Spectral Theory for Systems of Ordinary Differential Equations with Distributional Coefficients

Rudi Weikard

University of Alabama at Birmingham

Results in Contemporary Mathematical Physics

Santiago

20. December 2018

Rudi Weikard (UAB)

Spectral Theory

20. December 2018 1 / 19

イロト イヨト イヨト

I am reporting on joint work with

• Ahmed Ghatasheh (UAB)

3

The Sturm-Liouville equation

• On the real interval (a, b) consider the equation

$$-(pu')'+qu=\lambda wu.$$

Here 1/p, q, and w are locally integrable and real-valued. Also w > 0.

3

The Sturm-Liouville equation

• On the real interval (a, b) consider the equation

$$-(pu')'+qu=\lambda wu.$$

Here 1/p, q, and w are locally integrable and real-valued. Also w > 0.

• This guarantees existence and uniqueness of solutions for initial-value problems and symmetry of the resulting minimal operator

$$u\mapsto rac{1}{w}(-(pu')'+qu)$$

in $L^2(w dx)$.

イロト イヨト イヨト

• Krein (1952) treated p = 1, q = 0 but w a positive measure.

イロト 不得下 イヨト イヨト 二日

- Krein (1952) treated p = 1, q = 0 but w a positive measure.
- Savchuk and Shkalikov (1999) studied a Schrödinger equation with distributional potential.

イロト 不得 トイラト イラト 二日

- Krein (1952) treated p = 1, q = 0 but w a positive measure.
- Savchuk and Shkalikov (1999) studied a Schrödinger equation with distributional potential.
- Eckhardt, Gesztesy, Nichols, and Teschl (2013) generalized further and developed a spectral theory for the equation

$$-(p(y'-sy))'-sp(y'-sy)+vy=\lambda ry$$

on an interval (a, b) when 1/p, v, and s are real-valued and locally integrable and r > 0.

イロト 不得 トイラト イラト 二日

- Krein (1952) treated p = 1, q = 0 but w a positive measure.
- Savchuk and Shkalikov (1999) studied a Schrödinger equation with distributional potential.
- Eckhardt, Gesztesy, Nichols, and Teschl (2013) generalized further and developed a spectral theory for the equation

$$-(p(y'-sy))'-sp(y'-sy)+vy=\lambda ry$$

on an interval (a, b) when 1/p, v, and s are real-valued and locally integrable and r > 0.

It is useful to note that this equation is equivalent to the system

$$Ju' + qu = \lambda wu$$

where $u_1 = y$ and

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad q = \begin{pmatrix} v & -s \\ -s & -1/p \end{pmatrix}, \text{ and } w = \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix}.$$

Rudi Weikard (UAB)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくべ

• Given a self-adjoint realization T of Ju' + qu = wf in the Hilbert space $L^2(w)$ with scalar product $\langle f, g \rangle = \int f^* wg$:

- Given a self-adjoint realization T of Ju' + qu = wf in the Hilbert space L²(w) with scalar product (f,g) = ∫ f*wg:
 - Construct a spectral measure ν and

- Given a self-adjoint realization T of Ju' + qu = wf in the Hilbert space L²(w) with scalar product (f,g) = ∫ f*wg:
 - Construct a spectral measure ν and
 - a Fourier transform ${\mathcal F}$ mapping $L^2(w) o L^2(
 u)$ such that

- Given a self-adjoint realization T of Ju' + qu = wf in the Hilbert space L²(w) with scalar product (f,g) = ∫ f*wg:
 - Construct a spectral measure ν and
 - a Fourier transform ${\mathcal F}$ mapping $L^2(w) o L^2(
 u)$ such that
 - the transform diagonalizes T: $(u, f) \in T$ if and only if $(\mathcal{F}f)(t) = t(\mathcal{F}u)(t)$.

イロト 不得 トイラト イラト 二日

- Given a self-adjoint realization T of Ju' + qu = wf in the Hilbert space L²(w) with scalar product (f,g) = ∫ f*wg:
 - Construct a spectral measure ν and
 - a Fourier transform ${\mathcal F}$ mapping $L^2(w) o L^2(
 u)$ such that
 - the transform diagonalizes T: $(u, f) \in T$ if and only if $(\mathcal{F}f)(t) = t(\mathcal{F}u)(t)$.
- Here the equation Ju' + qu = wf is posed on (a, b) and we require the following

イロト 不得 トイラト イラト 二日

- Given a self-adjoint realization T of Ju' + qu = wf in the Hilbert space L²(w) with scalar product (f,g) = ∫ f*wg:
 - Construct a spectral measure ν and
 - a Fourier transform ${\mathcal F}$ mapping $L^2(w) o L^2(
 u)$ such that
 - the transform diagonalizes T: $(u, f) \in T$ if and only if $(\mathcal{F}f)(t) = t(\mathcal{F}u)(t)$.
- Here the equation Ju' + qu = wf is posed on (a, b) and we require the following
 - q and w are hermitian distributions of order 0 (measures)

イロト 不得下 イヨト イヨト 二日

- Given a self-adjoint realization T of Ju' + qu = wf in the Hilbert space L²(w) with scalar product (f,g) = ∫ f*wg:
 - Construct a spectral measure ν and
 - a Fourier transform ${\mathcal F}$ mapping $L^2(w) o L^2(
 u)$ such that
 - the transform diagonalizes T: $(u, f) \in T$ if and only if $(\mathcal{F}f)(t) = t(\mathcal{F}u)(t)$.
- Here the equation Ju' + qu = wf is posed on (a, b) and we require the following
 - q and w are hermitian distributions of order 0 (measures)
 - J is constant, invertible, and skew-hermitian

- Given a self-adjoint realization T of Ju' + qu = wf in the Hilbert space L²(w) with scalar product (f,g) = ∫ f*wg:
 - Construct a spectral measure ν and
 - a Fourier transform ${\mathcal F}$ mapping $L^2(w) o L^2(
 u)$ such that
 - the transform diagonalizes T: $(u, f) \in T$ if and only if $(\mathcal{F}f)(t) = t(\mathcal{F}u)(t)$.
- Here the equation Ju' + qu = wf is posed on (a, b) and we require the following
 - q and w are hermitian distributions of order 0 (measures)
 - J is constant, invertible, and skew-hermitian
 - w non-negative

- Given a self-adjoint realization T of Ju' + qu = wf in the Hilbert space L²(w) with scalar product (f,g) = ∫ f*wg:
 - Construct a spectral measure ν and
 - a Fourier transform ${\mathcal F}$ mapping $L^2(w) o L^2(
 u)$ such that
 - the transform diagonalizes T: $(u, f) \in T$ if and only if $(\mathcal{F}f)(t) = t(\mathcal{F}u)(t)$.
- Here the equation Ju' + qu = wf is posed on (a, b) and we require the following
 - q and w are hermitian distributions of order 0 (measures)
 - J is constant, invertible, and skew-hermitian
 - w non-negative
 - Three additional conditions to be discussed later

• In the presence of discrete components of *q* and *w* existence and uniqueness of solutions become an issue.

イロト イヨト イヨト

- In the presence of discrete components of *q* and *w* existence and uniqueness of solutions become an issue.
- The DE gives, in general, only relations not operators.

イロト イヨト イヨト

- In the presence of discrete components of *q* and *w* existence and uniqueness of solutions become an issue.
- The DE gives, in general, only relations not operators.
- Fortunately, there is an abstract spectral theory for linear relations.

- In the presence of discrete components of *q* and *w* existence and uniqueness of solutions become an issue.
- The DE gives, in general, only relations not operators.
- Fortunately, there is an abstract spectral theory for linear relations.
- The definiteness condition

$$Ju'+qu=0$$
 and $wu=0$ (or $\|u\|=0$) implies $u\equiv 0$

is not required.

• Distributions of order 0 are, locally, measures. Positive distributions are positive measures.

3

イロト 不得下 イヨト イヨト

- Distributions of order 0 are, locally, measures. Positive distributions are positive measures.
- By Riesz's representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.

イロト イヨト イモト イモト

- Distributions of order 0 are, locally, measures. Positive distributions are positive measures.
- By Riesz's representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.
- f ∈ L²(w) implies f ∈ L¹_{loc}(w) and hence wf is again a distribution of order 0.

イロト イポト イモト イモト

- Distributions of order 0 are, locally, measures. Positive distributions are positive measures.
- By Riesz's representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.
- f ∈ L²(w) implies f ∈ L¹_{loc}(w) and hence wf is again a distribution of order 0.
- $u \in \mathsf{BV}_{\mathrm{loc}}$ implies qu and wu are distributions of order 0.

イロト 不得 トイラト イラト・ラ

- Distributions of order 0 are, locally, measures. Positive distributions are positive measures.
- By Riesz's representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.
- f ∈ L²(w) implies f ∈ L¹_{loc}(w) and hence wf is again a distribution of order 0.
- $u \in \mathsf{BV}_{\mathrm{loc}}$ implies qu and wu are distributions of order 0.
- Thus each term in

$$Ju' + qu = \lambda wu + wf$$

is a distribution of order 0.

Rudi Weikard (UAB)

イロト 不得下 イヨト イヨト 二日

• The existence and uniqueness theorem for initial value problems may fail if the measures have discrete components.

イロト イヨト イヨト

- The existence and uniqueness theorem for initial value problems may fail if the measures have discrete components.
- $iu' = \alpha \delta_0 u$ is equivalent to $i(u_r u_\ell) = \alpha u(0)$

イロト 不得下 イヨト イヨト

- The existence and uniqueness theorem for initial value problems may fail if the measures have discrete components.
- $iu' = \alpha \delta_0 u$ is equivalent to $i(u_r u_\ell) = \alpha u(0)$
- If u left-continuous, i.e., $u(0) = u_\ell$ implies $u_r = (1 i\alpha)u_\ell$

イロト 不得下 イヨト イヨト 二日

• The existence and uniqueness theorem for initial value problems may fail if the measures have discrete components.

• $iu' = \alpha \delta_0 u$ is equivalent to $i(u_r - u_\ell) = \alpha u(0)$

- If u left-continuous, i.e., $u(0) = u_\ell$ implies $u_r = (1 i\alpha)u_\ell$
- If u right-continuous, i.e., $u(0) = u_r$ implies $(1 + i\alpha)u_r = u_\ell$

• The existence and uniqueness theorem for initial value problems may fail if the measures have discrete components.

• $iu' = \alpha \delta_0 u$ is equivalent to $i(u_r - u_\ell) = \alpha u(0)$

- If u left-continuous, i.e., $u(0) = u_\ell$ implies $u_r = (1 i\alpha)u_\ell$
- If u right-continuous, i.e., $u(0) = u_r$ implies $(1 + i\alpha)u_r = u_\ell$
- If u balanced, i.e., $u(0) = (u_{\ell} + u_r)/2$ implies $(2 + i\alpha)u_r = (2 i\alpha)u_{\ell}$.

▲ロト ▲ 課 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … のへで

• If $F = tF^+ + (1-t)F^-$ and $G = tG^+ + (1-t)G^-$ for some fixed t

Rudi Weikard (UAB)

Spectral Theory

20. December 2018 9 / 19

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- If $F = tF^+ + (1-t)F^-$ and $G = tG^+ + (1-t)G^-$ for some fixed t
- $\int_{[x_1,x_2]} (FdG + GdF) = (FG)^+(x_2) (FG)^-(x_1) + (2t-1)\int_{[x_1,x_2]} (G^+ G^-)dF.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- If $F = tF^+ + (1-t)F^-$ and $G = tG^+ + (1-t)G^-$ for some fixed t
- $\int_{[x_1,x_2]} (FdG + GdF) = (FG)^+(x_2) (FG)^-(x_1) + (2t-1)\int_{[x_1,x_2]} (G^+ G^-)dF.$
- The last term disappears unless F and G jump at the same place and if t = 1/2.

イロト 不得 トイラト イラト 二日

- If $F = tF^+ + (1-t)F^-$ and $G = tG^+ + (1-t)G^-$ for some fixed t
- $\int_{[x_1,x_2]} (FdG + GdF) = (FG)^+(x_2) (FG)^-(x_1) + (2t-1) \int_{[x_1,x_2]} (G^+ G^-) dF.$
- The last term disappears unless F and G jump at the same place and if t = 1/2.
- Therefore we want our BV_{loc} functions balanced.

Rudi Weikard (UAB)

Spectral Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• if r is a distribution of order 0, set $\Delta_r(x) = R^+(x) - R^-(x)$

Spectral Theory

20. December 2018 10 / 19

- 3

<ロト < 回ト < 回ト < 回ト
- if r is a distribution of order 0, set $\Delta_r(x) = R^+(x) R^-(x)$
- Existence and uniqueness of balanced solutions for initial-value problems for Ju' = ru + g holds when $2J \pm \Delta_r(x)$ is invertible.

イロト イヨト イヨト

- if r is a distribution of order 0, set $\Delta_r(x) = R^+(x) R^-(x)$
- Existence and uniqueness of balanced solutions for initial-value problems for Ju' = ru + g holds when $2J \pm \Delta_r(x)$ is invertible.

• In our case
$$r = \lambda w - q$$
 and $g = wf$.

イロト イヨト イヨト

- if r is a distribution of order 0, set $\Delta_r(x) = R^+(x) R^-(x)$
- Existence and uniqueness of balanced solutions for initial-value problems for Ju' = ru + g holds when $2J \pm \Delta_r(x)$ is invertible.

• In our case
$$r = \lambda w - q$$
 and $g = wf$.

• $\lambda = 0$: $2J \pm \Delta_q(x)$ invertible.

イロト イヨト イヨト

- if r is a distribution of order 0, set $\Delta_r(x) = R^+(x) R^-(x)$
- Existence and uniqueness of balanced solutions for initial-value problems for Ju' = ru + g holds when $2J \pm \Delta_r(x)$ is invertible.

• In our case
$$r = \lambda w - q$$
 and $g = wf$.

- $\lambda = 0$: $2J \pm \Delta_q(x)$ invertible.
- Λ = {λ : ∃x : det(2J ± (Δ_q(x) − λΔ_w(x))) = 0}, the bad set, is countable.

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

- 2

イロト イヨト イヨト イヨト

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in \mathcal{T}_{\max}\}$$

- 2

イロト イヨト イヨト イヨト

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in \mathcal{T}_{\max}\}$$

• This may be a relation, even if coefficients are locally integrable and the definiteness condition holds.

3

イロト イポト イヨト イヨト

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in \mathcal{T}_{\max}\}$$

- This may be a relation, even if coefficients are locally integrable and the definiteness condition holds.
- \mathcal{T}_{\min} and \mathcal{T}_{\min} .

イロト 不得下 イヨト イヨト 二日

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in \mathcal{T}_{\max}\}$$

- This may be a relation, even if coefficients are locally integrable and the definiteness condition holds.
- \mathcal{T}_{\min} and \mathcal{T}_{\min} .
- $T^* = \{(v,g) : \forall (u,f) \in T : \langle v,f \rangle = \langle g,u \rangle \}.$

•
$$\mathcal{T}_{\max} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\}$$

•
$$T_{\max} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in \mathcal{T}_{\max}\}$$

- This may be a relation, even if coefficients are locally integrable and the definiteness condition holds.
- \mathcal{T}_{\min} and \mathcal{T}_{\min} .
- $T^* = \{(v,g) : \forall (u,f) \in T : \langle v, f \rangle = \langle g, u \rangle \}.$

• $T_{\min}^* = T_{\max}$

Rudi Weikard (UAB)

20. December 2018 11 / 19

• Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- T is a self-adjoint restriction of T_{max} if and only if $T = \ker A$ and

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- T is a self-adjoint restriction of T_{\max} if and only if $T = \ker A$ and
 - $A: T_{\max} \to \mathbb{C}^{n_{\pm}}$ is linear and surjective.

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- T is a self-adjoint restriction of T_{max} if and only if $T = \ker A$ and
 - $A: T_{\max} \to \mathbb{C}^{n_{\pm}}$ is linear and surjective.
 - $T_{\min} \subset \ker A$.

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- T is a self-adjoint restriction of T_{\max} if and only if $T = \ker A$ and
 - $A: T_{\max} \to \mathbb{C}^{n_{\pm}}$ is linear and surjective.
 - $T_{\min} \subset \ker A$.
 - $A\mathcal{J}A^* = 0$ (where $\mathcal{J}(u, f) = (f, -u)$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- *T* is a self-adjoint restriction of *T*_{max} if and only if *T* = ker *A* and
 A: *T*_{max} → ℂ^{n±} is linear and surjective.
 - $T_{\min} \subset \ker A$.
 - $AJA^* = 0$ (where J(u, f) = (f, -u)).
- $A_j(u, f) = \langle (v_j, g_j), (u, f) \rangle$ with $(v_j, g_j) \in \mathcal{D}_i \oplus \mathcal{D}_{-i}$.

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- *T* is a self-adjoint restriction of *T*_{max} if and only if *T* = ker *A* and
 A: *T*_{max} → ℂ^{n±} is linear and surjective.
 - $T_{\min} \subset \ker A$.
 - $AJA^* = 0$ (where J(u, f) = (f, -u)).
- $A_j(u, f) = \langle (v_j, g_j), (u, f) \rangle$ with $(v_j, g_j) \in \mathcal{D}_i \oplus \mathcal{D}_{-i}$.
- Lagrange's identity: if (u, f), (v, g) ∈ T_{max} then (v*Ju)' is a finite measure on (a, b) and

$$(v^*Ju)^-(b) - (v^*Ju)^+(a) = \langle v, f \rangle - \langle g, u \rangle.$$

Rudi Weikard (UAB)

Spectral Theory

20. December 2018 12 / 19

- Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\max}\}.$
- T is a self-adjoint restriction of T_{max} if and only if T = ker A and
 A : T_{max} → C^{n±} is linear and surjective.
 - $T_{\min} \subset \ker A$.
 - $AJA^* = 0$ (where J(u, f) = (f, -u)).
- $A_j(u, f) = \langle (v_j, g_j), (u, f) \rangle$ with $(v_j, g_j) \in \mathcal{D}_i \oplus \mathcal{D}_{-i}$.
- Lagrange's identity: if (u, f), (v, g) ∈ T_{max} then (v*Ju)' is a finite measure on (a, b) and

$$(v^*Ju)^-(b) - (v^*Ju)^+(a) = \langle v, f \rangle - \langle g, u \rangle.$$

• $(u, f) \in \ker A$ if and only if $0 = (g_j^* J u)^- (b) - (g_j^* J u)^+ (a) = 0$ for $j = 1, ..., n_{\pm}$.

Rudi Weikard (UAB)

If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.

イロト イポト イヨト イヨト 二日

- If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.
- However, there is a unique balanced representative u such that u(x₀) is perpendicular to N₀ = {v(x₀) : Jv' + qv = 0 & wv = 0}.

イロト イポト イヨト イヨト 二日

- If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.
- However, there is a unique balanced representative u such that u(x₀) is perpendicular to N₀ = {v(x₀) : Jv' + qv = 0 & wv = 0}.

• Define
$$E : T_{\max} \to \mathsf{BV}_{\mathrm{loc}} : ([u], [f]) \mapsto u$$
.

イロト イポト イヨト イヨト 二日

- If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.
- However, there is a unique balanced representative u such that u(x₀) is perpendicular to N₀ = {v(x₀) : Jv' + qv = 0 & wv = 0}.

• Define
$$E : T_{\max} \to \mathsf{BV}_{\mathrm{loc}} : ([u], [f]) \mapsto u$$
.

• Define $E_{\lambda} : L^2(w) \to \mathsf{BV}_{\mathrm{loc}} : f \mapsto E(u, \lambda u + f)$ where $u = R_{\lambda}f$ whenever $\lambda \in \rho(T)$.

イロト (四) (三) (三) (三) (0)

- If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.
- However, there is a unique balanced representative u such that u(x₀) is perpendicular to N₀ = {v(x₀) : Jv' + qv = 0 & wv = 0}.

• Define
$$E : T_{\max} \to \mathsf{BV}_{\mathrm{loc}} : ([u], [f]) \mapsto u$$
.

- Define $E_{\lambda} : L^2(w) \to \mathsf{BV}_{\mathrm{loc}} : f \mapsto E(u, \lambda u + f)$ where $u = R_{\lambda}f$ whenever $\lambda \in \rho(T)$.
- Each component of $f \mapsto (E_{\lambda}f)(x)$ is a bounded linear functional.

- If ([u], [f]) ∈ T_{max} and if the definiteness condition is violated, the class [u] may have many balanced representatives in BV_{loc}.
- However, there is a unique balanced representative u such that u(x₀) is perpendicular to N₀ = {v(x₀) : Jv' + qv = 0 & wv = 0}.

• Define
$$E : T_{\max} \to \mathsf{BV}_{\mathrm{loc}} : ([u], [f]) \mapsto u$$
.

- Define $E_{\lambda} : L^2(w) \to \mathsf{BV}_{\mathrm{loc}} : f \mapsto E(u, \lambda u + f)$ where $u = R_{\lambda}f$ whenever $\lambda \in \rho(T)$.
- Each component of $f \mapsto (E_{\lambda}f)(x)$ is a bounded linear functional.
- Green's function: $(E_{\lambda}f)(x) = \langle G(x, \cdot, \lambda)^*, f \rangle = \int G(x, \cdot, \lambda) w f$.

Rudi Weikard (UAB)

• The variation of constants formula: if $\lambda \notin \Lambda$ and $x > x_0$

$$(E_{\lambda}f)^{-}(x) = U(x,\lambda)(u_0 + J^{-1}\int_{(x_0,x)} U(\cdot,\overline{\lambda})^* wf)$$

where $u_0 = (E_\lambda f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

The variation of constants formula: if λ ∉ Λ and x > x₀

$$(E_{\lambda}f)^{-}(x) = U(x,\lambda)(u_0 + J^{-1}\int_{(x_0,x)} U(\cdot,\overline{\lambda})^* wf)$$

where $u_0 = (E_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

• Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that

The variation of constants formula: if λ ∉ Λ and x > x₀

$$(E_{\lambda}f)^{-}(x) = U(x,\lambda)(u_0 + J^{-1}\int_{(x_0,x)} U(\cdot,\overline{\lambda})^* wf)$$

where $u_0 = (E_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

- Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 - $E_{\lambda}f$ is in $L^2(w)$ near both *a* and *b*,

イロト イボト イヨト トヨー つくつ

The variation of constants formula: if λ ∉ Λ and x > x₀

$$(E_{\lambda}f)^{-}(x) = U(x,\lambda)(u_0 + J^{-1}\int_{(x_0,x)} U(\cdot,\overline{\lambda})^* wf)$$

where $u_0 = (E_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

- Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 - $E_{\lambda}f$ is in $L^2(w)$ near both *a* and *b*,
 - $E_{\lambda}f$ satisfies the boundary conditions (if any), and

The variation of constants formula: if λ ∉ Λ and x > x₀

$$(E_{\lambda}f)^{-}(x) = U(x,\lambda)(u_0 + J^{-1}\int_{(x_0,x)} U(\cdot,\overline{\lambda})^* wf)$$

where $u_0 = (E_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

- Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 - $E_{\lambda}f$ is in $L^2(w)$ near both *a* and *b*,
 - $E_{\lambda}f$ satisfies the boundary conditions (if any), and
 - $(1 P)u_0 = 0$ where P is the orthogonal projection onto N_0^{\perp} .

The variation of constants formula: if λ ∉ Λ and x > x₀

$$(E_{\lambda}f)^{-}(x) = U(x,\lambda)(u_0 + J^{-1}\int_{(x_0,x)} U(\cdot,\overline{\lambda})^* wf)$$

where $u_0 = (E_{\lambda}f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{1}$.

- Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 - $E_{\lambda}f$ is in $L^2(w)$ near both *a* and *b*,
 - $E_{\lambda}f$ satisfies the boundary conditions (if any), and
 - $(1 P)u_0 = 0$ where P is the orthogonal projection onto N_0^{\perp} .
- This gives rise to a (rectangular) linear system

$$F(\lambda)u_0 = \int (b_{-}(\lambda)\chi_{(a,x_0)} + b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

Rudi Weikard (UAB)

• F has a left inverse F^{\dagger} .

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

- 31

イロト イヨト イヨト イヨト

• F has a left inverse F^{\dagger} .

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

• Define $M_{\pm}(\lambda) = PF(\lambda)^{\dagger}b_{\pm}(\lambda) \pm \frac{1}{2}J^{-1}$ and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• F has a left inverse F^{\dagger} .

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

• Define $M_{\pm}(\lambda) = PF(\lambda)^{\dagger}b_{\pm}(\lambda) \pm \frac{1}{2}J^{-1}$ and

•
$$B_{\pm} = \{ \int_{\text{right/left}} U(\cdot, \overline{\lambda})^* wf : f \in L^2(w) \}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• F has a left inverse F[†].

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

- Define $M_{\pm}(\lambda) = PF(\lambda)^{\dagger}b_{\pm}(\lambda) \pm \frac{1}{2}J^{-1}$ and
- $B_{\pm} = \{\int_{\text{right/left}} U(\cdot, \overline{\lambda})^* wf : f \in L^2(w)\}.$

•
$$M_+ = M_-$$
 on $B_+ \cap B_-$.

• F has a left inverse F[†].

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

- Define $M_{\pm}(\lambda) = PF(\lambda)^{\dagger}b_{\pm}(\lambda) \pm \frac{1}{2}J^{-1}$ and
- $B_{\pm} = \{ \int_{\text{right/left}} U(\cdot, \overline{\lambda})^* wf : f \in L^2(w) \}.$
- $M_+ = M_-$ on $B_+ \cap B_-$.
- $M = M_{\pm}$ on span $(B_+ \cup B_-)$

• F has a left inverse F[†].

$$u_0 = \int (PF^{\dagger}b_{-}(\lambda)\chi_{(a,x_0)} + PF^{\dagger}b_{+}(\lambda)\chi_{(x_0,b)})U(\cdot,\overline{\lambda})^* wf.$$

- Define $M_{\pm}(\lambda) = PF(\lambda)^{\dagger}b_{\pm}(\lambda) \pm \frac{1}{2}J^{-1}$ and
- $B_{\pm} = \{\int_{\text{right/left}} U(\cdot, \overline{\lambda})^* wf : f \in L^2(w)\}.$
- $M_+ = M_-$ on $B_+ \cap B_-$.
- $M = M_{\pm}$ on span $(B_+ \cup B_-)$
- On span $(B_+ \cup B_-)^\perp = N_0$ we set M = 0.

Rudi Weikard (UAB)
• Then

$$(E_{\lambda}f)(x) = U(x,\lambda)M(\lambda)\int_{(a,b)}U(\cdot,\overline{\lambda})^*wf$$

$$-\frac{1}{2}U(x,\lambda)J^{-1}\int_{(a,b)}\operatorname{sgn}(\cdot-x)U(\cdot,\overline{\lambda})^*wf$$

$$+\frac{1}{4}(U^+(x,\lambda)-U^-(x,\lambda))J^{-1}U(x,\overline{\lambda})^*\Delta_w(x)f(x)$$

Rudi Weikard (UAB)

Spectral Theory

20. December 2018 16 / 19

イロト イポト イミト イミト 一日

• Then

$$(E_{\lambda}f)(x) = U(x,\lambda)M(\lambda)\int_{(a,b)}U(\cdot,\overline{\lambda})^*wf$$

$$-\frac{1}{2}U(x,\lambda)J^{-1}\int_{(a,b)}\operatorname{sgn}(\cdot-x)U(\cdot,\overline{\lambda})^*wf$$

$$+\frac{1}{4}(U^+(x,\lambda)-U^-(x,\lambda))J^{-1}U(x,\overline{\lambda})^*\Delta_w(x)f(x)$$

• $\Lambda \cap \mathbb{R}$ is empty.

- 31

イロト イボト イヨト イヨト

• Then

$$(E_{\lambda}f)(x) = U(x,\lambda)M(\lambda)\int_{(a,b)}U(\cdot,\overline{\lambda})^*wf$$

$$-\frac{1}{2}U(x,\lambda)J^{-1}\int_{(a,b)}\operatorname{sgn}(\cdot-x)U(\cdot,\overline{\lambda})^*wf$$

$$+\frac{1}{4}(U^+(x,\lambda)-U^-(x,\lambda))J^{-1}U(x,\overline{\lambda})^*\Delta_w(x)f(x)$$

- $\Lambda \cap \mathbb{R}$ is empty.
- The Fourier transform $(\mathcal{F}f)(\lambda) = \int_{(a,b)} U(\cdot,\overline{\lambda})^* wf$ is analytic on \mathbb{R} .

Rudi Weikard (UAB)

Spectral Theory

20. December 2018 16 / 19

イロト 不得下 イヨト イヨト 二日

• Then

$$(E_{\lambda}f)(x) = U(x,\lambda)M(\lambda)\int_{(a,b)}U(\cdot,\overline{\lambda})^*wf$$

$$-\frac{1}{2}U(x,\lambda)J^{-1}\int_{(a,b)}\operatorname{sgn}(\cdot-x)U(\cdot,\overline{\lambda})^*wf$$

$$+\frac{1}{4}(U^+(x,\lambda)-U^-(x,\lambda))J^{-1}U(x,\overline{\lambda})^*\Delta_w(x)f(x)$$

- $\Lambda \cap \mathbb{R}$ is empty.
- The Fourier transform $(\mathcal{F}f)(\lambda) = \int_{(a,b)} U(\cdot,\overline{\lambda})^* wf$ is analytic on \mathbb{R} .
- Last two terms of $E_{\lambda}f$ are also analytic on \mathbb{R} .

Rudi Weikard (UAB)

Spectral Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Then

$$(E_{\lambda}f)(x) = U(x,\lambda)M(\lambda)\int_{(a,b)}U(\cdot,\overline{\lambda})^*wf$$

$$-\frac{1}{2}U(x,\lambda)J^{-1}\int_{(a,b)}\operatorname{sgn}(\cdot-x)U(\cdot,\overline{\lambda})^*wf$$

$$+\frac{1}{4}(U^+(x,\lambda)-U^-(x,\lambda))J^{-1}U(x,\overline{\lambda})^*\Delta_w(x)f(x)$$

- $\Lambda \cap \mathbb{R}$ is empty.
- The Fourier transform $(\mathcal{F}f)(\lambda) = \int_{(a,b)} U(\cdot,\overline{\lambda})^* wf$ is analytic on \mathbb{R} .
- Last two terms of $E_{\lambda}f$ are also analytic on \mathbb{R} .
- All singularities and hence all spectral information is contained in M.

Rudi Weikard (UAB)

Spectral Theory

20. December 2018 16 / 19

イロト 不得下 イヨト イヨト 二日

• M is analytic away from $\mathbb R$ and Λ

- 2

イロト イヨト イヨト イヨト

- M is analytic away from $\mathbb R$ and Λ
- $\operatorname{Im} M / \operatorname{Im} \lambda \ge 0$

- 2

ヘロト 人間 とくほと くほと

- M is analytic away from $\mathbb R$ and Λ
- $\operatorname{Im} M / \operatorname{Im} \lambda \ge 0$
- Λ is a discrete set

3

・ロト ・ 日 ト ・ ヨ ト

- M is analytic away from $\mathbb R$ and Λ
- $\operatorname{Im} M / \operatorname{Im} \lambda \ge 0$
- Λ is a discrete set
- Such a function cannot have isolated singularities (except removable ones).

- 31

イロト イポト イヨト イヨト

- M is analytic away from $\mathbb R$ and Λ
- $\operatorname{Im} M / \operatorname{Im} \lambda \ge 0$
- Λ is a discrete set
- Such a function cannot have isolated singularities (except removable ones).
- *M* is a Herglotz-Nevanlinna function

$$M(\lambda) = A\lambda + B + \int \left(\frac{1}{t-\lambda} - \frac{t}{t^2+1}\right) \nu(t)$$

where $\nu = N'$ and N a non-decreasing matrix.

Rudi Weikard (UAB)

Spectral Theory

20. December 2018 17 / 19

イロト イポト イヨト イヨト

= 900

• $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.

イロト 不得下 イヨト イヨト 二日

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.
- Restricting to \mathbb{R} : $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.
- Restricting to \mathbb{R} : $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.
- $\mathcal{H}_{\infty} = \{f : (0, f) \in T\}$ is the kernel of \mathcal{F} . $\mathcal{H}_{0} = L^{2}(w) \ominus \mathcal{H}_{\infty}$.

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.
- Restricting to \mathbb{R} : $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.
- $\mathcal{H}_{\infty} = \{f : (0, f) \in T\}$ is the kernel of \mathcal{F} . $\mathcal{H}_{0} = L^{2}(w) \ominus \mathcal{H}_{\infty}$.
- $(\mathcal{G}\hat{f})(x) = \int U(x, \cdot)\nu\hat{f}$ if $\hat{f} \in L^2(\nu)$ is compactly supported.

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.
- Restricting to \mathbb{R} : $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.
- $\mathcal{H}_{\infty} = \{f : (0, f) \in T\}$ is the kernel of \mathcal{F} . $\mathcal{H}_{0} = L^{2}(w) \ominus \mathcal{H}_{\infty}$.
- $(\mathcal{G}\hat{f})(x) = \int U(x, \cdot)\nu\hat{f}$ if $\hat{f} \in L^2(\nu)$ is compactly supported.
- $\mathcal{F} \circ \mathcal{G} = \mathbb{1}$ and $\mathcal{G} \circ \mathcal{F}$ is the projection onto \mathcal{H}_0 .

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.
- Restricting to \mathbb{R} : $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.
- $\mathcal{H}_{\infty} = \{f : (0, f) \in T\}$ is the kernel of \mathcal{F} . $\mathcal{H}_{0} = L^{2}(w) \ominus \mathcal{H}_{\infty}$.
- $(\mathcal{G}\hat{f})(x) = \int U(x, \cdot)\nu\hat{f}$ if $\hat{f} \in L^2(\nu)$ is compactly supported.
- $\mathcal{F} \circ \mathcal{G} = \mathbb{1}$ and $\mathcal{G} \circ \mathcal{F}$ is the projection onto \mathcal{H}_0 .
- $(u, f) \in T$ if and only if $(\mathcal{F}f)(t) = t(\mathcal{F}u)(t)$.

Rudi Weikard (UAB)

Spectral Theory

20. December 2018 18 / 19

• Relax hypotheses, in particular $\Lambda \cap \mathbb{R} = \emptyset$.

イロト 不得 トイラト イラト・ラ

- Relax hypotheses, in particular $\Lambda \cap \mathbb{R} = \emptyset$.
- Develop a Floquet theory

- 31

・ロト ・ 日 ト ・ ヨ ト

- Relax hypotheses, in particular $\Lambda \cap \mathbb{R} = \emptyset$.
- Develop a Floquet theory
- Develop an inverse spectral and inverse scattering theory

3

イロト イヨト イヨト

- Relax hypotheses, in particular $\Lambda \cap \mathbb{R} = \emptyset$.
- Develop a Floquet theory
- Develop an inverse spectral and inverse scattering theory
- Determine the asymptotic distribution of eigenvalues

Rudi Weikard (UAB)

Spectral Theory

20. December 2018 19 / 19

イロト イヨト イヨト

- Relax hypotheses, in particular $\Lambda \cap \mathbb{R} = \emptyset$.
- Develop a Floquet theory
- Develop an inverse spectral and inverse scattering theory
- Determine the asymptotic distribution of eigenvalues

Rudi Weikard (UAB)

. . .

Spectral Theory

20. December 2018 19 / 19

- 31

イロト イヨト イヨト