
single pulse Q-switch regime was close to the diameter of the pump beam. If we assume that 
pumped area and oscillation mode sizes in the gain element were close to each other then we 
could use the pump beam diameter for laser efficiency estimations. The maximum possible 
accumulated energy in the pumped volume is proportional to the number of doped ions and 
was estimated to be ~12 mJ for the used gain element. Therefore, the measured maximum 
energy in a single pulse was ~25% from the maximum possible accumulated energy at 100% 
inversion of Fe ions. We believe that the further optimization of the laser cavity and the gain 
element could increase the accumulated energy as well as Fe:ZnSe output energy in a single 
pulse. 

4. Conclusions 

In summary, we report on RT gain-switched Fe:ZnSe lasers tunable over 3.60-5.15 µm 
pumped by a radiation of mechanically Q-switched Er:YAG laser operating at 2.94 µm. The 
maximum output energy was measured to be 5 mJ under 15 mJ of pump energy. We also 
demonstrated that Q-switched regime of oscillation could be effectively utilized for Fe:ZnSe 
lasers, however, it requires fabrication of a large-scale Fe:ZnSe gain elements. This approach 
could be attractive for development of a high-energy short-pulse solid-state mid-IR systems 
operating over 3.6-5.2 µm spectral range. 
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