Mid-IR solid-state lasers based on Cr2+ and Fe2+ ions

##Laser Physics

2.      Milestones in the Development of  Cr2+ doped II-VI Lasers

 

Cr2+ Lasers

Year

 

 

First Lasing

1996

 

 

First diode-pumped laser

1997

 

 

First CW laser

1999

 

 

First mode-locked laser

2000

 

 

First Kerr mode-locked laser

2009

 

 

 

 

 

 

Gain Element

Tunability

 

 

Cr:ZnS

1.84-3.06 mm

 

 

Cr:ZnSe

1.88-3.35 mm

 

 

Cr:CdSe

2.26-3.61 mm

 

 

 

 

 

 

                                           Max Output Parameters                  

Power/Energy

 

 

CW power

 140W

 

 

Energy (Free running, in ms pulses)

1.1 J

 

 

Energy (Gain-Switched, in ns  pulses )

 52mJ

 

 

 

 

 

 

Mode-Locked Lasing

Parameters

 

 

Oscillator:

 

 

 

Average  power

1-2 W

 

 

Repetition rate

           70MHz-1GHz

 

 

Shortest Pulse Duration (Cr:ZnS/Cr:ZnSe)

15 fs/36 fs

 

 

Chirped Pulse Amplifier:

 

 

 

Max Peak Power/ Pulse Duration/Energy

115GW/39fs/6.2 mJ

 

 

 

Links

ü  Historic Background in the Development of  Cr2+ and Fe2+-doped II-VI Laser

ü  Notes

ü   

 

 

 

 

 

 

 

 

References

The references for the above output characteristics could be found in the following reviews:

Ø  L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996)

Ø   Stefan Kuck, “Spectroscopy and laser characteristics of Cr -doped chalcogenide crystals — overview and recent resultsJournal of Alloys and Compounds 341 (2002) 28–33

Ø  Timothy J. Carrig, “Transition-Metal-Doped Chalcogenide Lasers” Journal of ELECTRONIC MATERIALS, Vol. 31, No. 7, 2002

Ø  A.G. Bluiett , U. Hömmerich,  R.T. Shah, S.B. Trivedi, S.W. Kutcher, and C.C.Wang, “Observation of Lasing from Cr2+:CdTe and Compositional Effects in Cr2+-Doped II-VI Semiconductors” Journal of ELECTRONIC MATERIALS, Vol. 31, No. 7, 2002

Ø  Irina T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics”, Optical Materials 26 (2004) 395–412

Ø  S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, "Recent progress in transition metal doped II-VI mid-IR lasers" IEEE Selected Topics in  of Quantum Electronics (Invited paper), vol 13, pp810-822 (2007)

Ø  V. I. Kozlovsky, V. A.  Akimov, M. P. Frolov, Yu. V., Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable midinfrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase”, Phys. Status Solidi B 247, No. 6, 1553–1556 (2010) / DOI 10.1002/pssb.200983165

Ø  Sergey Mirov, Vladimir Fedorov, Igor S. Moskalev, Dmitri Martyshkin, and Changsu Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials” Laser & Photon. Rev. 4, No. 1, 21–41 (2010)

Ø   S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev, "Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited]," Opt. Mater. Express 1, 898-910 (2011)

Ø  S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides”,  IEEE Journal of Selected Topics In Quantum Electronics,  vol. 21, No 1, Article#: 1601719, pp1-19, (2015).

Ø   Sergey Mirov, Igor Moskalev, Sergey Vasilyev, Viktor Smolski, Vladimir Fedorov, Dmitry Martyshkin, Jeremy Peppers, Mike Mirov, Alex Dergachev, and Valentin Gapontsev, "Frontiers of mid-IR lasers based on transition metal doped chalcogenides," in IEEE Journal of Selected Topics in Quantum Electronics, 24(5) 1601829, 29pp (2018).

Ø  Zenghu Chang, Li Fang, Vladimir Fedorov, Chase Geiger, Shambhu Ghimire, Christian Heide, Nobuhisa Ishii, Jiro Itatani, Chandrashekhar Joshi, Yuki Kobayashi, Prabhat Kumar, Alphonse Marra, Sergey Mirov, Irina Petrushina, Mikhail Polyanskiy, David A. Reis, Sergei Tochitsky, Sergey Vasilyev, Lifeng Wang, Yi Wu, and Fangjie Zhou, “Intense infrared lasers for strong-field science”, Advances in Optics and Photonics Vol. 14, Issue 4, pp. 652-782 (2022),  https://doi.org/10.1364/AOP.45479