
J. Math. Anal. Appl. 423 (2015) 1753–1773
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The inverse resonance problem for left-definite Sturm–Liouville 

operators

Matthew Bledsoe, Rudi Weikard ∗

Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35226-1170, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 July 2013
Available online 4 November 2014
Submitted by S.A. Fulling

Keywords:
Resonances
Scattering theory
Inverse scattering theory
Left-definite problems

We address inverse spectral and scattering problems for the half-line, left-definite 
Sturm–Liouville equation, −u′′ + qu = λwu. These problems have been considered 
recently as they are critical in integrating the Camassa–Holm equation. Previous 
results required that the support of w be free of gaps, relatively open intervals 
on which w = 0 almost everywhere. We relax this condition and prove an inverse 
spectral theorem that tells to what extent the Weyl–Titchmarsh m-function or the 
spectral measure determines the coefficients of the equation. Note that, unlike the 
Schrödinger equation, knowing the spectral measure is not the same as knowing 
the m-function. We also prove an inverse resonance theorem that explains to what 
extent the eigenvalues and resonances determine the spectral measure (and, thus, 
the coefficients). Again, unlike the Schrödinger case, these data are not sufficient; the 
presence of w multiplying the spectral parameter complicates the analysis. However, 
we show that, in most cases, only one other number is needed to fully recover the 
spectral measure.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider here the inverse spectral and the inverse scattering problem for the differential equation

−u′′ + qu = λwu (1.1)

posed on a finite or infinite interval [0, b) in the case where w may change sign but q is assumed to be 
non-negative. The problem was considered in [3] and we improve here on those results in two directions: 
first, the inverse spectral result in [3] required suppw = [0, b) and we will do away with that assumption, 
see Theorems 2.3 and 2.4; second, we will establish an inverse resonance result, stating to what extent the 
location of the eigenvalues and resonances of the associated operator determines the coefficients q and w, 
see Theorem 3.8. The corresponding result for the discrete version of this problem was attained in [1]. We 
refer to [3] for information on context and applications of left-definite Sturm–Liouville problems.
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The minimal assumptions on the coefficients made here are that q and w are locally integrable and that, as 
mentioned before, q ≥ 0 but q �≡ 0. We then define the Hilbert space H1 as the set of all locally absolutely 
continuous complex-valued functions u defined on [0, b) for which u′ and 

√
qu are square integrable and 

the closed linear relation T1 ⊂ H1 ⊕ H1 as the set of all (u, f) ∈ H1 ⊕ H1 for which −u′′ + qu = wf

(for more details on this and the following facts see [3]). Now, if T ′ ⊂ T1 is a self-adjoint relation, define 
H∞ = {g ∈ H1 : (0, g) ∈ T ′} and its orthogonal complement H. Then T = T ′ ∩ (H ⊕ H) is defined on a 
dense subset of H and is a self-adjoint operator in H.

From now on we shall assume that b is a singular point, i.e., b = ∞ or q not integrable near b (the 
limit-point case). With this assumption no boundary condition at b is necessary and

T ′ =
{
(u, f) ∈ T1 : f(0) cosα + u′(0) sinα = 0

}
is a self-adjoint relation in H1 for any α ∈ [0, π). We also note that finite functions1 are dense in H1 when 
b is a singular point, a fact which simplifies some of our arguments.

The spectral theory for T begins with the definition of functions θ(·, λ) and ϕ(·, λ) as the (unique) 
solutions of Eq. (1.1) satisfying the initial conditions

θ′(0, λ) = −λϕ(0, λ) = sinα and λθ(0, λ) = ϕ′(0, λ) = cosα.

The functions λθ(x, ·), λϕ(x, ·), θ′(x, ·), and ϕ′(x, ·) are entire functions of growth order 1/2. Since there is, up 
to constant multiples and for non-real λ, one and only one solution u of Eq. (1.1) for which 

∫ b

0 (|u′|2 + q|u|2)
is finite, there is a unique function m : C \ R such that ψ(·, λ) = θ(·, λ) + m(λ)ϕ(·, λ) is in H1. The 
function ψ(·, λ) is called the Weyl–Titchmarsh solution of (1.1). The function m, called the Weyl–Titchmarsh 
m-function, is a Herglotz–Nevanlinna function so that it has a unique representation

m(λ) = Aλ + B +
∫
R

(
1

t− λ
− t

t2 + 1

)
dρ (1.2)

where A ≥ 0, B is real, and dρ is a positive measure (called the spectral measure) such that 
∫
R
dρ/(t2 +1) <

∞. The map F : u �→ 〈u, ϕ(·, λ)〉, a generalized Fourier transform, initially defined for finite functions u ∈ H1

may be extended to H1 by continuity and takes its values in L2(ρ). In fact, F|H∞ = 0 and F|H : H → L2(ρ)
is a unitary map. The inverse spectral result (Theorem 2.3) is then that two operators T and T̆ , respectively 
associated with coefficients (q, w, α) and (q̆, w̆, ᾰ), have the same m-function only if the coefficients are 
in specific relationships. Requiring only the equality of the spectral functions gives a somewhat weaker 
conclusion (Theorem 2.4). The converse statements hold true, too (Theorem 2.5). This is the subject of 
Section 2.

In Section 3 we consider the inverse resonance problem. To define the concept of resonances and prove 
the associated results we require the existence of some non-negative constant q0 such that the functions 
q−q0 and w−1 are compactly supported. In contrast to the Schrödinger case, the location of all eigenvalues 
and resonances does not determine the operator uniquely, due to the fact that the presence of a variable w
multiplying the spectral parameter λ causes much more complicated asymptotic behavior when λ tends to 
infinity. Theorem 3.8 describes the set of all operators sharing the same eigenvalues and resonances.

Finally, we remark that we use [f, g] to denote the Wronskian fg′−f ′g of two locally absolutely continuous 
functions and χS to denote the characteristic function of the set S.

1 By this term we will denote functions whose support is compact in [0, b).
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2. Inverse spectral theory in the presence of gaps in the support of the weight function

In the presence of two coefficients, q and w, in a Sturm–Liouville expression it cannot be expected 
that the spectral measure determines them both. Instead two such operators may be unitarily equivalent 
without being equal. In [3] an inverse spectral result was established when the support2 of w equals [0, b). 
Theorem 2.3 generalizes that result to the case where the assumption on suppw is dropped. In this case 
H∞ is not trivial, and we begin by establishing a characterization of both H∞ and H. The case when w ≡ 0
is of course extreme and we treat it briefly in Section 2.2 but not before we discuss, in Section 2.1, some 
basic facts about Liouville transforms which are the manifestations of the operator establishing the unitary 
equivalence mentioned above. Theorem 2.3 is stated and proved in Section 2.4. It relies essentially on a 
Paley–Wiener theorem which is proved in Section 2.3. Several proofs in these last two sections rely at least 
in spirit on those of [3] and [4]. But sometimes we are taking a somewhat different approach or provide a 
slightly simpler proof.

The complement of suppw in [0, b) is a disjoint union of (at most countably many) relatively open 
intervals, which we call gaps. If the point a is in the closure of a gap we define a− and a+ as the left and 
right endpoint of that gap. Otherwise we set a− = a+ = a.

Theorem 2.1. Suppose q and w are locally integrable, q ≥ 0 but q �≡ 0, and α ∈ [0, π). Then

H∞ =
{
g ∈ H1 : wg = 0 a.e. and g(0) cosα = 0

}
.

Moreover, if 0 ∈ suppw or cosα �= 0,

H =
{
u ∈ H1 : −u′′ + qu = 0 on every gap in the support of w

}
while otherwise, if 0 is in a gap and cosα = 0,

H =
{
u ∈ H1 : u′(0) = 0 and − u′′ + qu = 0 on every gap in the support of w

}
.

In particular, u ∈ H1 coincides with its projection onto H outside the gaps.

Proof. The first statement on H∞ is immediate from its definition.
Assume u ∈ H1 and g ∈ H∞. Since g vanishes on suppw and since the complement of suppw is a 

countable union of (relatively) open intervals we get

〈u, g〉 =
∑
n∈N

an;+∫
an;−

(
u′g′ + qug

)

denoting the gaps by (an;−, an;+), n ∈ N , where N is an appropriate index set.
We begin by considering the case where 0 ∈ suppw or cosα �= 0. Assume first that −u′′ + qu = 0 on 

every gap. Then integration by parts, the fact that g vanishes at the endpoints of gaps, and statement (3) of 
Lemma A.3 show that 〈u, g〉 = 0, i.e., u ∈ H. Conversely, if u ∈ H and (a−, a+) is a gap, we set Q(x) =

∫ x

0 qu

and g(x) =
∫ x

0 (u′−Q −A)χ[c,d]. Then g is in H∞ if [c, d] ∈ (a−, a+) and A is chosen so that g(d) = 0. Thus

0 =
a+∫

a−

(
u′g′ + qug

)
=

d∫
c

(
u′ −Q

)
g′

2 This refers to the support of w, denoted by suppw, in the sense of distributions (essential support), i.e., the complement of the 
union of all open sets V for which 

∫
V

|w| = 0.
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so that u′ = Q +A and u′′ = qu on [c, d]. This completes the characterization of H except when (0, 0+) is a 
gap and cosα = 0. In this case the condition u′(0) = 0 becomes necessary, too, since it is not required that 
g(0) = 0 when g ∈ H∞. It follows as above that −u′′ + qu = 0 on the gaps and u′(0) = 0 are sufficient to 
have u ∈ H. �
2.1. Liouville transforms

A Liouville transform maps functions defined on an interval [ă, ̆b) to functions defined on an interval [a, b)
via the prescription ŭ �→ u = rŭ ◦ s. We are here interested only in the case where a and ă are finite (but 
b and b̆ may be infinite). Moreover, we consider only Liouville transforms where r and s have the following 
properties:

(1) s, r, r′ : [a, b) → R are locally absolutely continuous;
(2) s maps [a, b) bijectively to [ă, ̆b);
(3) r is strictly positive; and
(4) r2s′ is a positive constant.

We shall denote such a transform by Lr,s. The transforms satisfying these conditions form, by definition, 
the class S(a, b; ̆a, ̆b). It is clear that the inverse of a transform in S(a, b; ̆a, ̆b) is in S(ă, ̆b; a, b). Also, the 
composition of two transforms in S(a2, b2; a1, b1) and S(a1, b1; a0, b0), respectively, is in S(a2, b2; a0, b0).

Given two potentials q and q̆ our next goal is to construct Liouville transforms which map solutions of 
−ŭ′′ + q̆ŭ = 0 bijectively to those of −u′′ + qu = 0. We begin with the case when q and q̆ are defined (and 
non-negative and integrable) on finite intervals. We denote by φ± the solutions of −u′′ + qu = 0 on [a, b]
satisfying the boundary conditions φ+(a) = φ−(b) = 0 and φ+(b) = φ−(a) = 1. These are positive on (a, b)
and strictly monotone. We also define the analogous solutions φ̆± of −ŭ′′ + q̆ŭ = 0 on [ă, ̆b]. If r± are given 
positive numbers we are looking for a transform Lr,s such that Lr,sφ̆± = r±φ±.

The derivative of φ+/φ− is φ′
+(a)/φ2

− > 0. Thus φ+/φ− is strictly increasing on [a, b) with range [0, ∞). 
Since a similar statement holds true for φ̆+/φ̆−, there is an absolutely continuous, strictly increasing function 
s mapping [a, b] onto [ă, ̆b] such that

(φ̆+/φ̆−) ◦ s = r+φ+/(r−φ−).

We also define r on [a, b] by r = r+φ+/(φ̆+ ◦ s) = r−φ−/(φ̆− ◦ s). It is clear that r > 0 and that r and r′

are absolutely continuous. One computes

r2s′ = r+r−φ
′
+(a)/φ̆′

+(ă) (2.1)

showing that Lr,s is in S(a, b; ̆a, ̆b). Finally, taking two derivatives in rφ̆+ ◦ s = r+φ+ gives

rs′ 2q̆ ◦ s = −r′′ + qr. (2.2)

A similar result holds true when b and ̆b are singular points3 but the proof is a little different. First assume 
q̆ = 0 and [ă, ̆b) = [0, ∞). We always have a positive solution r of −u′′ + qu = 0 such that 

∫ b

a
1/r2 = ∞. If 

q = 0 we may choose r = μ where μ is a positive number and if q �= 0 we may choose r = −μψ0, where 
ψ0 is defined in Lemma A.4 (an integration by parts shows that ψ0 cannot have any zeros), but we need 

3 Recall that b is a singular point if it is infinite or if q fails to be integrable near b.
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to show that indeed 
∫ b

a
1/r2 = ∞. To see this set s(x) = ν

∫ x

a
1/r2. Since rs is a solution of −u′′ + qu = 0

independent of r we have (cf. Lemma A.3)

∞ =
b∫

a

(
(rs)′ 2 + q(rs)2

)
≤

b∫
a

(
2s2(r′ 2 + qr2) + 2ν2

r2

)
≤ 2s(b)2‖r‖2 + 2νs(b)

so that s(b) must be infinite. Thus we have constructed a Liouville transform Lr,s ∈ S(a, b; 0, ∞) which 
maps the constant function 1 to −μψ0 (or μ) and for which r2s′ is constant, namely r2s′ = ν.

In the general case we construct transforms Lr1,s1 ∈ S(a, b; 0, ∞) and Lr2,s2 ∈ S(ă, ̆b; 0, ∞) as above to 
get a transform Lr,s = Lr1,s1 ◦ L−1

r2,s2 ∈ S(a, b; ̆a, ̆b). We emphasize that s = s−1
2 ◦ s1 and r = r1/(r2 ◦ s). In 

particular, choosing s1(x) = ν
∫ x

a
1/ψ2

0 , s2(x) =
∫ x

ă
1/ψ̆2

0 and r = μψ0/(ψ̆0 ◦ s), the transform Lr,s maps ψ̆0
to μψ0 so that r2s′ = μ2ν. Eq. (2.2) holds again.

2.2. The case of vanishing w

In [3] the case when w vanishes identically was excluded because it leads to a rather trivial situation, as 
we will see shortly. However, as all results apply to this situation we ask the reader’s indulgence when we 
now briefly consider this case.

When w = 0 we get that H∞ = {g ∈ H1 : g(0) cosα = 0}. Thus, if cosα = 0, we have H∞ = H1 and 
H is trivial. Otherwise, according to Theorem 2.1, H is the one-dimensional space spanned by ψ0 defined 
in Lemma A.4. In either case the Weyl–Titchmarsh solution ψ(·, λ) is a multiple of ψ0. Thus, recalling that 
ψ′

0(0) = 1, we obtain

m(λ) = cosα− λψ0(0) sinα

sinα + λψ0(0) cosα.

If cosα = 0 we have m(λ) = −ψ0(0)λ which implies that dρ = 0 giving rise to a trivial transform space 
L2(ρ) and a trivial Fourier transform.

If cosα �= 0 the m-function has a pole at λ0 = − tanα/ψ0(0) which is the eigenvalue of T = {(u, f) ∈
H⊕H : f(0) cosα+ u′(0) sinα = 0}, i.e., Tψ0 = λ0ψ0. We also get ρ0 = ρ({λ0}) = −ψ0(0)−1(cosα)−2 and 
ρ = ρ0χ{λ0}. The Fourier transform of a finite function u ∈ H1 is −u(0) cosα. By Lemma A.1 this persists 
for all u ∈ H1. In particular

(Fψ0)(λ0) = −ψ0(0) cosα =
{

sinα/λ0 if α �= 0
ρ−1
0 if α = 0

in accordance with Lemma A.9. Moreover, the constants A and B in the Nevanlinna representation of the 
m-function are A = 0 and B = λ0ρ0/(1 + λ2

0) − tanα.
Now let two operators T and T̆ , respectively associated with the coefficients (q, w, α) and (q̆, w̆, ᾰ), be 

given. Suppose that the associated spectral measures dρ and dρ̆ are identical and have finite support. Then 
H and H̆ are finite-dimensional, but this cannot happen unless w and w̆ vanish identically in which case 
we actually have, as we saw above, that H and H̆ are both trivial or both one-dimensional. In either case 
we define the Liouville transform Lr,s ∈ S(0, b; 0, ̆b) as in the previous section choosing μ and ν so that 
r(0) = sinα/ sin ᾰ (if ᾰ = 0 we must have α = 0 in which case we want r(0) = 1) and r′(0) = 0 and these 
choices give γ0 = r2s′ = r(0)2ψ̆0(0)/ψ0(0).

In the case, when H and H̆ are trivial, we must have α = ᾰ = π/2. It also follows trivially that 
TLr,s = 0 = Lr,sT̆ . If we even require the equality of the m-functions, then ψ0(0) = ψ̆0(0) which implies 
γ0 = 1 and, using (2.2), q̆ ◦ s = r3(−r′′ + qr).



1758 M. Bledsoe, R. Weikard / J. Math. Anal. Appl. 423 (2015) 1753–1773
When H and H̆ are one-dimensional, the equality of the spectral measures means that λ0 = λ̆0 and 
ρ0 = ρ̆0. These two conditions imply that sin(2α) = sin(2ᾰ), γ0 = 1, q̆◦s = r3(−r′′+qr), and TLr,s = Lr,sT̆ . 
We also note that the requirement m = m̆ gives tanα = tan ᾰ so that α = ᾰ.

2.3. The Paley–Wiener theorem

Section 3 of [3] discusses the Fourier transform F defined in the Introduction. It maps H1 to L2(ρ) for 
a suitable measure ρ. The transform depends on the weight function w which was required to be locally 
integrable. In Section 5 of that paper a Paley–Wiener theorem, setting up a connection between support 
properties of functions in H1 and growth properties of their transforms, was established under the additional 
assumption that the support of w equals [0, b). This additional assumption is not necessary as will be shown 
in the following. Nevertheless, our proof here is close to the one in [3] and we refer to it for more details.

We denote the projection of ψ(·, λ) onto H by ω(·, λ). In fact, by Lemma A.5, ψ(·, λ) is already in H
unless 0 is in a gap of suppw and cosα = 0. If we are in that situation we still know from Theorem 2.1 that 
ψ(·, λ) and ω(·, λ) coincide beyond the first gap.

Theorem 2.2. Assume u ∈ H1 is supported in [0, a] where a < b. Then û = Fu has an entire continuation 
with growth order at most 1/2 satisfying

lim sup
t→∞

1
t

ln
∣∣û(t2λ)∣∣ ≤

a∫
0

Re
√
−λw (2.3)

for all λ ∈ C \ R. Here the square root is that with positive real part.
Conversely, if û ∈ L2(ρ) has an entire continuation of order at most 1/2 satisfying (2.3) for two non-real 

values of λ on different rays emanating from the origin, then the support of u = F∗û is contained in [0, a+]. 
In particular, u = 0 if a+ = 0.

Proof. The easier part of the proof is where one assumes suppu ⊂ [0, a]. Integration by parts gives

û(λ) = −u(0) cosα +
a−∫
0

uwλϕ(·, λ).

This is an entire function of growth order at most 1/2 since λ �→ λϕ(x, λ) has this property for all x. If 
a− = 0 the validity of (2.3) is immediate interpreting, if necessary, ln 0 as −∞. We may thus turn to the 
case where a− > 0. By Corollary 6.2 of [2], we have

ϕ
(
x, t2λ

)
= exp

[
t

x∫
0

√
−λw + o(t)

]
(2.4)

as t → ∞ if λ ∈ C \ R, and the error is locally uniform in x. Given any ε > 0 we obtain

∣∣û(t2λ)∣∣ ≤ ∣∣u(0) cosα
∣∣ +

∣∣t2λ∣∣ exp
(
εt + t

a∫
0

Re
√
−λw

) a∫
0

|uw|

using that 
∫ x

0 Re
√
−λw is non-decreasing as a function of x. Since ε is arbitrary this establishes the first 

part of the theorem.
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For the converse, the harder part of the proof, assume now that (2.3) holds for two non-real values of λ
on two different rays. There is nothing to prove if w = 0 on [a, b) and so we assume that a+ < b. Define 
H(·, λ) = Rλu − û(λ)ω(·, λ) ∈ H and v = G0(wf) where f ∈ H1 is compactly supported in (a+ + ε, b) and 
where G0 is defined in Lemma A.2. Note that v is in the domain of T (even in the domain of T ∗

1 , which is a 
restriction of T ) and thus its Fourier transform v̂ is integrable with respect to dρ by Lemma A.8. Now set

F (λ) =
b∫

0

H(·, λ)wf =
〈
H(·, λ), v

〉
=

∫
R

û(t) − û(λ)
t− λ

v̂(t)dρ(t)

where the last equality follows since Fω(·, λ) = Fψ(·, λ) = 1/(t − λ), cf. Lemma A.9. We may now repeat 
the proof of Lemma 5.3 in [3] to show that F is entire and of growth order at most 1/2. Since a+ ≥ 0+ we 
have ω(x, λ) = ψ(x, λ) when x ≥ a+ + ε and we may use again the proof of Lemma 5.3 in [3] to show that 
F tends to zero in the two directions given by the two values of λ mentioned in the hypothesis while relying 
on the facts that 

∫ a++ε

a+
Re

√
−λw > 0 for every positive ε (smaller than b − a+) and that

ψ
(
x, t2λ

)
= exp

[
−t

x∫
0

√
−λw + o(t)

]
(2.5)

as t → ∞ with a locally uniform error in x (cf., Theorem 6.1 of [2]). By Phragmén–Lindelöf’s principle and 
Liouville’s theorem it follows first that F is bounded everywhere and then that it is constant. Since the 
constant must be 0 we get that F is identically 0. Hence,

0 = F (λ) =
b∫

0

H(·, λ)wf

for every f ∈ H1 compactly supported in (a+ + ε, b). Since this is so for every ε ∈ (0, b − a+) we get that 
H(·, λ)w vanishes almost everywhere in (a+, b) and hence that H(·, λ) vanishes on suppw ∩ (a+, b). But, 
since it is in H it satisfies the equation −y′′ + qy = 0 on any gap (c−, c+) in (a+, b). Hence H(·, λ) vanishes 
there identically in view of the boundary conditions H(c±, λ) = 0 and the fact that q ≥ 0. Applying now 
the differential equation to H gives

−H ′′ + qH = w(u + λH). (2.6)

So we also have wu = 0 and, repeating the argument just given, u = 0 in [a+, b). �
2.4. The inverse spectral problem

The inverse spectral theorem in [3] relied on the assumption that suppw = [0, b) and supp w̆ = [0, ̆b). It 
is our goal to relax this assumption and establish an inverse spectral result assuming only local integrability 
of w and w̆ thus allowing for gaps in suppw and supp w̆. A complication arises when [0, b) starts with a gap 
and α = π/2 (or [0, ̆b) starts with a gap and ᾰ = π/2). In the following we shall call such a gap exceptional. 
If α (or ᾰ) is different from π/2 or if a gap begins to the right of zero, we call the gap regular. The trouble 
caused by exceptional gaps is due to the fact that in their presence the Weyl–Titchmarsh solutions are not 
in H (or H̆), see Lemma A.5.

Our main result in this section is the following uniqueness theorem.

Theorem 2.3. Suppose T and T̆ are two self-adjoint operators, respectively associated with the coefficients 
(q, w, α) and (q̆, w̆, ᾰ), and have the same m-function. Then α = ᾰ and there is a unitary Liouville transform 
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Lr,s ∈ S(0, b; 0, ̆b) such that TLr,s = Lr,sT̆ , q̆ ◦ s = r3(−r′′ + qr), and w̆ ◦ s = r4w. Moreover r2s′ ≡ 1, 
r′(0) = 0, r(0) = 1.

The bulk of the information contained in the m-function is, of course, contained in the spectral measure 
but not all. Knowing only the spectral measure makes for a somewhat weaker theorem which we also state 
and prove. In fact, the proof of Theorem 2.3 is very short once one has Theorem 2.4 in hand.

Theorem 2.4. Suppose T and T̆ are two self-adjoint operators, respectively associated with the coefficients 
(q, w, α) and (q̆, w̆, ᾰ), and have the same spectral measure dρ. Then sin(2α) = sin(2ᾰ) and there is a unitary 
Liouville transform Lr,s such that TLr,s = Lr,sT̆ , rs′ 2q̆ ◦ s = −r′′ + qr, and s′ 2w̆ ◦ s = w. Moreover Lr,s

has the following properties:

Case 1 If neither supp w̆ nor suppw has exceptional gaps, then Lr,s ∈ S(0, b; 0, ̆b), r2s′ ≡ 1, r′(0) = 0, and 
r(0) = sinα/ sin ᾰ interpreting the latter quotient as 1 if α = ᾰ = 0.

Case 2 If supp w̆ has an exceptional gap but suppw does not, then α = ᾰ = π/2, Lr,s ∈ S(0, b; ̆0+, ̆b), 
r2s′ ≡ 1, r′(0) = ϕ̆′

0(0̆+), and r(0) = −1/ϕ̆0(0̆+).
Case 3 If both supp w̆ and suppw have exceptional gaps, then α = ᾰ = π/2, r > 0, r, s are locally absolutely 

continuous, r′, s′ are locally absolutely continuous on both [0, 0+), and (0+, b), r′(0) = 0, r(0) = 1, 
r2s′ ≡ 1 on (0+, b), and r2s′ ≡ γ0 on [0, 0+) where

(γ0 − 1)ϕ̆′
0(0̆+) = r(0+)ϕ̆0(0̆+) lim

ε↓0

(
r′(0+ + ε) − r′(0+ − ε)

)
.

Theorem 2.5. The converses of Theorems 2.3 and 2.4 are also true.

Proof. The assumptions on the functions r and s and the coefficients of T and T̆ in Theorem 2.4 are such 
that Lr,s maps solutions of −ŭ′′ + q̆ŭ = λw̆ŭ to functions solving the equation −u′′ + qu = λwu on both 
[0, 0+) and (0+, b). In fact, Lr,sϕ̆ = ϕ on all of [0, b) (but, in Case 3, the images of other solutions may have 
a kink at 0+). Moreover Lr,s is a unitary operator from H̆ to H. It follows that Lr,sω̆ is a constant multiple 
of ω. In Case 1 one computes

(Lr,sψ̆)(x, λ) = θ(x, λ) +
(
cotα− cot ᾰ + m̆(λ)

)
ϕ(x, λ)

which shows that Lr,sψ̆ = ψ so that m = cotα− cot ᾰ + m̆ and hence that dρ = dρ̆. Similarly, in Case 2,

(Lr,sψ̆)(x, λ) = θ(x, λ) +
(

λ

φ̆′
−(0)

+ m̆(λ)
)
ϕ(x, λ)

where φ̆− ∈ H̆∞ is supported on [0, ̆0+] where it solves the boundary value problem −ŭ′′ + q̆ŭ = 0, 
φ̆−(0̆+) = 0, and φ̆−(0) = 1. Now we have m(λ) = λ/φ̆′

−(0) + m̆(λ) and again dρ = dρ̆. Case 3 is a 
little more complicated since the derivative of Lr,sψ̆(·, λ) is not continuous at 0+. Nevertheless we find that 
Lr,sθ̆ − θ is a multiple of ϕ on [0+, b) which shows again that Lr,sω̆ = ω. Therefore, as long as x ∈ [0, 0+],(

λ

φ′
−(0) + m(λ)

)
ϕ(x, λ) = ω(x, λ) = (Lr,sω̆)(x, λ) =

(
λ

φ̆′
−(0)

+ m̆(λ)
)
ϕ(x, λ)

defining φ− analogously to φ̆−. Thus once more dρ = dρ̆.
If the stronger hypotheses of Theorem 2.3 are satisfied we even have m = m̆. �
The results of Section 2.2 show the validity of Theorems 2.3 and 2.4 when dρ has finite support. We 

may therefore assume in the following that this is not the case and hence that neither w nor w̆ vanishes
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identically. Since the Fourier transforms F and F̆ are unitary and have, by assumption, the same target 
space, we have that U = F∗ ◦ F̆ is a unitary map between H and H̆. We will show that U is a Liouville 
transform, i.e., that there are functions r and s so that U = Lr,s. In the absence of gaps the function s may 
be defined as h̆−1 ◦ h where

h(x) =
x∫

0

√
|w| and h̆(x) =

x∫
0

√
|w̆|. (2.7)

Our strategy is to show that this is still the right approach away from the gaps. For this to work we need that 
h(b) = h̆(b̆) (Lemma 2.8) and that the gaps in suppw are in one-to-one correspondence with those of supp w̆

(Lemma 2.9). The key ingredient for the proof of these claims is the control of the support of U ŭ when the 
support of ŭ is known (Lemma 2.7). This, in turn, is possible because of the Paley–Wiener Theorem 2.2. 
We will patch the definitions of r and s in the gaps in Lemma 2.10 and then prove that these functions have 
the necessary properties.

Recall that we defined ω(·, λ) to be the projection of ψ(·, λ) onto H (these differ only when there is an 
exceptional gap). We also define ω0 as the projection of ψ0 onto H and, analogously, ω̆(·, λ) and ω̆0 as 
elements of H̆. By Lemma A.9 we have

U ψ̆0 = U ω̆0 = σω0 where σ =
{

sin ᾰ/ sinα if α �= 0 �= ᾰ

1 if α = 0 = ᾰ
(2.8)

(α and ᾰ can vanish only simultaneously since α = 0 implies that 0 is an eigenvalue of T and T̆ which 
implies that ᾰ = 0). If ŭ ∈ H̆ it follows from (2.8) and integration by parts that

ŭ(0) = −〈ŭ, ψ̆0〉 = −〈U ŭ,U ψ̆0〉 = −σ〈U ŭ, ω0〉 = −σ〈U ŭ, ψ0〉 = σ(U ŭ)(0). (2.9)

Lemma 2.6. Suppose u ∈ H1 is supported in [0, a] and ε > 0. Then there exists uε ∈ H1 which is compactly 
supported in [0, a) and satisfies ‖u − uε‖ < ε.

Proof. Suppose δ > 0 (but smaller than a/2). We choose ũ to be zero in [a − δ, a], linear in [a − 2δ, a − δ], 
and equal to u elsewhere. Then

‖u− ũ‖2 ≤ 2
a∫

a−2δ

(∣∣u′∣∣2 + q|u|2
)

+ 2 |u(a− 2δ)|2
δ2

a−δ∫
a−2δ

(
1 + qδ2).

Here, both terms on the right vanish as δ tends to zero; for the second observe that the fundamental theorem 
of calculus and Schwarz’s inequality imply that |u(a − 2δ)|2 tends to zero faster than δ. Thus we choose 
uε = ũ for a sufficiently small δ. �
Lemma 2.7. Suppose h(a) = h̆(ă). Let ŭ ∈ H̆1 and set u = U ŭ. Then the following statements hold:

(1) If the support of ŭ is in [0, ̆a], then the support of u is in [0, a+] and even in [0, a−], if ă = ă−. In 
particular, u = 0 if a+ = 0.

(2) If ŭ is supported in [ă, ̆b), then u is supported in [a−, b) and even in [a+, b), if ă = ă+.

Analogous statements hold with the roles of u and ŭ reversed.
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Proof. The first claim in (1) follows immediately from the Paley–Wiener theorem, applying first the easy 
direction to ŭ and then the hard direction to F̆ ŭ = Fu for λ = ±i using the fact that

ă∫
0

Re
√
∓iw̆ =

ă∫
0

√
|w̆|/2 =

a∫
0

√
|w|/2 =

a∫
0

Re
√
∓iw

in the process.
To prove the second claim in (1) we employ Lemma 2.6 to find, for any ε > 0, a function ŭε ∈ H̆1 such 

that supp ŭε ⊂ [0, ̆a−) and ‖ŭ − ŭε‖ < ε. Thus U ŭε is supported in [0, a−]. Since point evaluations are 
continuous it follows that u = U ŭ vanishes at a− and therefore throughout [a−, a+], so suppu ⊂ [0, a−]. 
This completes the proof of (1).

To prove the first part of statement (2) we may assume a− > 0 (otherwise there is nothing to do). 
Note that statement (1) implies that suppU∗v ⊂ [0, ̆a−] whenever v ∈ H1 is supported in [0, a−]. Hence 
0 = 〈ŭ, U∗v〉 = 〈u, v〉 and this holds still true, when we replace ŭ by its projection onto H̆ allowing us in the 
following to assume that ŭ ∈ H̆. We first prove that u′′ = qu in [0, a−] in the spirit of the du Bois-Reymond 
lemma: Set Q(x) =

∫ x

0 qu, C =
∫ a−
0 (u′ − Q)/a−, and v(x) =

∫ x

0 (u′ − Q − C)χ[0,a−] so that v(x) = 0 for 
x ≥ a− and v ∈ H1. An integration by parts gives 0 = 〈u, v〉 =

∫ a−
0 |u′−Q −C|2 from which our claim follows 

immediately. Next, choosing v = (a− − x)χ[0,a−](x) and integration by parts gives 0 = 〈u, v〉 = −u′(0)a−
so that u′(0) = 0. Eq. (2.9) shows that u(0) = σ−1ŭ(0) = 0. Thus u satisfies the initial value problem 
−u′′ + qu = 0, u(0) = u′(0) = 0 on [0, a−] and hence vanishes there. The remaining claim follows simply by 
replacing a− by a+ and ă− by ă+ in the previous argument. �
Lemma 2.8. The functions h and h̆, defined in (2.7), tend to the same limit, possibly infinity, as their 
arguments tend to b and b̆, respectively.

Proof. We prove our claim by contradiction. Without loss of generality assume h̆(b̆) = limx→b̆ h̆(x) is finite 
and that there exists an interval (x, y) ⊂ [0, b) such that h(y) > h(x) > h̆(b̆). Then w has essential support 
in [x, y]. Now, if v ∈ H1 is supported in [x, b) and ŭ ∈ H̆1 is a finite function, the Paley–Wiener theorem 
shows that the support of U ŭ is contained in [0, x] so that 〈U ŭ, v〉 = 0. Since the set {U ŭ : ŭ ∈ H̆1 is finite}
is dense in H, we get v ∈ H∞ and hence wv = 0 almost everywhere, which is impossible, since v may be 
chosen non-zero in (x, y). �

The key to the construction of the Liouville transform is that gaps of suppw and supp w̆ are in a 
one-to-one correspondence. However, if α = ᾰ = π/2 it may be the case that 0 is in a gap of supp w̆ but 
not in a gap of suppw or vice versa. For example, suppose that 0 ∈ suppw and that q̆ = w̆ = 0 on [0, 1]
while to the right of 1 we have q̆(x) = q(x − 1), and w̆(x) = w(x − 1). In this case we have m̆ = m + λ so 
that indeed dρ = dρ̆.

Lemma 2.9. The regular gaps in suppw and supp w̆ are in a one-to-one correspondence respecting the 
ordering of the gaps. Specifically, if ă is in a regular gap of supp w̆ and h(a) = h̆(ă), then a is in a regular 
gap of suppw and vice versa.

Proof. By way of contradiction assume ă− < ă+ but a = a− = a+. If [ă−, ̆a+) does not include 0 and does 
not extend to b̆, the restrictions of elements of H̆ to [ă−, ̆a+] span a two-dimensional space. This is still the 
case when [ă−, ̆a+) contains 0 but ᾰ �= π/2. In either of these situations let φ̆+ ∈ H̆ be a function which 
vanishes in [0, ̆a−] and assumes the value 1 in ă+ while φ̆− ∈ H̆ is a function which vanishes in [ă+, ̆b) and 
assumes the value 1 in ă−. Lemma 2.7 shows then that (U φ̆+)(a) = (U φ̆−)(a) = 0 and this implies that 
(U ŭ)(a) = 0 for all ŭ ∈ H̆1, which is impossible.
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Now suppose that (ă−, ̆b) is a gap of supp w̆ but that no gap of suppw extends to b so that a+ < b for any 
a ∈ [0, b). Let u = U ψ̆0. According to Lemma A.3 we may approximate u by functions un ∈ H1 supported 
in [0, an]. Since (an)+ < b we get h(an) < h(b) = h̆(ă−). This shows, with the help of Lemma 2.7, that each 
of the U∗un has its support in [0, ̆a−]. By Theorem 2.1 the function ψ̆0 coincides with its projection onto H̆
beyond 0̆+. Thus the continuity of point evaluations (Lemma A.1) gives, for an appropriate constant C,

0 �=
∣∣ψ̆0(ă)

∣∣ =
∣∣(U∗(un − u)

)
(ă)

∣∣ ≤ C
∥∥U∗(un − u)

∥∥ ≤ C‖un − u‖

contradicting the fact that un approximates u. �
Lemma 2.10. Suppose (a−, a+) and (ă−, ̆a+) are corresponding gaps of the supports of w and w̆. Then there 
is a Liouville transform Lr,s in S(a−, a+; ̆a−, ̆a+) such that U ŭ = Lr,sŭ = rŭ ◦ s on [a−, a+] for all ŭ ∈ H̆. 
Moreover, if the gaps are regular then we have r2s′ = 1 while r2s′ = φ′

−(0)/φ̆′
−(0) if they are exceptional.

Proof. We begin by considering gaps which are regular and bounded. Recall the functions φ̆± ∈ H̆ associated 
with the gap (ă−, ̆a+) from the proof of Lemma 2.9 and let φ± ∈ H be their analogues for the gap (a−, a+). 
By Lemma 2.7 the function U φ̆− vanishes on [a+, b) and therefore coincides with a multiple of φ− on 
[a−, a+]. Lemma 2.7 gives also that U φ̆+(a−) = 0 if a− > 0. If a− = 0 (and hence ă− = 0) we arrive at 
this conclusion, too, upon applying Eq. (2.9). In any case we get that the restrictions of U φ̆+ and φ+ to 
[a−, a+] are multiples of each other. Specifically, there are numbers r± such that r±φ± = U φ̆± on [a−, a+]. 
Since ψ̆0 − ψ̆0(ă−)φ̆− − ψ̆0(ă+)φ̆+ vanishes at ă±, it vanishes in (ă−, ̆a+) and is therefore equal to a sum of 
two functions ŭ± ∈ H̆ supported in [0, ̆a−] and [ă+, ̆b), respectively. Using Lemma 2.7 this shows that, on 
[a−, a+],

σψ0 = U ψ̆0 = ψ̆0(ă−)r−φ− + ψ̆0(ă+)r+φ+.

Evaluating this at a± shows that r± are positive. For these values of r± let Lr,s be the Liouville transform 
for closed intervals described in Section 2.1. Since, by Theorem 2.1, φ̆± span the space of restrictions of 
ŭ ∈ H̆ to [ă−, ̆a+], we get Lr,sŭ = U ŭ on [a−, a+]. In Eq. (2.1) we computed r2s′ = r+r−φ′

+(a−)/φ̆′
+(ă−). 

But this equals 1 since U is unitary, implying

−φ̆′
+(ă−) = 〈φ̆+, φ̆−〉 = r+r−〈φ+, φ−〉 = −r+r−φ

′
+(a−).

Now we consider the case when there are gaps extending to b and b̆ denoting their left endpoints by b−
and b̆−. Restrictions of functions in H or H̆ to the gaps are multiples of ψ0 and ψ̆0, respectively. Again 
Lemma 2.7 shows that, on [b−, b), we have U ψ̆0 = σψ0. We have shown in Section 2.1 how to construct a 
Liouville transformation Lr,s ∈ S(b−, b; ̆b−, ̆b) with the same effect. We note that here, too, we have r2s′ = 1.

It remains to deal with the case where both suppw and supp w̆ have exceptional gaps. Note that ω̆0 =
ω̆0(0)(φ̆−− φ̆′

−(0)φ̆+/φ̆
′
+(0)). Choosing r− = 1 and r+ = φ′

−(0)φ̆′
+(0)/(φ̆′

−(0)φ′
+(0)) the Liouville transform 

for closed intervals described in Section 2.1 will (using proper restrictions) map ω̆0 to ω0 = U ω̆0 since, by 
Eq. (2.9), ω0(0) = ω̆0(0). Moreover, Eq. (2.1) gives r2s′ = φ′

−(0)/φ̆′
−(0). �

Lemma 2.11. Suppose a = a− = a+ and let s(a) = h̆−1(h(a)). If two functions z̆, y̆ are in H̆ and have 
value 1 at a point s(a) then (U z̆)(a) = (U y̆)(a). This number, which we denote by r(a), is positive and we 
have

(U ŭ)(a) = r(a)ŭ
(
s(a)

)
(2.10)

for any function ŭ ∈ H̆.
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Proof. We may write z̆ − y̆ = v̆− + v̆+ where v̆− is supported in [0, s(a)] and v̆+ is supported in [s(a), ̆b). It 
follows from Lemma 2.7 or, if s(a) = 0, by Eq. (2.9) that U(z̆ − y̆) vanishes at a. Similarly, for any ŭ ∈ H̆
we write ŭ = ŭ− + ŭ(s(a))z̆ + ŭ+ where ŭ∓ are supported in [0, s(a)] and [s(a), ̆b), respectively. Eq. (2.10)
follows again from Lemma 2.7. Choosing z̆ = ψ̆0/ψ̆0(s(a)) shows that r(a) = σψ0(a)/ψ̆0(s(a)) > 0. �
Proof of Theorem 2.4. The first facts to observe are that U ŭ = rŭ◦s for any ŭ ∈ H̆, s is a strictly increasing 
function on [0, b) onto [0, ̆b) and hence continuous, and r > 0 and continuous on [0, b).

If suppw has a gap containing zero, we denote its right endpoint by 0+; if a gap extends to b we denote 
its left endpoint by b−. The numbers 0̆+ and b̆− have the analogous meaning for gaps in supp w̆. We know 
that b− < b if and only if b̆− < b̆. Also 0+ > 0 if and only if 0̆+ > 0 except in the case when α or ᾰ is equal 
to π/2 in which case 0 may be in the support of one of the weight functions but not the other. Should this 
be the case we assume without loss of generality that it is suppw which does not have a gap including zero. 
We will determine the properties of r and s first on the intervals [0, 0+), (0+, b−), and (b−, b) and postpone 
the discussion of their behavior at 0+ and b−. Of course, in a given case, the first or the last or both of 
these intervals may be absent. The middle interval is always present, since we have already dealt with the 
case where suppw = ∅ in Section 2.2.

We will assume, until further notice, that the gaps [0, 0+) and [0, ̆0+) are not exceptional if present. We 
have from Lemma 2.10 that s, r, and r′ are locally absolutely continuous and that r2s′ = 1 on (b−, b) and 
on [0, 0+).

We now consider the open interval (0+, b−). Fix x0 ∈ (0+, b−) and let ϑ̆ and φ̆ be elements of H̆ which 
satisfy the equation ŭ′′ = q̆ŭ and the initial conditions

ϑ̆
(
s(x0)

)
= φ̆′(s(x0)

)
= 1 and ϑ̆′(s(x0)

)
= φ̆

(
s(x0)

)
= 0

in a (relatively) open interval containing s(x0) which we may choose small enough for ϑ̆ not to vanish there. 
The function φ̆/ϑ̆ has a positive derivative in this interval and is therefore strictly increasing and absolutely 
continuous there. Define ϑ = U ϑ̆ and φ = U φ̆. Both of these are in H and ϑ does not vanish at x0. Therefore 
φ/ϑ = (φ̆/ϑ̆) ◦ s is strictly increasing and absolutely continuous in some neighborhood of x0. It follows that 
s = (ϕ̆/ϑ̆)−1 ◦ (ϕ/ϑ) is locally absolutely continuous. Also r = ϑ/(ϑ̆ ◦ s) is locally absolutely continuous.

For x ∈ (0+, b−) we get from Theorem 2.1 and Lemma A.9 that

ψ(x, λ) =
(
U ψ̆(·, λ)

)
(x) = r(x)ψ̆

(
s(x), λ

)
and, upon differentiation

ψ′(x, λ) = r′(x)ψ̆
(
s(x), λ

)
+
(
rs′

)
(x)ψ̆′(s(x), λ

)
. (2.11)

The function λ �→ m̆0(x, λ) = ψ̆′(s(x), λ)/(λψ̆(s(x), λ)) is the Weyl–Titchmarsh m-function for −ŭ′′ + q̆ŭ =
λw̆ŭ posed on [s(x), ̆b) with ᾰ = 0. Writing Eq. (2.11) for λ = i and a general λ gives rise to the linear 
system

(
r′, rs′

)( 1 1
λm̆0(s(·), λ) im̆0(s(·), i)

)
=

(
ψ′(·, λ)

ψ̆(s(x), λ)
,

ψ′(·, i)
ψ̆(s(x), i)

)
.

The determinant of the matrix occurring here cannot be identically equal to zero, since this would mean 
that m0 is analytic in the plane save for a pole at zero and hence that the corresponding spectral measure 
would be supported only in zero. However, this is precluded by the fact that w̆ does not vanish on [s(x), ̆b). 
It follows that r′ and rs′ are locally absolutely continuous on (0+, b−).
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Taking another derivative in (2.11) and making use of the differential equations gives

(
r′′ − rq + rs′ 2q̆ ◦ s

)
+
(
rw − rs′ 2w̆ ◦ s

)
λ +

(
2r′s′ + rs′′

)
λm̆0

(
s(·), λ

)
= 0.

We now use three instances of this equation, say for λ = i, λ = 2i, and a general λ. Again the vanishing of 
the resulting 3 × 3 determinant would mean that m̆0 is analytic except for a pole at zero and since this is 
not the case we get to conclude that

2r′s′ + rs′′ =
(
r2s′

)′
/r = 0,

−r′′ + rq = rs′ 2q̆ ◦ s,

and

w = s′ 2w̆ ◦ s.

The first of these equations shows that r2s′ is equal to a constant γ on (0+, b−). It follows that Lr,s ∈
S(0+, b−; ̆0+, ̆b−).

In order to understand the behavior of r and s near 0+ and b− we consider now finite functions ŭ in H̆
and set u = U ŭ = rŭ ◦ s. Then

∣∣u′∣∣2 + q|u|2 = r2s′ 2
∣∣ŭ′ ◦ s

∣∣2 + rr′
(
|ŭ ◦ s|2

)′ +
(
r′ 2 + qr2)|ŭ ◦ s|2.

We need to integrate this expression over the three intervals (0, 0+), (0+, b−), and (b−, b). In each case we 
integrate the middle term by parts. This gives

‖u‖2 =
0+∫
0

(
r2s′ 2

∣∣ŭ′ ◦ s
∣∣2 +

(
−rr′′ + qr2)|ŭ ◦ s|2

)
+
(
rr′|ŭ ◦ s|2

)∣∣0+

0

+
b−∫

0+

(
r2s′ 2

∣∣ŭ′ ◦ s
∣∣2 +

(
−rr′′ + qr2)|ŭ ◦ s|2

)
+
(
rr′|ŭ ◦ s|2

)∣∣b−
0+

+
b∫

b−

(
r2s′ 2

∣∣ŭ′ ◦ s
∣∣2 +

(
−rr′′ + qr2)|ŭ ◦ s|2

)
+
(
rr′|ŭ ◦ s|2

)∣∣b
b−
.

Since −rr′′ + qr2 = r2s′ 2q̆ ◦ s and using the fact that r2s′ is constant on each of the three intervals, we 
obtain after changing variables

‖u‖2 = γ0

0̆+∫
0

(∣∣ŭ′∣∣2 + q̆|ŭ|2
)

+ γ

b̆−∫
0̆+

(∣∣ŭ′∣∣2 + q̆|ŭ|2
)

+
b̆∫

b̆−

(∣∣ŭ′∣∣2 + q̆|ŭ|2
)

+
(
rr′|ŭ ◦ s|2

)∣∣0+

0 +
(
rr′|ŭ ◦ s|2

)∣∣b−
0+

+
(
rr′|ŭ ◦ s|2

)∣∣b
b−
. (2.12)

We note first that (rr′)(x)|ŭ(s(x))|2 = (uu′)(x) − r2s′(ŭŭ′)(s(x)) tends to zero as x tends to b according 
to Lemma A.3. Next, picking a nontrivial ŭ ∈ H̆ supported in (0̆+, ̆b−) shows that γ = 1 since ‖u‖ = ‖ŭ‖. 
Picking ŭ ∈ H̆ supported in (0̆+, ̆b) but different from zero at b̆−, shows that r′ must be continuous at b̆−. 
Since the gap [0, ̆0+) is regular (so that we have γ0 = 1) we may choose ŭ to have support only in [0, ̆0+]
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(i.e., as a multiple of φ̆− for that gap) and this shows r′(0) = 0, a fact which follows similarly when 0 is not 
contained in a gap. Finally, choosing ŭ as a function which does not vanish at 0̆+ shows that r′ must be 
continuous at 0̆+.

That r(0) = 1/σ follows from (2.8) and (2.9) for ŭ = ψ̆0. Using the initial conditions satisfied by ψ(·, λ)
and ψ̆(·, λ) in the equation ψ(·, λ) = U ψ̆(·, λ) = rψ̆(s(·), λ) and its derivative gives

cosα−m(λ) sinα = r(0)
(
cos ᾰ− m̆(λ) sin ᾰ

)
and

sinα + m(λ) cosα = r(0)−1(sin ᾰ + m̆(λ) cos ᾰ
)
.

If it were possible to solve this system simultaneously for m and m̆ these would be constant. Since they are 
not we must have that the associated determinant vanishes giving sinα cosα = sin ᾰ cos ᾰ. Moreover,

m(λ) − cotα = m̆(λ) − cot ᾰ. (2.13)

This proves Theorem 2.4 in Case 1.
We now turn to the case of exceptional gaps. First suppose that [0, ̆0+) is exceptional (ᾰ = π/2) but 

that 0 ∈ suppw. The missing gap for suppw entails that our construction of s gives a map from [0, b) to 
[s(0), ̆b) = [0̆+, ̆b) but after this modification we still have (U ŭ)(x) = r(x)ŭ(s(x)). The condition ‖U ŭ‖ = ‖ŭ‖
gives (rr′)(0) = −ϕ̆′

0(0̆+)/ϕ̆0(0̆+) using that ŭ is a multiple of ϕ̆0 on [0, ̆0+]. Next (2.8) and (2.9) give 
r(0)σϕ̆0(0̆+) = −1 and we note that σ = 1/ sinα in this case. Finally, we evaluate ψ(·, λ) = U ψ̆(·, λ) =
rψ̆(s(·), λ) and its derivative at zero. Expressing ψ̆(·, λ) in terms of ϕ̆0 and φ̆− on the gap we obtain from 
ψ(0, λ) = r(0)ψ̆(s(0), λ) that

m(λ) − cotα = m̆(λ) + λ/φ̆′
−(0). (2.14)

Additionally, r(0)ψ′(0, λ) = (rr′)(0)ψ̆(s(0), λ) +ψ̆′(s(0), λ) gives ψ′(0, λ) sinα = 1 which shows that α = π/2
since m cannot be constant.

This same strategy works also in the remaining case where both [0, 0+) and [0, ̆0+) are exceptional gaps. 
We have already that α = ᾰ = π/2. From Eq. (2.8) we have ω0 = rω̆0 ◦ s. This and Eq. (2.9) give r(0) = 1
while taking a derivative shows r′(0) = 0. Using Eq. (2.12) for a function ŭ ∈ H̆ supported in [0, ̆b−) for 
which ŭ(0̆+) = 1 and using that ŭ is a multiple of ϕ̆0 in [0, ̆0+) gives

0 = (γ0 − 1)
(
ŭ′/ŭ

)
(0̆+) − r(0+)Δr′(0+) = (γ0 − 1)

(
ϕ̆′

0/ϕ̆0
)
(0̆+) − r(0+)Δr′(0+)

where Δr′(0+) denotes the jump of r′ at 0+. Moreover, ω0(0) = ω̆0(0) shows that

m(λ) + λ/φ′
−(0) = m̆(λ) + λ/φ̆′

−(0). � (2.15)

Proof of Theorem 2.3. We now use our additional hypothesis, that m = m̆ in Eqs. (2.13)–(2.15). In the 
absence of exceptional gaps the first of these gives cotα = cot ᾰ, i.e., α = ᾰ. If both suppw and supp w̆ have 
an exceptional gap the last of these gives φ′

−(0) = φ̆′
−(0) which in conjunction with Lemma 2.10 gives that 

γ0, the value of r2s′ on the gap, equals 1. This, in turn, forces that r′ is continuous at 0+. Lastly, Eq. (2.14)
shows that it is impossible for supp w̆ to have an exceptional gap if suppw does not and m equals m̆. �
3. The inverse resonance problem

We turn now to the inverse resonance problem for (1.1) on [0, ∞). This is a problem in inverse scattering 
theory, so we begin with a summary of that. Specifically, we recall the results of [3] in this area.
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The standard condition placed on the coefficients is that for some q0 ≥ 0, w−1 and q− q0 are integrable. 
Writing λ = k2 + q0 with Im k ≥ 0, k �= 0, there exists a solution, f(·, k), of (1.1) such that f(x, k) ∼ eikx

as x → ∞; it and its derivative are analytic in the upper half plane when x is fixed; see Lemma 3.2 below. 
We call f the Jost solution.

When Im k > 0, f(·, k) ∈ H1. If Re k �= 0 also, then f(·, ) and ψ(·, λ) are proportional. That is, there is a 
function F such that

f(x, k) = F (k)ψ(x, λ).

We call F the Jost function, and it will be the main object we investigate.
Recalling that Wronskians of solutions of (1.1) are independent of x, we find

F (k) =
[
f(·, k), λϕ(·, λ)

]
. (3.1)

This relationship allows one to extend F analytically to the positive imaginary axis and continuously to the 
positive and negative real half-lines.

The Jost function contains most of the spectral information. If F (k) = 0, then f and ϕ are linearly 
dependent, and λ = k2 + q0 is an eigenvalue. Also, F determines the absolutely continuous part of the 
spectral measure via

πρ′(λ) = kλ

|F (k)|2 , k > 0. (3.2)

The only part of the measure unknown so far is the set {ρ({λ}) : λ is an eigenvalue}. According to Corol-
lary A.7 and Parseval’s formula these numbers are given by the reciprocals of the norming constants, 
‖ϕ(·, λ)‖2 if λ �= 0 and ‖ψ0‖2 if λ = 0.

Thus, given the eigenvalues, norming constants, and |F (k)| on the positive half-line, the spectral measure 
is determined, and we can apply Theorem 2.4 to complete the uniqueness of the inverse scattering problem.

We are interested in a more specific problem. By making a more restrictive assumption on the coefficients 
(Assumption 3.1), the Jost function extends analytically to the entire complex plane. The zeros of F in the 
lower half plane are called resonances. It is also possible (Lemma 3.6) that F (0) = 0, but λ = q0 is not 
an eigenvalue; we include zero as a resonance in this case. The resonances and eigenvalues become our 
scattering data, and Theorem 3.8 tells to what extent these determine the spectral measure.

3.1. The Jost function determines the spectral measure

We make the following assumption which will be in force throughout this and the next section.

Assumption 3.1. There exist q0 ≥ 0 and x0 > 0 such that supp(q − q0) and supp(w − 1) are contained in 
[0, x0] and q, w ∈ L1(0, x0).

With this assumption, the Jost solution exists for all k ∈ C and is entire when x is fixed.

Lemma 3.2. For every k ∈ C there exists a solution f(·, k) of (1.1) with λ = k2 + q0 such that f(·, k) and 
f ′(·, k) are entire with growth order at most one, and f(x, k) = eikx and f ′(x, k) = ikeikx for x ≥ x0.
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Proof. Set g(x, k) = e−ikxf(x, k). The differential equation for g is g′′ + 2ikg′ = Qg where Q(·, k) =
q − q0w + k2(1 − w). In order for f to satisfy the given boundary conditions, g must satisfy g(x) = 1 and 
g′(x) = 0 for x ≥ x0. These facts lead us to the integral equation

g(x, k) = 1 +
x0∫
x

e2ik(t−x) − 1
2ik Q(t, k)g(t, k) dt, x ≤ x0, k ∈ C (3.3)

with the exponential factor reducing to t − x when k = 0. Using the standard iteration technique (see, e.g., 
Deift and Trubowitz [5]), we set g0 = 1 and

gn(x, k) =
x0∫
x

e2ik(t−x) − 1
2ik Q(t, k)gn−1(t, k) dt. (3.4)

Since the interval of integration is finite, we can estimate gn(·, k) for all k ∈ C (not just for Im k > 0) by

∣∣gn(x, k)
∣∣ ≤ 1

n!e
2|k|(x0−x)

[
|k|−1

x0∫
x

∣∣Q(·, k)
∣∣]n

, k �= 0, (3.5)

and

∣∣gn(x, k)
∣∣ ≤ 1

n!e
2|k|(x0−x)

[
(x0 − x)

x0∫
x

∣∣Q(·, k)
∣∣]n

. (3.6)

Therefore, the sum g =
∑

gn converges uniformly in x and on compact subsets of C when x is fixed. This 
sum is the solution of (3.3). Moreover, the derivative of g satisfies

g′(x, k) = −
x0∫
x

e2ik(t−x)Q(t, k)g(t, k) dt. (3.7)

For fixed x, gn(x, ·) is entire, and since 
∑

gn(x, ·) converges uniformly on compact subsets, it is entire 
too. By (3.7), g′(x, ·) is also entire. Because

|k|−1
x0∫
x

∣∣Q(·, k)
∣∣ ≤ ‖q − q0‖1 + |k|‖w − 1‖1

for |k ≥ |1, (3.5) implies that
∣∣g(x, k)

∣∣ ≤ Ce(2x0+‖w−1‖1)|k|,

for some constant C. Therefore, g(x, ·) and g′(x, ·) (by (3.7)) have growth order at most one. �
Since the Wronskian of two solutions of (1.1) is constant in x, we evaluate (3.1) at x = 0 to obtain

F (k) = λf(0, k) cosα + f ′(0, k) sinα. (3.8)

By Lemma 3.2, F is entire and has growth order at most one. Its derivative will be written Ḟ . The next 
lemma shows that the norming constants are now determined by F .
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Lemma 3.3. Let k0 be a zero of F in the upper half-plane such that λ0 = k2
0 + q0 �= 0. Then

1
ρ({λ0})

=
∥∥ϕ(·, λ0)

∥∥2 = − Ḟ (k0)F (−k0)
4ik2

0λ0
.

Proof. We begin by observing that

x∫
0

[(
ϕ′(·, λ)

)2 + q
(
ϕ(·, λ)

)2] =
(
ϕ′ϕ

)
(x, λ) + 1

λ
sinα cosα +

x∫
0

λw
(
ϕ(·, λ)

)2 (3.9)

where we have integrated by parts and used that ϕ solves (1.1).
To simplify the last term in (3.9), let ϕ̇(x, ·) be the derivative of ϕ with respect to the second variable. 

Then, differentiating (1.1) with respect to λ, we find −ϕ̇′′ + qϕ̇ = wϕ + λwϕ̇. Using this equation and that 
ϕ solves (1.1), we calculate

[
ϕ̇(·, λ), ϕ(·, λ)

]′ = w
(
ϕ(·, λ)

)2
.

Therefore, the last term in (3.9) becomes

λ
([
ϕ̇(·, λ), ϕ(·, λ)

]
(x) −

[
ϕ̇(·, λ), ϕ(·, λ)

]
(0)

)
.

Using the boundary conditions at x = 0, λ[ϕ̇(·, λ), ϕ(·, λ)](0) = sinα cosα/λ. Hence, (3.9) becomes

x∫
0

[(
ϕ′(·, λ)

)2 + q
(
ϕ(·, λ)

)2] =
(
ϕ′ϕ

)
(x, λ) + λ

[
ϕ̇(·, λ), ϕ(·, λ)

]
(x). (3.10)

Now, if λ0 = k2
0 + q0 �= 0 is an eigenvalue, then ϕ(·, λ0) is proportional to f(·, k0) and is therefore in H. 

So its norm is given by taking the limit of (3.10) as x → ∞. The first term vanishes in the limit since f and 
f ′ do, so our goal is to write the Wronskian of ϕ and ϕ̇ in terms of F .

To that end, we write, for k ∈ C
+ \ iR+ (and, thus, λ /∈ R),

f(x, k) = F (k)ψ(x, λ) = F (k)θ(x, λ) + G(k)ϕ(x, λ) (3.11)

where G(k) = m(λ)F (k). The last expression of (3.11) can be extended to all k �= ±i
√
q0 by observing that 

G can be extended there because

m(λ) = cos(α)ψ′(0, λ) − λ sin(α)ψ(0, λ) = cos(α)f
′(0, k)
F (k) − λ sin(α)f(0, k)

F (k) .

The first equation is an immediate consequence of the boundary conditions satisfied by θ and ϕ, while the 
second uses the first equality of (3.11).

Differentiating (3.11) with respect to k and using that f(·, k0) = G(k0)ϕ(·, λ0), F (k0) = 0, and 
[θ(·, λ), ϕ(·, λ)] = λ−1, we find

[
ḟ(·, k0), f(·, k0)

]
(x) = λ−1

0 Ḟ (k0)G(k0) + 2k0G
2(k0)

[
ϕ̇(·, λ0), ϕ(·, λ0)

]
(x).

Because f(·, k0) = eik0x for x ≥ x0, [ḟ(·, k0), f(·, k0)](x) = ie2ik0x for such x. Since Im k0 > 0, the left hand 
side above vanishes as x tends to infinity, and we get

∥∥ϕ(·, λ0)
∥∥2 = lim λ0

[
ϕ̇(·, λ0), ϕ(·, λ0)

]
(x) = − Ḟ (k0)

. (3.12)

x→∞ 2k0G(k0)
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To complete the proof, we need to show

G(k0) = 2ik0λ0

F (−k0)
.

So, observe that

−2ik0 =
[
f(·, k0), f(·,−k0)

]
= G(k0)

[
ϕ(·, λ0), f(·,−k0)

]
= −G(k0)

λ0
F (−k0)

because the Wronskian is linear in the first argument and λ0ϕ(·, λ0) is invariant under changing the sign 
of k0. �

If α = 0, then λ0 = 0 is an eigenvalue with eigenfunction ψ0 and F (k) = λf(0, k). In this case ϕ and λθ
are entire solutions of (1.1). The limit of λθ(·, λ) as λ tends to 0, which we denote by θ0, is a solution of (1.1)
for λ = k2

0 + q0 = 0. The initial conditions satisfied by ψ0, θ0, and ϕ(·, 0) show that ψ0 = ψ0(0)θ0 + ϕ(·, 0). 
Eq. (3.11) gives f(·, k0) = f(0, k0)θ0 +G(k0)ϕ(·, 0). Since ψ0 and f(·, k0) are linearly dependent this shows 
that f(·, k0) = G(k0)ψ0 and hence

1
ρ({0}) = ‖ψ0‖2 = −ψ0(0) = −f(0, k0)

G(k0)
= − Ḟ (k0)

2k0G(k0)
.

This is the analogue of (3.12) but the previous argument to determine G(k0) fails in this case. While we do 
not have an example showing that G(k0) is independent of F , we note that this is the case in the discrete 
analogue of our problem, see [1].

Theorem 3.4. Let q and w satisfy Assumption 3.1. Then the Jost function determines the spectral measure 
unless λ = 0 is an eigenvalue. Then, we also need ρ({0}).

Proof. The zeros of F in C+ give the eigenvalues. Lemma 3.3 shows that F determines the norming constants 
of the non-zero eigenvalues. Thus, F and, if needed, ρ({0}) determine the discrete part of the spectral 
measure. On the other hand, we already know that F determines the continuous part of it by (3.2). �
3.2. The inverse resonance problem

Let E(z) = (1 − z)ez be the Weierstrass elementary factor, and {kn : n ∈ N} the set of non-zero zeros 
of F listed according to multiplicity and by increasing modulus. Because F is an entire function of growth 
order at most one, its Hadamard factorization is

F (k) = k� exp(Ak + B)
∞∏

n=1
E(k/kn). (3.13)

Thus, F is determined by its zeros (the eigenvalues, resonances, and possibly zero) up to the constants A
and B.

Unlike the Schrödinger case (see [6]), the following example shows that, in general, the eigenvalues and 
resonances do not determine the Jost function and, hence, the spectral measure.

Example 3.5. Let

w(x) =
{

0 if x < x0,
1 if x > x0,
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and

q(x) =
{
a2 if x < x0,

1 if x > x0,

for some a �= 0.
One then computes

ϕ(x, λ) = cos(α)
a

sinh(ax) − sin(α)
λ

cosh(ax), if x ≤ x0.

Evaluating (3.1) at x = x0 we get

F (k) = 1
a
eikx0

(
λ cos(α)

(
a cosh(ax0) − ik sinh(ax0)

)
+ a sin(α)

(
ik cosh(ax0) − a sinh(ax0)

))
.

In particular, if α = π/2,

F (k) = eikx0 cosh(ax0)
(
ik − a tanh(ax0)

)
.

Thus any such problem has no eigenvalue and precisely one resonance. The sign of a is irrelevant (as it 
should be), and we assume now that it is positive.

We see that knowing the resonance gives us the value of a tanh(ax0) but not the value of cosh(ax0). 
Thus, by (3.2), we have the same resonance, but many spectral measures.

Let F̃ (k) = k−�F (k). Then, F̃ (0) = eB and ˙̃F (0)/F̃ (0) = A. We will need the following facts.

Lemma 3.6. In (3.13), ReA = 0 and � ∈ {0, 1, 2}. Moreover, � = 2 if and only if α = 0 = q0.

Proof. Since q and w are real-valued and λ = k2+q0, we have Q(x, −k) = Q(x, k) and, by (3.4), gn(x, −k) =
gn(x, k). Therefore, g(x, −k) = g(x, k) and F (−k) = F (k). This property means that F is real and its 
derivative Ḟ is purely imaginary on the imaginary axis. Differentiating F̃ , we find

˙̃F (k)
F̃ (k)

= Ḟ (k)
F (k) − �

k

which is purely imaginary on the imaginary axis. Because F̃ (0) �= 0, ˙̃F/F̃ is analytic (in particular, contin-
uous) near zero. Therefore, A is purely imaginary.

Differentiating [f(·, k), f(·, −k)] = −2ik with respect to k and evaluating at k = 0 gives

f(0, 0)ḟ ′(0, 0) − ḟ(0, 0)f ′(0, 0) = i �= 0. (3.14)

On the other hand, differentiating (3.8) with respect to k gives

Ḟ (k) =
(
λḟ(0, k) + 2kf(0, k)

)
cosα + ḟ ′(0, k) sinα. (3.15)

Now suppose F (0) = Ḟ (0) = 0, i.e., � ≥ 2. Then (3.8) and (3.15) imply(
f(0, 0) f ′(0, 0)
ḟ(0, 0) ḟ ′(0, 0)

)(
q0 cosα
sinα

)
=

(
0
0

)
.

By (3.14) the determinant is not zero. Hence q0 cosα = sinα = 0. Thus, � ≤ 1 unless α = 0 and q0 = 0.
If α = 0 = q0, we have F (k) = k2f(0, k) and � ≥ 2 by (3.8). When k = 0, we have −f ′′ + qf = 0 so that 

f is proportional to ψ0. But, ψ0(0) �= 0. Therefore, f(0, 0) �= 0 and � = 2. �
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Lemma 3.7. Let λ0 = k2
0 + q0 �= 0 be an eigenvalue. Then, the norming constant associated with λ0 is 

determined by the eigenvalues, resonances, and F̃ (0).

Proof. By Lemma 3.3, the norming constant associated with λ0 is given by the formula

Ḟ (k0)F (−k0)
4ik2

0λ0
.

We calculate the numerator using the factorization of F . If Π(k) is the canonical product in (3.13), then

˙̃F (k0) = Ḟ (k0)
k�0

= eAk0+BΠ̇(k0),

because Π(k0) = 0. Thus,

Ḟ (k0)F (−k0) = (−1)�k2�
0 e2BΠ̇(k0)Π(−k0).

Since e2B = (F̃ (0))2, and Π(k), k0, and � are determined by the eigenvalues and resonances, the proof is 
complete. �
Theorem 3.8. The eigenvalues, resonances, and F̃ (0) determine the spectral measure unless λ = 0 is an 
eigenvalue. Then, ρ({0}) is also needed.

Proof. By Lemma 3.7, the given data determine the norming constants and, consequently, the discrete 
part of the spectral measure. On the other hand, Lemma 3.6 implies that |F (k)|2 does not depend on A

from (3.13) when k ∈ R. Therefore, the given data also determine the continuous part of the spectral 
measure by (3.2). �
Appendix A. A compendium of known results

Here we collect those results from [3] which are needed in the body of the paper about left-definite 
problems set on the half-line [0, ∞). We emphasize, though, that all results have analogs for the case where 
the left endpoint is a number different from 0.

Let H1 be the set of locally absolutely continuous functions u defined in [0, b) such that u′ ∈ L2(0, b) and 
q|u|2 ∈ L1(0, b). H1 is a Hilbert space with scalar product

〈u, v〉 =
b∫

0

(
u′v′ + quv

)
.

A major feature of H1 is that point evaluations are continuous as the following lemma implies.

Lemma A.1. For any a ∈ [0, b) there exists a constant Ca such that

∣∣u(x)
∣∣ ≤ Ca‖u‖ (A.1)

for any x ∈ [0, a] and any u ∈ H1.

Denote the set of integrable functions with compact support in (0, b) by L0 and the set of solutions of 
−u′′ + qu = 0 which lie in H1 by D0.
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Lemma A.2. There is a bounded linear operator G0 : L0 → H1 so that 〈u, G0v〉 =
∫ b

0 uv for all u ∈ H1 and 
all v ∈ L0.

Lemma A.3.

(1) The set D0 is the orthogonal complement in H1 of L0 ∩H1. It has dimension 1 or 2.
(2) dimD0 = 2 if and only if b < ∞ and q ∈ L1[0, b).
(3) If dimD0 = 1 and D0 � v �≡ 0, then v(0)v′(0) < 0 and u(x)v′(x) → 0 as x → b for any u ∈ H1.
(4) Finite functions are dense in H1 if and only if dimD0 = 1.

Lemma A.4. There are real-valued functions ψ0 and ϕ0 which solve −u′′ + qu = 0 such that, if u ∈ H1, then

(1) ψ0 ∈ H1, ψ′
0(0) = 1, and ψ′

0(x)u(x) → 0 as x → b; and
(2) ϕ0(0) = −1 and ϕ′

0(0) = 0.

Lemma A.5. Unless α = π/2 and 0 is in a gap of suppw the functions ψ0 and ψ(·, λ) are in H.

Lemma A.6. If α �= 0, u ∈ H and û = Fu, then

u(x, λ) =
b∫

0

ûϕ(x, ·)dρ.

If α = 0 the same is true, except that we must replace ϕ(x, 0) by ψ0.

Corollary A.7. If λ �= 0 is an eigenvalue of T , the Fourier transform of the eigenfunction ϕ(·, λ) is a multiple 
of the characteristic function of the set {λ} and (Fϕ(·, λ))(λ) = 1/ρ({λ}). The same is true for λ = 0, if 
ϕ(·, 0) is replaced by ψ0.

Lemma A.8. If u is in the domain of T , then Fu ∈ L1(ρ).

Lemma A.9. If λ /∈ R the Fourier transform of ψ(·, λ) is 1/(t −λ). Furthermore, the Fourier transform of ψ0
equals sinα/t for α �= 0 and ρ({0})−1χ{0} for α = 0.
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