Mid-IR solid-state lasers based on Cr2+
and Fe2+ ions |
|||
##Laser Physics |
3.
Milestones in the Development of Fe2+ doped II-VI Lasers |
|
|
Fe2+
Lasers |
Year |
|
|
|
First Lasing of Fe2+ ions in InP
|
1983 |
|
|
First
Lasing in Chalcogenide Host |
1999 |
|
|
First
Room Temperature lasing |
2005 |
|
|
First
CW lasing |
2008 |
|
|
First
laser pumped via Co®Fe energy transfer |
2013 |
|
|
First
diode-pumped laser via Cr® Fe energy transfer |
2020 |
|
|
First
Mode-Locked laser |
2018 |
|
|
|
|
|
|
Gain Element |
Tunability |
|
|
Fe:ZnS |
3.45-4.65 mm |
|
|
Fe:ZnSe |
3.77-5.05 mm |
|
|
Fe:CdSe |
4.60-6.10 mm |
|
|
Fe:CdTe |
4.50-6.80 mm |
|
|
|
|
|
|
Max
Output Parameters |
Power/Energy |
|
|
CW
power |
140W |
|
|
Energy
(Free running, in ms pulses) |
1.1 J |
|
|
Energy
(Gain-Switched, in ns
pulses ) |
52mJ |
|
|
|
|
|
|
Mode-Locked Lasing |
Parameters |
|
|
Oscillator : |
|
|
|
Average
Power/ Pulse Duration/Repletion Rate |
415mW/732fs/100MHz |
|
|
Chirped
Pulse Amplifier: |
|
|
|
Max Peak
Power/ Pulse Duration/Energy |
23GW/150fs/3.4mJ |
|
|
|
||
Links |
ü Historic
Background in the Development of Cr2+
and Fe2+-doped II-VI Laser ü Notes |
ü |
|
|
|
||
|
|
|
|
|
|
|
|
References |
The
references for the above output characteristics could be found in the
following reviews: Ø
L. D. DeLoach, R. H. Page, G. D. Wilke,
S. A. Payne, and W. F. Krupke, “Transition
metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new
class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996) Ø
Stefan Kuck,
“Spectroscopy and laser characteristics of Cr -doped chalcogenide crystals —
overview and recent resultsJournal of Alloys and
Compounds 341 (2002) 28–33 Ø
Timothy J. Carrig,
“Transition-Metal-Doped Chalcogenide Lasers” Journal of ELECTRONIC MATERIALS,
Vol. 31, No. 7, 2002 Ø
A.G. Bluiett ,
U. Hömmerich,
R.T. Shah, S.B. Trivedi, S.W. Kutcher, and C.C.Wang
“Observation of Lasing from Cr2+:CdTe
and Compositional Effects in Cr2+-Doped II-VI Semiconductors”
Journal of ELECTRONIC MATERIALS, Vol. 31, No. 7, 2002 Ø
Irina T. Sorokina, “Cr2+-doped
II–VI materials for lasers and nonlinear optics”, Optical Materials 26 (2004)
395–412 Ø
S. Mirov, V. Fedorov, I. Moskalev, D.
Martyshkin, "Recent progress in transition metal doped II-VI mid-IR
lasers" IEEE Selected Topics in of Quantum Electronics (Invited
paper), vol 13, pp810-822 (2007) Ø
V. I. Kozlovsky,
V. A. Akimov,
M. P. Frolov, Yu. V., Korostelin, A. I. Landman, V.
P. Martovitsky, V. V. Mislavskii,
Yu. P. Podmar’kov, Ya. K. Skasyrsky,
and A. A. Voronov, “Room-temperature tunable midinfrared lasers on
transition-metal doped II–VI compound crystals grown from vapor phase”, Phys.
Status Solidi B 247, No. 6, 1553–1556 (2010) / DOI 10.1002/pssb.200983165 Ø
Sergey Mirov, Vladimir Fedorov, Igor S.
Moskalev, Dmitri Martyshkin, and Changsu Kim,
“Progress in Cr2+ and Fe2+ doped mid-IR laser materials” Laser & Photon.
Rev. 4, No. 1, 21–41 (2010) Ø
S. B. Mirov, V. V. Fedorov, D. V.
Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev,
"Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers
[Invited]," Opt. Mater. Express 1, 898-910 (2011) Ø
S. Mirov, V. Fedorov, D. Martyshkin, I.
Moskalev, M. Mirov, S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and
Fe Doped II-VI Chalcogenides”, IEEE Journal of Selected Topics In
Quantum Electronics, vol. 21, No 1,
Article#: 1601719, pp1-19, (2015). Ø
Sergey Mirov, Igor Moskalev, Sergey
Vasilyev, Viktor Smolski, Vladimir Fedorov, Dmitry Martyshkin, Jeremy
Peppers, Mike Mirov, Alex Dergachev, and Valentin Gapontsev,
"Frontiers of mid-IR lasers based on transition metal doped
chalcogenides," in IEEE Journal of Selected Topics in Quantum
Electronics, 24(5) 1601829, 29pp (2018). Ø
Zenghu Chang, Li Fang, Vladimir
Fedorov, Chase Geiger, Shambhu Ghimire, Christian Heide, Nobuhisa
Ishii, Jiro Itatani, Chandrashekhar Joshi, Yuki Kobayashi, Prabhat Kumar,
Alphonse Marra, Sergey Mirov, Irina Petrushina,
Mikhail Polyanskiy, David A. Reis, Sergei Tochitsky, Sergey Vasilyev, Lifeng Wang, Yi Wu, and Fangjie
Zhou, “Intense infrared lasers for strong-field science”, Advances in Optics
and Photonics Vol. 14, Issue 4, pp. 652-782 (2022), https://doi.org/10.1364/AOP.45479 |
|
|
|
|
|
|
|
|
|