Spectral Theory for Systems of Ordinary Differential Equations with Distributional Coefficients

Rudi Weikard

University of Alabama at Birmingham

OTAMP 2020

Mexico City

10. January 2020

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 1/31

- 3

イロト 不得下 イヨト イヨト

I am reporting on joint work with

- Kevin Campbell (UAB)
- Ahmed Ghatasheh (Ohio State at Marion)
- Minh Nguyen (UAB)

イロト イポト イヨト イヨト

Introduction

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 3 / 31

э

メロト メポト メヨト メヨト

Spectral theory and the Fourier transform I

• To describe heat conduction Fourier (1822) considered the problem

$$\phi_t = \phi_{xx}, \quad \phi'(0,t) = \phi'(L,t) = 0, \quad \phi(x,0) = \phi_0(x.)$$

• Separating variables and introducing the separation constant λ leads the boundary value problem

$$-y'' = \lambda y, \quad y(0) = y'(L) = 0$$

with eigenfunctions $y_n = \cos(k_n x)$ and eigenvalues $\lambda_n = k_n^2 = (n\pi/L)^2$.

- This yields solutions $\phi(x, t) = \cos(k_n x) \exp(-\lambda_n t)$.
- How to satisfy the initial condition?

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 4 / 31

イロト イポト イヨト イヨト 二日

Spectral theory and the Fourier transform II

• Whenever $\phi_0 \in L^2((0, L), dx)$ it may be expanded into eigenfunctions

$$\phi_0(x) = \sum_{n=0}^{\infty} c_n \cos(k_n x)$$

for appropriate Fourier coefficients c_n .

• The solution of the initial-boundary value problem is then

$$\phi(x,t) = \sum_{n=0}^{\infty} c_n \cos(k_n x) \exp(-\lambda_n t).$$

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 5 / 31

イロト イヨト イヨト

Spectral theory and the Fourier transform II

• Whenever $\phi_0 \in L^2((0, L), dx)$ it may be expanded into eigenfunctions

$$\phi_0(x) = \sum_{n=0}^{\infty} c_n \cos(k_n x)$$

for appropriate Fourier coefficients c_n .

• The solution of the initial-boundary value problem is then

$$\phi(x,t) = \sum_{n=0}^{\infty} c_n \cos(k_n x) \exp(-\lambda_n t).$$

A major theme of spectral theory is to ask when expansions in eigenfunctions are possible.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 5 / 31

イロト イヨト イモト イモト

• Sturm and Liouville (1830s):

 $-(py')' + vy = \lambda rf$ posed on a bounded interval

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Sturm and Liouville (1830s):

 $-(py')' + vy = \lambda rf$ posed on a bounded interval

• Weyl (1910): extension to a half-line (limit-point, limit-circle classification)

イロト 不得下 イヨト イヨト 二日

• Sturm and Liouville (1830s):

 $-(py')' + vy = \lambda rf$ posed on a bounded interval

- Weyl (1910): extension to a half-line (limit-point, limit-circle classification)
- Birkhoff and Langer (1923): systems of first-order equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つくべ

• Sturm and Liouville (1830s):

 $-(py')' + vy = \lambda rf$ posed on a bounded interval

- Weyl (1910): extension to a half-line (limit-point, limit-circle classification)
- Birkhoff and Langer (1923): systems of first-order equations
- Krein (1952) treated p = 1, v = 0 but r a positive measure.

Rudi Weikard (UAB)

Spectral Theory

• Savchuk and Shkalikov (1999) studied a Schrödinger equation with distributional potential v.

イロト イポト イヨト イヨト

- Savchuk and Shkalikov (1999) studied a Schrödinger equation with distributional potential v.
- Eckhardt, Gesztesy, Nichols, and Teschl (2013) generalized further and developed a spectral theory for the equation

$$-(p(y'-sy))'-sp(y'-sy)+vy=\lambda ry$$

on an interval (a, b) when 1/p, v, s, and r are real-valued and locally integrable and r > 0.

For the case p = 1 and v = 0 the left-hand side becomes $-y'' + (s' + s^2)y$.

Rudi Weikard (UAB)

10. January 2020 7 / 31

イロト 不得下 イヨト イヨト 二日

• Quantum graphs

イロト イヨト イヨト イヨト

- Quantum graphs
- Three-term difference equations are obtained by choosing the coefficients *p*, *q* and *s* piecewise constant.

イロト イポト イヨト イヨト

- Quantum graphs
- Three-term difference equations are obtained by choosing the coefficients *p*, *q* and *s* piecewise constant.
- Atkinson (1964) proposed a common treatment of difference and differential equations.

イロト イヨト イヨト

- Quantum graphs
- Three-term difference equations are obtained by choosing the coefficients *p*, *q* and *s* piecewise constant.
- Atkinson (1964) proposed a common treatment of difference and differential equations.
- Atkinson also proposes to treat equations with Riemann-Stieltjes measures.

イロト イヨト イヨト

• It is useful to note that any of these equations can be realized as a system:

$$Ju' + qu = \lambda wu.$$

3

イロト イポト イヨト イヨト

 It is useful to note that any of these equations can be realized as a system:

$$Ju' + qu = \lambda wu.$$

• In particular, for the second order case:

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad q = \begin{pmatrix} v & -s \\ -s & -1/p \end{pmatrix}, \text{ and } w = \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix}$$

setting $u_1 = y$ and $u_2 = p(y' - sy)$.

Rudi Weikard (UAB)

Spectral Theory

< ■ト < ■ト ■ 少への 10. January 2020 9/31

イロト イポト イヨト イヨト

 $Ju' + qu = \lambda wu$

• If q, w are continuous, then u is continuously differentiable.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 10 / 31

イロト 不得下 イヨト イヨト 二日

 $Ju' + qu = \lambda wu$

- If q, w are continuous, then u is continuously differentiable.
- If q, w are locally integrable, then u is absolutely continuous.

- 31

イロト 不得下 イヨト イヨト

 $Ju' + qu = \lambda wu$

- If q, w are continuous, then u is continuously differentiable.
- If q, w are locally integrable, then u is absolutely continuous.
- If q, w are distributions of order 0 (measures), then u is of bounded variation.

 $Ju' + qu = \lambda wu$

- If q, w are continuous, then u is continuously differentiable.
- If q, w are locally integrable, then u is absolutely continuous.
- If q, w are distributions of order 0 (measures), then u is of bounded variation.
- If *u* were even rougher, one could not define *qu* and *wu* anymore.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 10 / 31

Hypotheses for this work

We consider the equation Ju' + qu = wf posed on (a, b) and require the following:

- System size is $n \times n$.
- J is constant, invertible, and skew-hermitian.
- q and w are hermitian distributions of order 0 (measures).
- w non-negative (giving rise to the Hilbert space L²(w) with scalar product ⟨f,g⟩ = ∫ f*wg.
- Additional conditions to be discussed later (probably only technical).

• In the presence of discrete components of *q* and *w* existence and uniqueness of solutions become an issue.

イロト 不得下 イヨト イヨト 二日

- In the presence of discrete components of *q* and *w* existence and uniqueness of solutions become an issue.
- The definiteness condition

$$Ju' + qu = 0$$
 and $wu = 0$ (or $||u|| = 0$) implies $u \equiv 0$

may not hold.

- In the presence of discrete components of *q* and *w* existence and uniqueness of solutions become an issue.
- The definiteness condition

$$Ju' + qu = 0$$
 and $wu = 0$ (or $||u|| = 0$) implies $u \equiv 0$

may not hold.

• The DE gives, in general, only relations not operators.

- In the presence of discrete components of *q* and *w* existence and uniqueness of solutions become an issue.
- The definiteness condition

$$Ju' + qu = 0$$
 and $wu = 0$ (or $||u|| = 0$) implies $u \equiv 0$

may not hold.

- The DE gives, in general, only relations not operators.
 - Consider graphs: $(u, f) \in \mathcal{T}_{\max}$ if and only if $u \in \mathsf{BV}_{\mathrm{loc}}$ and Ju' + qu = wf

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 12 / 31

- In the presence of discrete components of *q* and *w* existence and uniqueness of solutions become an issue.
- The definiteness condition

$$Ju' + qu = 0$$
 and $wu = 0$ (or $||u|| = 0$) implies $u \equiv 0$

may not hold.

- The DE gives, in general, only relations not operators.
 - Consider graphs: $(u, f) \in \mathcal{T}_{\max}$ if and only if $u \in \mathsf{BV}_{\mathrm{loc}}$ and Ju' + qu = wf
 - Fortunately, there is an abstract spectral theory for linear relations (Arens 1961, Orcutt 1969, Bennewitz 1977).

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 12 / 31

イロト イボト イヨト トヨー つくつ

Differential equations

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 13 / 31

3

イロト イボト イヨト イヨト

• Distributions of order 0 are, locally, measures. Positive distributions are positive measures.

イロト 不得 トイラト イラト 二日

- Distributions of order 0 are, locally, measures. Positive distributions are positive measures.
- By Riesz's representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.

イロト イヨト イヨト イヨト

- Distributions of order 0 are, locally, measures. Positive distributions are positive measures.
- By Riesz's representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.
- f ∈ L²(w) implies f ∈ L¹_{loc}(w) and hence wf is again a distribution of order 0.

イロト 不得下 イヨト イヨト 二日

- Distributions of order 0 are, locally, measures. Positive distributions are positive measures.
- By Riesz's representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.
- f ∈ L²(w) implies f ∈ L¹_{loc}(w) and hence wf is again a distribution of order 0.
- $u \in \mathsf{BV}_{\mathrm{loc}}$ implies qu and wu are distributions of order 0.

イロト イボト イヨト トヨー つくつ

- Distributions of order 0 are, locally, measures. Positive distributions are positive measures.
- By Riesz's representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.
- f ∈ L²(w) implies f ∈ L¹_{loc}(w) and hence wf is again a distribution of order 0.
- $u \in \mathsf{BV}_{\mathrm{loc}}$ implies qu and wu are distributions of order 0.
- Thus each term in

$$Ju' + qu = \lambda wu + wf$$

is a distribution of order 0.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 14 / 31

Why balanced solutions?

We will look for solutions among the **balanced** solutions of locally bounded variation.

• If $F = tF^+ + (1-t)F^-$ and $G = tG^+ + (1-t)G^-$ for some fixed t

Why balanced solutions?

We will look for solutions among the balanced solutions of locally bounded variation.

• If $F = tF^+ + (1-t)F^-$ and $G = tG^+ + (1-t)G^-$ for some fixed t

•
$$\int_{[x_1,x_2]} (FdG + GdF) = (FG)^+(x_2) - (FG)^-(x_1) + (2t-1) \int_{[x_1,x_2]} (G^+ - G^-) dF.$$

Why balanced solutions?

We will look for solutions among the balanced solutions of locally bounded variation.

• If $F = tF^+ + (1-t)F^-$ and $G = tG^+ + (1-t)G^-$ for some fixed t

•
$$\int_{[x_1,x_2]} (FdG + GdF) = (FG)^+(x_2) - (FG)^-(x_1) + (2t-1) \int_{[x_1,x_2]} (G^+ - G^-) dF.$$

• The last term disappears unless F and G jump at the same place and if t = 1/2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つくべ

Why balanced solutions?

We will look for solutions among the balanced solutions of locally bounded variation.

• If $F = tF^+ + (1-t)F^-$ and $G = tG^+ + (1-t)G^-$ for some fixed t

•
$$\int_{[x_1,x_2]} (FdG + GdF) = (FG)^+(x_2) - (FG)^-(x_1) + (2t-1) \int_{[x_1,x_2]} (G^+ - G^-) dF.$$

- The last term disappears unless F and G jump at the same place and if t = 1/2.
- We call $(F^+ + F^-)/2$ balanced.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• If Q or W have a jump at x the differential equation requires

$$J(u^{+}(x) - u^{-}(x)) + (\Delta_{q}(x) - \lambda \Delta_{w}(x))\frac{u^{+}(x) + u^{-}(x)}{2} = \Delta_{w}(x)f(x)$$

where $\Delta_q(x) = q(\{x\}) = Q^+(x) - Q^-(x)$ (similar for w).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つくべ

• If Q or W have a jump at x the differential equation requires

$$J(u^{+}(x) - u^{-}(x)) + (\Delta_{q}(x) - \lambda \Delta_{w}(x))\frac{u^{+}(x) + u^{-}(x)}{2} = \Delta_{w}(x)f(x)$$

where $\Delta_q(x) = q(\{x\}) = Q^+(x) - Q^-(x)$ (similar for *w*).

• Equivalently, $B_+(\lambda,x)u^+(x) - B_-(\lambda,x)u^-(x) = \Delta_w(x)f(x)$ where

$$B_{\pm}(x,\lambda) = J \pm \frac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x)).$$

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 16 / 31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• If Q or W have a jump at x the differential equation requires

$$J(u^{+}(x) - u^{-}(x)) + (\Delta_{q}(x) - \lambda \Delta_{w}(x))\frac{u^{+}(x) + u^{-}(x)}{2} = \Delta_{w}(x)f(x)$$

where $\Delta_q(x) = q(\{x\}) = Q^+(x) - Q^-(x)$ (similar for *w*).

• Equivalently, $B_+(\lambda,x)u^+(x) - B_-(\lambda,x)u^-(x) = \Delta_w(x)f(x)$ where

$$B_{\pm}(x,\lambda) = J \pm \frac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x)).$$

 Unless B_±(x, λ) are invertible initial value problems do not have unique solutions.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 16 / 31

• If Q or W have a jump at x the differential equation requires

$$J(u^{+}(x) - u^{-}(x)) + (\Delta_{q}(x) - \lambda \Delta_{w}(x)) \frac{u^{+}(x) + u^{-}(x)}{2} = \Delta_{w}(x)f(x)$$

where $\Delta_q(x) = q(\lbrace x \rbrace) = Q^+(x) - Q^-(x)$ (similar for w).

• Equivalently, $B_+(\lambda,x)u^+(x) - B_-(\lambda,x)u^-(x) = \Delta_w(x)f(x)$ where

$$B_{\pm}(x,\lambda) = J \pm \frac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x)).$$

- Unless B_±(x, λ) are invertible initial value problems do not have unique solutions.
- Without an existence and uniqueness theorem there is no variation of constants formula.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 16 / 31

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つくべ

Existence of solutions

Consider λ = 0. The points where B_±(x) are not invertible are discrete.

イロト 不得 トイラト イラト 二日

Existence of solutions

- Consider λ = 0. The points where B_±(x) are not invertible are discrete.
- If there are only finitely many such points, a solution of Ju' + qu = wf exists when

$$B\tilde{u} = F(f)$$

where

$$B = \begin{pmatrix} -B_{-(x_{1})}U_{0}(x_{1}) & B_{+}(x_{1}) & 0 & \cdots & 0 \\ 0 & -B_{-}(x_{2})U_{1}(x_{2}) & B_{+}(x_{2}) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & -B_{-}(x_{N})U_{N-1}(x_{N}) & B_{+}(x_{N}) \end{pmatrix},$$

$$F_{j}(f) = \Delta_{w}(x_{j})f(x_{j}) + B_{-}(x_{j})U_{j}(x_{j})J^{-1}\int_{(x_{j-1},x_{j})} U_{j-1}^{*}wf,$$

and the U_j are fundamental systems in (x_j, x_{j+1}) , respectively.

Rudi Weikard (UAB)

10. January 2020 17 / 31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Existence of solutions

- Consider λ = 0. The points where B_±(x) are not invertible are discrete.
- If there are only finitely many such points, a solution of Ju' + qu = wf exists when

$$B\widetilde{u} = F(f)$$

where

$$B = \begin{pmatrix} -B_{-(x_{1})}U_{0}(x_{1}) & B_{+}(x_{1}) & 0 & \cdots & 0 \\ 0 & -B_{-}(x_{2})U_{1}(x_{2}) & B_{+}(x_{2}) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & -B_{-}(x_{N})U_{N-1}(x_{N}) & B_{+}(x_{N}) \end{pmatrix},$$

$$F_{j}(f) = \Delta_{w}(x_{j})f(x_{j}) + B_{-}(x_{j})U_{j}(x_{j})J^{-1}\int_{(x_{j-1},x_{j})} U_{j-1}^{*}wf,$$

and the U_j are fundamental systems in (x_j, x_{j+1}) , respectively.

• One has to require that $F(f) \in \operatorname{ran} B$.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 17 / 31

E SQC

イロト イボト イヨト イヨト

$T_{\max} = T_{\min}^*$

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 18 / 31

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

- 2

イロト イヨト イヨト イヨト

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in \mathcal{T}_{\max}\}$$

- 2

イロト イヨト イヨト イヨト

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in T_{\max}\}$$

• \mathcal{T}_{\min} and $\mathcal{T}_{\min}.$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in T_{\max}\}$$

• \mathcal{T}_{\min} and $\mathcal{T}_{\min}.$

•
$$T^* = \{(v,g) : \forall (u,f) \in T : \langle v,f \rangle = \langle g,u \rangle \}.$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in T_{\max}\}$$

- \mathcal{T}_{\min} and \mathcal{T}_{\min} .
- $T^* = \{(v,g) : \forall (u,f) \in T : \langle v,f \rangle = \langle g,u \rangle \}.$
- $T_{\min}^* = T_{\max}$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つくべ

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in \mathcal{T}_{\max}\}$$

- \mathcal{T}_{\min} and \mathcal{T}_{\min} .
- $T^* = \{(v,g) : \forall (u,f) \in T : \langle v,f \rangle = \langle g,u \rangle \}.$
- $T_{\min}^* = T_{\max}$
- Hence T_{\min} is symmetric.

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in T_{\max}\}$$

- \mathcal{T}_{\min} and \mathcal{T}_{\min} .
- $T^* = \{(v,g) : \forall (u,f) \in T : \langle v,f \rangle = \langle g,u \rangle \}.$
- $T_{\min}^* = T_{\max}$
- Hence T_{\min} is symmetric.
- No technical condition is needed for this result.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 19 / 31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• To show $T_{\max} \subset T^*_{\min}$ is simply an integration by parts.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 20 / 31

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- To show $\mathcal{T}_{\max} \subset \mathcal{T}^*_{\min}$ is simply an integration by parts.
- For the converse two additional facts are required:

- To show $T_{\max} \subset T^*_{\min}$ is simply an integration by parts.
- For the converse two additional facts are required:
 - Given $g \in L^2(w)$ the DE Jv' + qv = wg has a solution v_1 .

- To show $\mathcal{T}_{\max} \subset \mathcal{T}^*_{\min}$ is simply an integration by parts.
- For the converse two additional facts are required:
 - Given $g \in L^2(w)$ the DE Jv' + qv = wg has a solution v_1 .
 - Restrict to $[\xi_1, \xi_2]$ and define $K_0 = \{k : Jk' + qk = 0\}$ and $T_0 = \{([u], [f]) : Ju' + qu = wf, u(\xi_1) = u(\xi_2) = 0\}$. Then $ran(T_0) = L^2(w|_{[\xi_1, \xi_2]}) \ominus K_0$.

- To show $\mathcal{T}_{\max} \subset \mathcal{T}^*_{\min}$ is simply an integration by parts.
- For the converse two additional facts are required:
 - Given $g \in L^2(w)$ the DE Jv' + qv = wg has a solution v_1 .
 - Restrict to $[\xi_1, \xi_2]$ and define $K_0 = \{k : Jk' + qk = 0\}$ and $T_0 = \{([u], [f]) : Ju' + qu = wf, u(\xi_1) = u(\xi_2) = 0\}$. Then $ran(T_0) = L^2(w|_{[\xi_1, \xi_2]}) \ominus K_0$.
- Suppose $([v], [g]) \in T^*_{\min}$ and $([u], [f]) \in T_0$, extend the latter to $([u], [f]) \in T_{\min}$.

- To show $\mathcal{T}_{\max} \subset \mathcal{T}^*_{\min}$ is simply an integration by parts.
- For the converse two additional facts are required:
 - Given $g \in L^2(w)$ the DE Jv' + qv = wg has a solution v_1 .
 - Restrict to $[\xi_1, \xi_2]$ and define $K_0 = \{k : Jk' + qk = 0\}$ and $T_0 = \{([u], [f]) : Ju' + qu = wf, u(\xi_1) = u(\xi_2) = 0\}$. Then $ran(T_0) = L^2(w|_{[\xi_1, \xi_2]}) \ominus K_0$.
- Suppose $([v], [g]) \in T^*_{\min}$ and $([u], [f]) \in T_0$, extend the latter to $([u], [f]) \in T_{\min}$.
- $\langle f, v
 angle = \langle u, g
 angle$ and partial integration give

$$\int_{\xi_1}^{\xi_2} f^*\breve{w}v = \langle f, v \rangle = \langle u, g \rangle = \int_a^b u^*wg = \int_a^b f^*wv_1 = \int_{\xi_1}^{\xi_2} f^*\breve{w}v_1$$

Rudi Weikard (UAB)

10. January 2020 20 / 31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- To show $T_{\max} \subset T^*_{\min}$ is simply an integration by parts.
- For the converse two additional facts are required:
 - Given $g \in L^2(w)$ the DE Jv' + qv = wg has a solution v_1 .
 - Restrict to $[\xi_1, \xi_2]$ and define $K_0 = \{k : Jk' + qk = 0\}$ and $T_0 = \{([u], [f]) : Ju' + qu = wf, u(\xi_1) = u(\xi_2) = 0\}$. Then $ran(T_0) = L^2(w|_{[\xi_1, \xi_2]}) \ominus K_0$.
- Suppose $([v], [g]) \in T^*_{\min}$ and $([u], [f]) \in T_0$, extend the latter to $([u], [f]) \in T_{\min}$.
- $\langle f, v
 angle = \langle u, g
 angle$ and partial integration give

$$\int_{\xi_1}^{\xi_2} f^*\breve{w}v = \langle f, v \rangle = \langle u, g \rangle = \int_a^b u^*wg = \int_a^b f^*wv_1 = \int_{\xi_1}^{\xi_2} f^*\breve{w}v_1$$

• $[v - v_1] \in K_0$ and hence Jv' + qv = wg on (ξ_1, ξ_2) .

Rudi Weikard (UAB)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Existence of solutions for Ju' + qu = wg may be shown if g is in the range of \mathcal{T}^*_{\min} .

- Existence of solutions for Ju' + qu = wg may be shown if g is in the range of \mathcal{T}^*_{\min} .
- On to Fact 2:

イロト イボト イヨト イヨト

- Existence of solutions for Ju' + qu = wg may be shown if g is in the range of T^*_{\min} .
- On to Fact 2:
- To show ran T₀ ⊂ L²(w|_[ξ1,ξ2]) ⊖ K₀ is simply an integration by parts and the fact that elements of dom T₀ vanish at the endpoints.

イロト (四) (日) (日) (日) (日) (日)

- Existence of solutions for Ju' + qu = wg may be shown if g is in the range of T^*_{\min} .
- On to Fact 2:
- To show ran T₀ ⊂ L²(w|_[ξ1,ξ2]) ⊖ K₀ is simply an integration by parts and the fact that elements of dom T₀ vanish at the endpoints.
- For the converse we need to construct a solution u of Ju' + qu = wf if f ∈ L²(w|_[ξ1,ξ2]) ⊖ K₀.

- Existence of solutions for Ju' + qu = wg may be shown if g is in the range of T^*_{\min} .
- On to Fact 2:
- To show ran T₀ ⊂ L²(w|_[ξ1,ξ2]) ⊖ K₀ is simply an integration by parts and the fact that elements of dom T₀ vanish at the endpoints.
- For the converse we need to construct a solution u of Ju' + qu = wf if f ∈ L²(w|_[ξ1,ξ2]) ⊖ K₀.
- This time $f \perp K_0$ allows to show existence of the sought solution.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 21 / 31

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 0 < 0

Spectral theory (expansion in eigenfunctions)

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 22 / 31

イロト 不得 トイラト イラト 二日

• The bad set

$$\Lambda = \{\lambda \in \mathbb{C}: \exists x: \det(J \pm rac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x))) = 0\},$$

is either equal to ${\mathbb C}$ or else is countable.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 23 / 31

3

イロト イポト イヨト イヨト

• The bad set

$$\Lambda = \{\lambda \in \mathbb{C}: \exists x: \det(J \pm rac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x))) = 0\},$$

is either equal to $\ensuremath{\mathbb{C}}$ or else is countable.

• Additional requirements:

- 31

イロト イポト イヨト イヨト

• The bad set

$$\Lambda = \{\lambda \in \mathbb{C}: \exists x: \det(J \pm rac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x))) = 0\},$$

is either equal to $\ensuremath{\mathbb{C}}$ or else is countable.

• Additional requirements:

•
$$\Lambda \cap \mathbb{R} = \emptyset$$
.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 23 / 31

- 31

イロト イボト イヨト イヨト

• The bad set

$$\Lambda = \{\lambda \in \mathbb{C}: \exists x: \det(J \pm rac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x))) = 0\},$$

is either equal to $\ensuremath{\mathbb{C}}$ or else is countable.

- Additional requirements:
 - $\Lambda \cap \mathbb{R} = \emptyset$.
 - Λ is closed and discrete.

イロト イポト イヨト イヨト

Boundary conditions

• Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Boundary conditions

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- T is a self-adjoint restriction of T_{max} if and only if $T = \ker A$ and

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- T is a self-adjoint restriction of T_{\max} if and only if $T = \ker A$ and
 - $A: T_{\max} \to \mathbb{C}^{n_{\pm}}$ is linear and surjective.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇ ◇

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- T is a self-adjoint restriction of T_{\max} if and only if $T = \ker A$ and
 - $A: T_{\max} \to \mathbb{C}^{n_{\pm}}$ is linear and surjective.
 - $T_{\min} \subset \ker A$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇ ◇

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- T is a self-adjoint restriction of T_{\max} if and only if $T = \ker A$ and
 - $A: T_{\max} \to \mathbb{C}^{n_{\pm}}$ is linear and surjective.
 - $T_{\min} \subset \ker A$.
 - $A\mathcal{J}A^* = 0$ (where $\mathcal{J}(u, f) = (f, -u)$).

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- *T* is a self-adjoint restriction of *T*_{max} if and only if *T* = ker *A* and
 A : *T*_{max} → ℂ^{n±} is linear and surjective.
 - $T_{\min} \subset \ker A$.
 - $AJA^* = 0$ (where J(u, f) = (f, -u)).
- $A_j(u, f) = \langle (v_j, g_j), (u, f) \rangle$ with $(v_j, g_j) \in \mathcal{D}_i \oplus \mathcal{D}_{-i}$ for $j = 1, ..., n_{\pm}$.

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- *T* is a self-adjoint restriction of *T*_{max} if and only if *T* = ker *A* and
 A : *T*_{max} → ℂ^{n±} is linear and surjective.
 - $T_{\min} \subset \ker A$.
 - $AJA^* = 0$ (where J(u, f) = (f, -u)).
- $A_j(u, f) = \langle (v_j, g_j), (u, f) \rangle$ with $(v_j, g_j) \in \mathcal{D}_i \oplus \mathcal{D}_{-i}$ for $j = 1, ..., n_{\pm}$.
- Lagrange's identity: if (u, f), (v, g) ∈ T_{max} then (v*Ju)' is a finite measure on (a, b) and (v*Ju)⁻(b) (v*Ju)⁺(a) = ⟨v, f⟩ ⟨g, u⟩.

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- *T* is a self-adjoint restriction of *T*_{max} if and only if *T* = ker *A* and
 A : *T*_{max} → ℂ^{n±} is linear and surjective.
 - $T_{\min} \subset \ker A$.
 - $AJA^* = 0$ (where J(u, f) = (f, -u)).
- $A_j(u, f) = \langle (v_j, g_j), (u, f) \rangle$ with $(v_j, g_j) \in \mathcal{D}_i \oplus \mathcal{D}_{-i}$ for $j = 1, ..., n_{\pm}$.
- Lagrange's identity: if (u, f), (v, g) ∈ T_{max} then (v*Ju)' is a finite measure on (a, b) and (v*Ju)⁻(b) (v*Ju)⁺(a) = ⟨v, f⟩ ⟨g, u⟩.

•
$$\langle g_k, -v_\ell \rangle - \langle -v_k, g_\ell \rangle = (g_k^* J g_\ell)^- (b) - (g_k^* J g_\ell)^+ (a) = 0$$

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 24 / 31

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- *T* is a self-adjoint restriction of *T*_{max} if and only if *T* = ker *A* and
 A : *T*_{max} → ℂ^{n±} is linear and surjective.
 - $T_{\min} \subset \ker A$.
 - $AJA^* = 0$ (where J(u, f) = (f, -u)).
- $A_j(u, f) = \langle (v_j, g_j), (u, f) \rangle$ with $(v_j, g_j) \in \mathcal{D}_i \oplus \mathcal{D}_{-i}$ for $j = 1, ..., n_{\pm}$.
- Lagrange's identity: if (u, f), (v, g) ∈ T_{max} then (v*Ju)' is a finite measure on (a, b) and (v*Ju)⁻(b) (v*Ju)⁺(a) = ⟨v, f⟩ ⟨g, u⟩.
- $\langle g_k, -v_\ell \rangle \langle -v_k, g_\ell \rangle = (g_k^* J g_\ell)^-(b) (g_k^* J g_\ell)^+(a) = 0$
- $(u, f) \in \ker A$ if and only if $0 = (g_j^* J u)^- (b) (g_j^* J u)^+ (a) = 0$ for $j = 1, ..., n_{\pm}$.

Rudi Weikard (UAB)

10. January 2020 24 / 31

If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.

イロト イポト イヨト イヨト 二日

- If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.
- However, there is a unique balanced representative u such that u(x₀) is perpendicular to N₀ = {v(x₀) : Jv' + qv = 0 & wv = 0}.

イロト イポト イヨト イヨト 二日

- If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.
- However, there is a unique balanced representative u such that u(x₀) is perpendicular to N₀ = {v(x₀) : Jv' + qv = 0 & wv = 0}.

• Define
$$E : T_{\max} \to \mathsf{BV}_{\mathrm{loc}} : ([u], [f]) \mapsto u$$
.

イロト イポト イヨト イヨト 二日

- If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.
- However, there is a unique balanced representative u such that u(x₀) is perpendicular to N₀ = {v(x₀) : Jv' + qv = 0 & wv = 0}.

• Define
$$E : T_{\max} \to \mathsf{BV}_{\mathrm{loc}} : ([u], [f]) \mapsto u$$
.

• Define $\mathcal{R}_{\lambda} : L^2(w) \to \mathsf{BV}_{\mathrm{loc}} : [f] \mapsto E([u], [\lambda u + f])$ where $[u] = R_{\lambda}[f]$ whenever $\lambda \in \rho(T)$.

- If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.
- However, there is a unique balanced representative u such that u(x₀) is perpendicular to N₀ = {v(x₀) : Jv' + qv = 0 & wv = 0}.

• Define
$$E : T_{\max} \to \mathsf{BV}_{\mathrm{loc}} : ([u], [f]) \mapsto u$$
.

- Define $\mathcal{R}_{\lambda} : L^2(w) \to \mathsf{BV}_{\mathrm{loc}} : [f] \mapsto E([u], [\lambda u + f])$ where $[u] = R_{\lambda}[f]$ whenever $\lambda \in \rho(T)$.
- Each component of $f \mapsto (\mathcal{R}_{\lambda} f)(x)$ is a bounded linear functional.

- If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.
- However, there is a unique balanced representative u such that u(x₀) is perpendicular to N₀ = {v(x₀) : Jv' + qv = 0 & wv = 0}.

• Define
$$E : T_{\max} \to \mathsf{BV}_{\mathrm{loc}} : ([u], [f]) \mapsto u$$
.

- Define $\mathcal{R}_{\lambda} : L^2(w) \to \mathsf{BV}_{\mathrm{loc}} : [f] \mapsto E([u], [\lambda u + f])$ where $[u] = \mathcal{R}_{\lambda}[f]$ whenever $\lambda \in \rho(T)$.
- Each component of $f \mapsto (\mathcal{R}_{\lambda} f)(x)$ is a bounded linear functional.
- Green's function: $(\mathcal{R}_{\lambda}f)(x) = \langle G(x, \cdot, \lambda)^*, f \rangle = \int G(x, \cdot, \lambda) w f$.

Rudi Weikard (UAB)

• The variation of constants formula: if $\lambda \notin \Lambda$ and $x > x_0$

$$(\mathcal{R}_{\lambda}f)^{-}(x) = U^{-}(x,\lambda)\left(u_{0} + J^{-1}\int_{(x_{0},x)}U(\cdot,\overline{\lambda})^{*}wf\right)$$

where $u_0 = (\mathcal{R}_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

The variation of constants formula: if λ ∉ Λ and x > x₀

$$(\mathcal{R}_{\lambda}f)^{-}(x) = U^{-}(x,\lambda)\left(u_{0} + J^{-1}\int_{(x_{0},x)}U(\cdot,\overline{\lambda})^{*}wf\right)$$

where $u_0 = (\mathcal{R}_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

• Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that

The variation of constants formula: if λ ∉ Λ and x > x₀

$$(\mathcal{R}_{\lambda}f)^{-}(x) = U^{-}(x,\lambda)\left(u_{0} + J^{-1}\int_{(x_{0},x)}U(\cdot,\overline{\lambda})^{*}wf\right)$$

where $u_0 = (\mathcal{R}_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

- Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 - $\mathcal{R}_{\lambda}f$ is in $\mathcal{L}^{2}(w)$ near both *a* and *b*,

イロト イポト イヨト イヨト ヨー つくつ

The variation of constants formula: if λ ∉ Λ and x > x₀

$$(\mathcal{R}_{\lambda}f)^{-}(x) = U^{-}(x,\lambda)\left(u_{0} + J^{-1}\int_{(x_{0},x)}U(\cdot,\overline{\lambda})^{*}wf\right)$$

where $u_0 = (\mathcal{R}_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

- Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 - $\mathcal{R}_{\lambda}f$ is in $\mathcal{L}^{2}(w)$ near both *a* and *b*,
 - $\mathcal{R}_{\lambda}f$ satisfies the boundary conditions (if any), and

The variation of constants formula: if λ ∉ Λ and x > x₀

$$(\mathcal{R}_{\lambda}f)^{-}(x) = U^{-}(x,\lambda)\left(u_{0} + J^{-1}\int_{(x_{0},x)}U(\cdot,\overline{\lambda})^{*}wf\right)$$

where $u_0 = (\mathcal{R}_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

- Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 - $\mathcal{R}_{\lambda}f$ is in $\mathcal{L}^{2}(w)$ near both *a* and *b*,
 - $\mathcal{R}_{\lambda}f$ satisfies the boundary conditions (if any), and
 - $(1 P)u_0 = 0$ where P is the orthogonal projection onto N_0^{\perp} .

The variation of constants formula: if λ ∉ Λ and x > x₀

$$(\mathcal{R}_{\lambda}f)^{-}(x) = U^{-}(x,\lambda)\left(u_{0} + J^{-1}\int_{(x_{0},x)}U(\cdot,\overline{\lambda})^{*}wf\right)$$

where $u_0 = (\mathcal{R}_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

- Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 - $\mathcal{R}_{\lambda}f$ is in $\mathcal{L}^{2}(w)$ near both *a* and *b*,
 - $\mathcal{R}_{\lambda}f$ satisfies the boundary conditions (if any), and
 - $(\mathbb{1} P)u_0 = 0$ where P is the orthogonal projection onto N_0^{\perp} .
- This gives rise to a (rectangular) linear system

$$F(\lambda)u_0 = \int (b_{-}(\lambda)\chi_{(a,x_0)} + b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

Rudi Weikard (UAB)

▲ロト ▲ 課 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … のへで

• If $\lambda \in \rho(T)$, then $F(\lambda)$ has a left inverse F^{\dagger} .

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• If
$$\lambda \in \rho(T)$$
, then $F(\lambda)$ has a left inverse F^{\dagger} .

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

• Define $M_{\pm}(\lambda) = PF(\lambda)^{\dagger}b_{\pm}(\lambda) \pm \frac{1}{2}J^{-1}$ and

• If
$$\lambda \in \rho(T)$$
, then $F(\lambda)$ has a left inverse F^{\dagger} .

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

• Define $M_{\pm}(\lambda) = PF(\lambda)^{\dagger}b_{\pm}(\lambda) \pm \frac{1}{2}J^{-1}$ and

•
$$B_{\pm} = \{ \int_{\text{right/left}} U(\cdot, \overline{\lambda})^* wf : f \in L^2(w) \}.$$

• If
$$\lambda \in \rho(T)$$
, then $F(\lambda)$ has a left inverse F^{\dagger} .

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

• Define $M_{\pm}(\lambda) = PF(\lambda)^{\dagger}b_{\pm}(\lambda) \pm \frac{1}{2}J^{-1}$ and

•
$$B_{\pm} = \{ \int_{\text{right/left}} U(\cdot, \overline{\lambda})^* wf : f \in L^2(w) \}.$$

•
$$M_+ = M_-$$
 on $B_+ \cap B_-$.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 27 / 31

• If
$$\lambda \in \rho(T)$$
, then $F(\lambda)$ has a left inverse F^{\dagger} .

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

- Define $M_{\pm}(\lambda) = PF(\lambda)^{\dagger}b_{\pm}(\lambda) \pm \frac{1}{2}J^{-1}$ and
- $B_{\pm} = \{\int_{\text{right/left}} U(\cdot, \overline{\lambda})^* wf : f \in L^2(w)\}.$
- $M_+ = M_-$ on $B_+ \cap B_-$.
- Define $M = M_{\pm}$ on span $(B_+ \cup B_-)$

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 27 / 31

イロト イ理ト イヨト イヨト ヨー のくで

• If
$$\lambda \in \rho(T)$$
, then $F(\lambda)$ has a left inverse F^{\dagger} .

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

• Define $M_{\pm}(\lambda) = PF(\lambda)^{\dagger}b_{\pm}(\lambda) \pm \frac{1}{2}J^{-1}$ and

•
$$B_{\pm} = \{ \int_{\text{right/left}} U(\cdot, \overline{\lambda})^* w f : f \in L^2(w) \}.$$

•
$$M_+ = M_-$$
 on $B_+ \cap B_-$.

- Define $M = M_{\pm}$ on span $(B_+ \cup B_-)$
- On span $(B_+ \cup B_-)^\perp = N_0$ we set M = 0.

Rudi Weikard (UAB)

10. January 2020 27 / 31

• Then

$$\begin{aligned} (\mathcal{R}_{\lambda}f)(x) &= U(x,\lambda)M(\lambda)\int_{(a,b)}U(\cdot,\overline{\lambda})^*wf\\ &-\frac{1}{2}U(x,\lambda)J^{-1}\int_{(a,b)}\operatorname{sgn}(\cdot-x)U(\cdot,\overline{\lambda})^*wf\\ &+\frac{1}{4}(U^+(x,\lambda)-U^-(x,\lambda))J^{-1}U(x,\overline{\lambda})^*\Delta_w(x)f(x) \end{aligned}$$

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 28 / 31

イロト イポト イミト イミト 一日

• Then

$$\begin{aligned} (\mathcal{R}_{\lambda}f)(x) &= U(x,\lambda)M(\lambda)\int_{(a,b)}U(\cdot,\overline{\lambda})^*wf\\ &-\frac{1}{2}U(x,\lambda)J^{-1}\int_{(a,b)}\operatorname{sgn}(\cdot-x)U(\cdot,\overline{\lambda})^*wf\\ &+\frac{1}{4}(U^+(x,\lambda)-U^-(x,\lambda))J^{-1}U(x,\overline{\lambda})^*\Delta_w(x)f(x) \end{aligned}$$

• $\Lambda \cap \mathbb{R}$ is empty and Λ is closed.

- 31

イロト イボト イヨト イヨト

• Then

$$\begin{aligned} (\mathcal{R}_{\lambda}f)(x) &= U(x,\lambda)M(\lambda)\int_{(a,b)}U(\cdot,\overline{\lambda})^*wf\\ &-\frac{1}{2}U(x,\lambda)J^{-1}\int_{(a,b)}\operatorname{sgn}(\cdot-x)U(\cdot,\overline{\lambda})^*wf\\ &+\frac{1}{4}(U^+(x,\lambda)-U^-(x,\lambda))J^{-1}U(x,\overline{\lambda})^*\Delta_w(x)f(x) \end{aligned}$$

- $\Lambda \cap \mathbb{R}$ is empty and Λ is closed.
- The Fourier transform $(\mathcal{F}f)(\lambda) = \int_{(a,b)} U(\cdot,\overline{\lambda})^* wf$ is analytic on \mathbb{R} .

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 28 / 31

• Then

$$\begin{aligned} (\mathcal{R}_{\lambda}f)(x) &= U(x,\lambda)M(\lambda)\int_{(a,b)}U(\cdot,\overline{\lambda})^*wf\\ &-\frac{1}{2}U(x,\lambda)J^{-1}\int_{(a,b)}\operatorname{sgn}(\cdot-x)U(\cdot,\overline{\lambda})^*wf\\ &+\frac{1}{4}(U^+(x,\lambda)-U^-(x,\lambda))J^{-1}U(x,\overline{\lambda})^*\Delta_w(x)f(x) \end{aligned}$$

- $\Lambda \cap \mathbb{R}$ is empty and Λ is closed.
- The Fourier transform $(\mathcal{F}f)(\lambda) = \int_{(a,b)} U(\cdot,\overline{\lambda})^* wf$ is analytic on \mathbb{R} .
- Last two terms of $\mathcal{R}_{\lambda}f$ are also analytic on \mathbb{R} .

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 28 / 31

Then

$$\begin{aligned} (\mathcal{R}_{\lambda}f)(x) &= U(x,\lambda)M(\lambda)\int_{(a,b)}U(\cdot,\overline{\lambda})^*wf\\ &-\frac{1}{2}U(x,\lambda)J^{-1}\int_{(a,b)}\operatorname{sgn}(\cdot-x)U(\cdot,\overline{\lambda})^*wf\\ &+\frac{1}{4}(U^+(x,\lambda)-U^-(x,\lambda))J^{-1}U(x,\overline{\lambda})^*\Delta_w(x)f(x) \end{aligned}$$

- $\Lambda \cap \mathbb{R}$ is empty and Λ is closed.
- The Fourier transform $(\mathcal{F}f)(\lambda) = \int_{(a,b)} U(\cdot,\overline{\lambda})^* wf$ is analytic on \mathbb{R} .
- Last two terms of $\mathcal{R}_{\lambda}f$ are also analytic on \mathbb{R} .
- All singularities and hence all spectral information is contained in M.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 28 / 31

イロト イボト イヨト イヨト 二日

• M is analytic away from $\mathbb R$ and Λ

- 2

イロト イヨト イヨト イヨト

- M is analytic away from $\mathbb R$ and Λ
- Im $M/ \operatorname{Im} \lambda \geq 0$ away from Λ

Spectral Theory

- 31

イロト イポト イヨト イヨト

- M is analytic away from $\mathbb R$ and Λ
- Im $M/ \operatorname{Im} \lambda \geq 0$ away from Λ
- Λ is a discrete set

3

イロト イポト イヨト イヨト

- M is analytic away from $\mathbb R$ and Λ
- Im $M/ \operatorname{Im} \lambda \geq 0$ away from Λ
- Λ is a discrete set
- Such a function cannot have isolated singularities (except removable ones).

- 31

イロト イヨト イヨト

- M is analytic away from $\mathbb R$ and Λ
- Im $M/ \operatorname{Im} \lambda \geq 0$ away from Λ
- Λ is a discrete set
- Such a function cannot have isolated singularities (except removable ones).
- *M* is a Herglotz-Nevanlinna function

$$M(\lambda) = A\lambda + B + \int \left(\frac{1}{t-\lambda} - \frac{t}{t^2+1}\right) \nu(t)$$

where $\nu = N'$ and N a non-decreasing matrix.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 29 / 31

- 31

イロト 不得下 イヨト イヨト

• $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.

イロト 不得下 イヨト イヨト 二日

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.
- Restricting to \mathbb{R} : $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.
- Restricting to \mathbb{R} : $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.
- $\mathcal{H}_{\infty} = \{f : (0, f) \in T\}$ is the kernel of \mathcal{F} . $\mathcal{H}_{0} = L^{2}(w) \ominus \mathcal{H}_{\infty}$.

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.
- Restricting to \mathbb{R} : $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.
- $\mathcal{H}_{\infty} = \{f : (0, f) \in T\}$ is the kernel of \mathcal{F} . $\mathcal{H}_{0} = L^{2}(w) \ominus \mathcal{H}_{\infty}$.
- $(\mathcal{G}\hat{f})(x) = \int U(x, \cdot)\nu\hat{f}$ if $\hat{f} \in L^2(\nu)$ is compactly supported.

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.
- Restricting to \mathbb{R} : $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.
- $\mathcal{H}_{\infty} = \{f : (0, f) \in T\}$ is the kernel of \mathcal{F} . $\mathcal{H}_{0} = L^{2}(w) \ominus \mathcal{H}_{\infty}$.
- $(\mathcal{G}\hat{f})(x) = \int U(x, \cdot)\nu\hat{f}$ if $\hat{f} \in L^2(\nu)$ is compactly supported.
- $\mathcal{F} \circ \mathcal{G} = \mathbb{1}$ and $\mathcal{G} \circ \mathcal{F}$ is the projection onto \mathcal{H}_0 .

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.
- Restricting to \mathbb{R} : $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.
- $\mathcal{H}_{\infty} = \{f : (0, f) \in T\}$ is the kernel of \mathcal{F} . $\mathcal{H}_{0} = L^{2}(w) \ominus \mathcal{H}_{\infty}$.
- $(\mathcal{G}\hat{f})(x) = \int U(x, \cdot)\nu\hat{f}$ if $\hat{f} \in L^2(\nu)$ is compactly supported.
- $\mathcal{F} \circ \mathcal{G} = \mathbb{1}$ and $\mathcal{G} \circ \mathcal{F}$ is the projection onto \mathcal{H}_0 .
- $(u, f) \in T$ if and only if $(\mathcal{F}f)(t) = t(\mathcal{F}u)(t)$.

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 30 / 31

Thank you for your attention

Rudi Weikard (UAB)

Spectral Theory

10. January 2020 31 / 31

イロト 不得 トイラト イラト 二日