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Spectral theory and the Fourier transform I

• To describe heat conduction Fourier (1822) considered the problem

φt = φxx , φ′(0, t) = φ′(L, t) = 0, φ(x , 0) = φ0(x .)

• Separating variables and introducing the separation constant λ leads
the boundary value problem

−y ′′ = λy , y(0) = y ′(L) = 0

with eigenfunctions yn = cos(knx) and eigenvalues
λn = k2n = (nπ/L)2.

• This yields solutions φ(x , t) = cos(knx) exp(−λnt).

• How to satisfy the initial condition?
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Spectral theory and the Fourier transform II

• Whenever φ0 ∈ L2((0, L), dx) it may be expanded into eigenfunctions

φ0(x) =
∞∑
n=0

cn cos(knx)

for appropriate Fourier coefficients cn.

• The solution of the initial-boundary value problem is then

φ(x , t) =
∞∑
n=0

cn cos(knx) exp(−λnt).

A major theme of spectral theory is to ask when expansions in
eigenfunctions are possible.
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Generalizations I

• Sturm and Liouville (1830s):

−(py ′)′ + vy = λrf posed on a bounded interval

• Weyl (1910): extension to a half-line (limit-point, limit-circle
classification)

• Birkhoff and Langer (1923): systems of first-order equations

• Krein (1952) treated p = 1, v = 0 but r a positive measure.
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Generalizations II

• Savchuk and Shkalikov (1999) studied a Schrödinger equation with
distributional potential v .

• Eckhardt, Gesztesy, Nichols, and Teschl (2013) generalized further
and developed a spectral theory for the equation

−(p(y ′ − sy))′ − sp(y ′ − sy) + vy = λry

on an interval (a, b) when 1/p, v , s, and r are real-valued and locally
integrable and r > 0.
For the case p = 1 and v = 0 the left-hand side becomes
−y ′′ + (s ′ + s2)y .
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Generalizations III

• Quantum graphs

• Three-term difference equations are obtained by choosing the
coefficients p, q and s piecewise constant.

• Atkinson (1964) proposed a common treatment of difference and
differential equations.

• Atkinson also proposes to treat equations with Riemann-Stieltjes
measures.
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Systems

• It is useful to note that any of these equations can be realized as a
system:

Ju′ + qu = λwu.

• In particular, for the second order case:

J =

(
0 −1
1 0

)
, q =

(
v −s
−s −1/p

)
, and w =

(
r 0
0 0

)
setting u1 = y and u2 = p(y ′ − sy).
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Our goal: allowing for rougher coefficients and higher
dimensions

Ju′ + qu = λwu

• If q,w are continuous, then u is continuously differentiable.

• If q,w are locally integrable, then u is absolutely continuous.

• If q,w are distributions of order 0 (measures), then u is of bounded
variation.

• If u were even rougher, one could not define qu and wu anymore.
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Hypotheses for this work

We consider the equation Ju′ + qu = wf posed on (a, b) and require the
following:

• System size is n × n.

• J is constant, invertible, and skew-hermitian.

• q and w are hermitian distributions of order 0 (measures).

• w non-negative (giving rise to the Hilbert space L2(w) with scalar
product 〈f , g〉 =

∫
f ∗wg .

• Additional conditions to be discussed later (probably only technical).
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Hurdles to overcome

• In the presence of discrete components of q and w existence and
uniqueness of solutions become an issue.

• The definiteness condition

Ju′ + qu = 0 and wu = 0 (or ‖u‖ = 0) implies u ≡ 0

may not hold.

• The DE gives, in general, only relations not operators.
• Consider graphs: (u, f ) ∈ Tmax if and only if u ∈ BVloc and

Ju′ + qu = wf

• Fortunately, there is an abstract spectral theory for linear relations
(Arens 1961, Orcutt 1969, Bennewitz 1977).
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Differential equations
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Interpreting the differential equation

• Distributions of order 0 are, locally, measures. Positive distributions
are positive measures.

• By Riesz’s representation theorem the antiderivative of any
distribution of order 0 is a function of locally bounded variation and
vice versa.

• f ∈ L2(w) implies f ∈ L1loc(w) and hence wf is again a distribution of
order 0.

• u ∈ BVloc implies qu and wu are distributions of order 0.

• Thus each term in
Ju′ + qu = λwu + wf

is a distribution of order 0.
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Why balanced solutions?

We will look for solutions among the balanced solutions of locally bounded
variation.

• If F = tF+ + (1− t)F− and G = tG+ + (1− t)G− for some fixed t

•
∫
[x1,x2]

(FdG + GdF ) = (FG )+(x2)− (FG )−(x1)

+(2t − 1)
∫
[x1,x2]

(G+ − G−)dF .

• The last term disappears unless F and G jump at the same place and
if t = 1/2.

• We call (F+ + F−)/2 balanced.
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Existence and uniqueness of solutions of IVPs

• If Q or W have a jump at x the differential equation requires

J(u+(x)− u−(x)) + (∆q(x)− λ∆w (x))
u+(x) + u−(x)

2
= ∆w (x)f (x)

where ∆q(x) = q({x}) = Q+(x)− Q−(x) (similar for w).

• Equivalently, B+(λ, x)u+(x)− B−(λ, x)u−(x) = ∆w (x)f (x) where

B±(x , λ) = J ± 1

2
(∆q(x)− λ∆w (x)).

• Unless B±(x , λ) are invertible initial value problems do not have
unique solutions.

• Without an existence and uniqueness theorem there is no variation of
constants formula.
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Existence of solutions

• Consider λ = 0. The points where B±(x) are not invertible are
discrete.

• If there are only finitely many such points, a solution of
Ju′ + qu = wf exists when

Bũ = F (f )

where

B =

−B−(x1)U0(x1) B+(x1) 0 · · · 0
0 −B−(x2)U1(x2) B+(x2) · · · 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.
0 · · · 0 −B−(xN )UN−1(xN ) B+(xN )

 ,

Fj(f ) = ∆w (xj)f (xj) + B−(xj)Uj(xj)J
−1
∫
(xj−1,xj )

U∗j−1wf ,

and the Uj are fundamental systems in (xj , xj+1), respectively.

• One has to require that F (f ) ∈ ranB.
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Tmax = T ∗min

Rudi Weikard (UAB) Spectral Theory 10. January 2020 18 / 31



Maximal and minimal relation

• Tmax = {(u, f ) ∈ L2(w)× L2(w) : Ju′ + qu = wf }

• Tmax = {([u], [f ]) ∈ L2(w)× L2(w) : (u, f ) ∈ Tmax}

• Tmin and Tmin.

• T ∗ = {(v , g) : ∀(u, f ) ∈ T : 〈v , f 〉 = 〈g , u〉}.

• T ∗min = Tmax

• Hence Tmin is symmetric.

• No technical condition is needed for this result.
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Approach to a proof

• To show Tmax ⊂ T ∗min is simply an integration by parts.

• For the converse two additional facts are required:
• Given g ∈ L2(w) the DE Jv ′ + qv = wg has a solution v1.

• Restrict to [ξ1, ξ2] and define K0 = {k : Jk ′ + qk = 0} and
T0 = {([u], [f ]) : Ju′ + qu = wf , u(ξ1) = u(ξ2) = 0}.
Then ran(T0) = L2(w |[ξ1,ξ2])	 K0.

• Suppose ([v ], [g ]) ∈ T ∗min and ([u], [f ]) ∈ T0, extend the latter to
([u], [f ]) ∈ Tmin.

• 〈f , v〉 = 〈u, g〉 and partial integration give∫ ξ2

ξ1

f ∗w̆v = 〈f , v〉 = 〈u, g〉 =

∫ b

a
u∗wg =

∫ b

a
f ∗wv1 =

∫ ξ2

ξ1

f ∗w̆v1

• [v − v1] ∈ K0 and hence Jv ′ + qv = wg on (ξ1, ξ2).
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Additional details on the needed facts

• Existence of solutions for Ju′ + qu = wg may be shown if g is in the
range of T ∗min.

• On to Fact 2:

• To show ranT0 ⊂ L2(w |[ξ1,ξ2])	 K0 is simply an integration by parts
and the fact that elements of domT0 vanish at the endpoints.

• For the converse we need to construct a solution u of Ju′ + qu = wf
if f ∈ L2(w |[ξ1,ξ2])	 K0.

• This time f ⊥ K0 allows to show existence of the sought solution.
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Spectral theory (expansion in
eigenfunctions)
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Extra conditions

• The bad set

Λ = {λ ∈ C : ∃x : det(J ± 1

2
(∆q(x)− λ∆w (x))) = 0},

is either equal to C or else is countable.

• Additional requirements:
• Λ ∩ R = ∅.
• Λ is closed and discrete.
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Boundary conditions

• Deficiency indices: n± = dim{(u,±iu) ∈ Tmax}.

• T is a self-adjoint restriction of Tmax if and only if T = kerA and
• A : Tmax → Cn± is linear and surjective.

• Tmin ⊂ kerA.

• AJA∗ = 0 (where J (u, f ) = (f ,−u)).

• Aj(u, f ) = 〈(vj , gj), (u, f )〉 with (vj , gj) ∈ Di ⊕D−i for j = 1, ..., n±.

• Lagrange’s identity: if (u, f ), (v , g) ∈ Tmax then (v∗Ju)′ is a finite
measure on (a, b) and (v∗Ju)−(b)− (v∗Ju)+(a) = 〈v , f 〉 − 〈g , u〉.

• 〈gk ,−v`〉 − 〈−vk , g`〉 = (g∗k Jg`)
−(b)− (g∗k Jg`)

+(a) = 0

• (u, f ) ∈ kerA if and only if 0 = (g∗j Ju)−(b)− (g∗j Ju)+(a) = 0 for
j = 1, ..., n±.
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The resolvent and Green’s function

• If ([u], [f ]) ∈ Tmax and if the definiteness condition is violated, the
class [u] may have many balanced representatives in BVloc.

• However, there is a unique balanced representative u such that u(x0)
is perpendicular to N0 = {v(x0) : Jv ′ + qv = 0 & wv = 0}.

• Define E : Tmax → BVloc : ([u], [f ]) 7→ u.

• Define Rλ : L2(w)→ BVloc : [f ] 7→ E ([u], [λu + f ]) where
[u] = Rλ[f ] whenever λ ∈ ρ(T ).

• Each component of f 7→ (Rλf )(x) is a bounded linear functional.

• Green’s function: (Rλf )(x) = 〈G (x , ·, λ)∗, f 〉 =
∫
G (x , ·, λ)wf .
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Properties of Green’s function I
• The variation of constants formula: if λ 6∈ Λ and x > x0

(Rλf )−(x) = U−(x , λ)
(
u0 + J−1

∫
(x0,x)

U(·, λ)∗wf
)

where u0 = (Rλf )(x0) and U(·, λ) is a fundamental matrix with
U(x0, λ) = 1.

• Assume that f is compactly supported so that u satisfies the
homogeneous equation near a and b. Then u0 has to be chosen so
that
• Rλf is in L2(w) near both a and b,

• Rλf satisfies the boundary conditions (if any), and

• (1− P)u0 = 0 where P is the orthogonal projection onto N⊥0 .

• This gives rise to a (rectangular) linear system

F (λ)u0 =

∫
(b−(λ)χ(a,x0) + b+(λ)χ(x0,b))U(·, λ)∗wf .
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Properties of Green’s function II

• If λ ∈ ρ(T ), then F (λ) has a left inverse F †.

u0 =

∫
(PF †b−(λ)χ(a,x0) + PF †b+(λ)χ(x0,b))U(·, λ)∗wf .

• Define M±(λ) = PF (λ)†b±(λ)± 1
2J
−1 and

• B± = {
∫
right/left U(·, λ)∗wf : f ∈ L2(w)}.

• M+ = M− on B+ ∩ B−.

• Define M = M± on span(B+ ∪ B−)

• On span(B+ ∪ B−)⊥ = N0 we set M = 0.
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Properties of Green’s function III

• Then

(Rλf )(x) = U(x , λ)M(λ)

∫
(a,b)

U(·, λ)∗wf

− 1

2
U(x , λ)J−1

∫
(a,b)

sgn(· − x)U(·, λ)∗wf

+
1

4
(U+(x , λ)− U−(x , λ))J−1U(x , λ)∗∆w (x)f (x)

• Λ ∩ R is empty and Λ is closed.

• The Fourier transform (F f )(λ) =
∫
(a,b) U(·, λ)∗wf is analytic on R.

• Last two terms of Rλf are also analytic on R.

• All singularities and hence all spectral information is contained in M.
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The M-function

• M is analytic away from R and Λ

• ImM/ Imλ ≥ 0 away from Λ

• Λ is a discrete set

• Such a function cannot have isolated singularities (except removable
ones).

• M is a Herglotz-Nevanlinna function

M(λ) = Aλ+ B +

∫ ( 1

t − λ
− t

t2 + 1

)
ν(t)

where ν = N ′ and N a non-decreasing matrix.
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The Fourier Transform

• (F f )(λ) =
∫
U(·, λ)∗wf if f ∈ L2(w) is compactly supported and

λ 6∈ Λ.

• Restricting to R: F f ∈ L2(ν) extend by continuity to all of L2(w).

• H∞ = {f : (0, f ) ∈ T} is the kernel of F . H0 = L2(w)	H∞.

• (G f̂ )(x) =
∫
U(x , ·)ν f̂ if f̂ ∈ L2(ν) is compactly supported.

• F ◦ G = 1 and G ◦ F is the projection onto H0.

• (u, f ) ∈ T if and only if (F f )(t) = t(Fu)(t).
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Thank you for your attention
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