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The Sturm-Liouville equation

• On the real interval (a, b) consider the equation

−(pu′)′ + qu = λwu.

Here 1/p, q, and w are locally integrable and real-valued. Also w > 0.

• This guarantees existence and uniqueness of solutions for initial-value
problems and symmetry of the resulting minimal operator

u 7→ 1

w
(−(pu′)′ + qu)

in L2(w dx).
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Distributional coefficients
• Krein (1952) treated p = 1, q = 0 but w a positive measure.

• Savchuk and Shkalikov (1999) studied a Schrödinger equation with
distributional potential.

• Eckhardt, Gesztesy, Nichols, and Teschl (2013) generalized further
and developed a spectral theory for the equation

−(p(y ′ − sy))′ − sp(y ′ − sy) + vy = λry

on an interval (a, b) when 1/p, v , and s are real-valued and locally
integrable and r > 0.

• It is useful to note that this equation is equivalent to the system

Ju′ + qu = λwu

where u1 = y and

J =

(
0 −1
1 0

)
, q =

(
v −s
−s −1/p

)
, and w =

(
r 0
0 0

)
.
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The goal of the present work

• Given a self-adjoint realization T of Ju′ + qu = wf in the Hilbert
space L2(w) with scalar product 〈f , g〉 =

∫
f ∗wg :

• Construct a spectral measure ν and

• a Fourier transform F mapping L2(w)→ L2(ν) such that

• the transform diagonalizes T : (u, f ) ∈ T if and only if
(F f )(t) = t(Fu)(t).

• Here the equation Ju′ + qu = wf is posed on (a, b) and we require
the following
• q and w are hermitian distributions of order 0 (measures)
• J is constant, invertible, and skew-hermitian
• w non-negative
• Three additional conditions to be discussed later
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Hurdles to overcome

• In the presence of discrete components of q and w existence and
uniqueness of solutions become an issue.

• The DE gives, in general, only relations not operators.

• Fortunately, there is an abstract spectral theory for linear relations.

• The definiteness condition

Ju′ + qu = 0 and wu = 0 (or ‖u‖ = 0) implies u ≡ 0

is not required.
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Interpreting the differential equation

• Distributions of order 0 are, locally, measures. Positive distributions
are positive measures.

• By Riesz’s representation theorem the antiderivative of any
distribution of order 0 is a function of locally bounded variation and
vice versa.

• f ∈ L2(w) implies f ∈ L1loc(w) and hence wf is again a distribution of
order 0.

• u ∈ BVloc implies qu and wu are distributions of order 0.

• Thus each term in
Ju′ + qu = λwu + wf

is a distribution of order 0.
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Existence and uniqueness theorem I

• The existence and uniqueness theorem for initial value problems may
fail if the measures have discrete components.

• iu′ = αδ0u is equivalent to i(ur − u`) = αu(0)

• If u left-continuous, i.e., u(0) = u` implies ur = (1− iα)u`

• If u right-continuous, i.e., u(0) = ur implies (1 + iα)ur = u`

• If u balanced, i.e., u(0) = (u` + ur )/2 implies (2 + iα)ur = (2− iα)u`.
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Why balanced solutions?

• If F = tF+ + (1− t)F− and G = tG+ + (1− t)G− for some fixed t

•
∫
[x1,x2]

(FdG + GdF ) = (FG )+(x2)− (FG )−(x1)

+(2t − 1)
∫
[x1,x2]

(G+ − G−)dF .

• The last term disappears unless F and G jump at the same place and
if t = 1/2.

• Therefore we want our BVloc functions balanced.
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Existence and uniqueness theorem II

• if r is a distribution of order 0, set ∆r (x) = R+(x)− R−(x)

• Existence and uniqueness of balanced solutions for initial-value
problems for Ju′ = ru + g holds when 2J ±∆r (x) is invertible.

• In our case r = λw − q and g = wf .

• λ = 0: 2J ±∆q(x) invertible.

• Λ = {λ : ∃x : det(2J ± (∆q(x)− λ∆w (x))) = 0}, the bad set, is
countable.
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Maximal and minimal relation

• Tmax = {(u, f ) ∈ L2(w)× L2(w) : Ju′ + qu = wf }

• Tmax = {([u], [f ]) ∈ L2(w)× L2(w) : (u, f ) ∈ Tmax}

• This may be a relation, even if coefficients are locally integrable and
the definiteness condition holds.

• Tmin and Tmin.

• T ∗ = {(v , g) : ∀(u, f ) ∈ T : 〈v , f 〉 = 〈g , u〉}.

• T ∗min = Tmax
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Boundary conditions

• Deficiency indices: n± = dim{(u,±iu) ∈ Tmax}.

• T is a self-adjoint restriction of Tmax if and only if T = kerA and
• A : Tmax → Cn± is linear and surjective.

• Tmin ⊂ kerA.

• AJA∗ = 0 (where J (u, f ) = (f ,−u)).

• Aj(u, f ) = 〈(vj , gj), (u, f )〉 with (vj , gj) ∈ Di ⊕D−i .

• Lagrange’s identity: if (u, f ), (v , g) ∈ Tmax then (v∗Ju)′ is a finite
measure on (a, b) and

(v∗Ju)−(b)− (v∗Ju)+(a) = 〈v , f 〉 − 〈g , u〉.

• (u, f ) ∈ kerA if and only if 0 = (g∗j Ju)−(b)− (g∗j Ju)+(a) = 0 for
j = 1, ..., n±.
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The resolvent and Green’s function

• If ([u], [f ]) ∈ Tmax and if the definiteness condition is violated, the
class [u] may have many balanced representatives in BVloc.

• However, there is a unique balanced representative u such that u(x0)
is perpendicular to N0 = {v(x0) : Jv ′ + qv = 0 & wv = 0}.

• Define E : Tmax → BVloc : ([u], [f ]) 7→ u.

• Define Eλ : L2(w)→ BVloc : f 7→ E (u, λu + f ) where u = Rλf
whenever λ ∈ ρ(T ).

• Each component of f 7→ (Eλf )(x) is a bounded linear functional.

• Green’s function: (Eλf )(x) = 〈G (x , ·, λ)∗, f 〉 =
∫
G (x , ·, λ)wf .
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Properties of Green’s function I
• The variation of constants formula: if λ 6∈ Λ and x > x0

(Eλf )−(x) = U(x , λ)
(
u0 + J−1

∫
(x0,x)

U(·, λ)∗wf
)

where u0 = (Eλf )(x0) and U(·, λ) is a fundamental matrix with
U(x0, λ) = 1.

• Assume that f is compactly supported so that u satisfies the
homogeneous equation near a and b. Then u0 has to be chosen so
that
• Eλf is in L2(w) near both a and b,

• Eλf satisfies the boundary conditions (if any), and

• (1− P)u0 = 0 where P is the orthogonal projection onto N⊥0 .

• This gives rise to a (rectangular) linear system

F (λ)u0 =

∫
(b−(λ)χ(a,x0) + b+(λ)χ(x0,b))U(·, λ)∗wf .
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Properties of Green’s function II

• F has a left inverse F †.

u0 =

∫
(PF †b−(λ)χ(a,x0) + PF †b+(λ)χ(x0,b))U(·, λ)∗wf .

• Define M±(λ) = PF (λ)†b±(λ)± 1
2J
−1 and

• B± = {
∫
right/left U(·, λ)∗wf : f ∈ L2(w)}.

• M+ = M− on B+ ∩ B−.

• M = M± on span(B+ ∪ B−)

• On span(B+ ∪ B−)⊥ = N0 we set M = 0.
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Properties of Green’s function III

• Then

(Eλf )(x) = U(x , λ)M(λ)

∫
(a,b)

U(·, λ)∗wf

− 1

2
U(x , λ)J−1

∫
(a,b)

sgn(· − x)U(·, λ)∗wf

+
1

4
(U+(x , λ)− U−(x , λ))J−1U(x , λ)∗∆w (x)f (x)

• Λ ∩ R is empty.

• The Fourier transform (F f )(λ) =
∫
(a,b) U(·, λ)∗wf is analytic on R.

• Last two terms of Eλf are also analytic on R.

• All singularities and hence all spectral information is contained in M.

Rudi Weikard (UAB) Spectral Theory 20. December 2018 16 / 19



Properties of Green’s function III

• Then

(Eλf )(x) = U(x , λ)M(λ)

∫
(a,b)

U(·, λ)∗wf

− 1

2
U(x , λ)J−1

∫
(a,b)

sgn(· − x)U(·, λ)∗wf

+
1

4
(U+(x , λ)− U−(x , λ))J−1U(x , λ)∗∆w (x)f (x)

• Λ ∩ R is empty.

• The Fourier transform (F f )(λ) =
∫
(a,b) U(·, λ)∗wf is analytic on R.

• Last two terms of Eλf are also analytic on R.

• All singularities and hence all spectral information is contained in M.

Rudi Weikard (UAB) Spectral Theory 20. December 2018 16 / 19



Properties of Green’s function III

• Then

(Eλf )(x) = U(x , λ)M(λ)

∫
(a,b)

U(·, λ)∗wf

− 1

2
U(x , λ)J−1

∫
(a,b)

sgn(· − x)U(·, λ)∗wf

+
1

4
(U+(x , λ)− U−(x , λ))J−1U(x , λ)∗∆w (x)f (x)

• Λ ∩ R is empty.

• The Fourier transform (F f )(λ) =
∫
(a,b) U(·, λ)∗wf is analytic on R.

• Last two terms of Eλf are also analytic on R.

• All singularities and hence all spectral information is contained in M.

Rudi Weikard (UAB) Spectral Theory 20. December 2018 16 / 19



Properties of Green’s function III

• Then

(Eλf )(x) = U(x , λ)M(λ)

∫
(a,b)

U(·, λ)∗wf

− 1

2
U(x , λ)J−1

∫
(a,b)

sgn(· − x)U(·, λ)∗wf

+
1

4
(U+(x , λ)− U−(x , λ))J−1U(x , λ)∗∆w (x)f (x)

• Λ ∩ R is empty.

• The Fourier transform (F f )(λ) =
∫
(a,b) U(·, λ)∗wf is analytic on R.

• Last two terms of Eλf are also analytic on R.

• All singularities and hence all spectral information is contained in M.
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The M-function

• M is analytic away from R and Λ

• ImM/ Imλ ≥ 0

• Λ is a discrete set

• Such a function cannot have isolated singularities (except removable
ones).

• M is a Herglotz-Nevanlinna function

M(λ) = Aλ+ B +

∫ ( 1

t − λ
− t

t2 + 1

)
ν(t)

where ν = N ′ and N a non-decreasing matrix.
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The Fourier Transform

• (F f )(λ) =
∫
U(·, λ)∗wf if f ∈ L2(w) is compactly supported and

λ 6∈ Λ.

• Restricting to R: F f ∈ L2(ν) extend by continuity to all of L2(w).

• H∞ = {f : (0, f ) ∈ T} is the kernel of F . H0 = L2(w)	H∞.

• (G f̂ )(x) =
∫
U(x , ·)ν f̂ if f̂ ∈ L2(ν) is compactly supported.

• F ◦ G = 1 and G ◦ F is the projection onto H0.

• (u, f ) ∈ T if and only if (F f )(t) = t(Fu)(t).
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Some open problems

• Relax hypotheses, in particular Λ ∩ R = ∅.

• Develop a Floquet theory

• Develop an inverse spectral and inverse scattering theory

• Determine the asymptotic distribution of eigenvalues

• ...
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