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On Inverse Problems for Finite Trees

B.M. Brown and R. Weikard

Abstract. In this paper two classical theorems by Levinson and Marchenko
for the inverse problem of the Schrödinger equation on a compact interval
are extended to finite trees. Specifically, (1) the Dirichlet eigenvalues and
the Neumann data of the eigenfunctions determine the potential uniquely (a
Levinson-type result) and (2) the Dirichlet eigenvalues and a set of general-
ized norming constants determine the potential uniquely (a Marchenko-type
result).
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1. Introduction

Some 60 years ago Borg, Levinson, and Marchenko established the now famous
inverse spectral theory for the Schrödinger equation on a compact interval. Denote
the solution of the initial value problem −y′′ + qy = λy, y(0) = 0 and y′(0) = 1
on the interval [0, 1] by s(λ, ·). Then the real integrable potential q is uniquely
determined by any of the following sets of data:

• Borg [5] (1946): The Dirichlet-Dirichlet eigenvalues and the Dirichlet-Neu-
mann eigenvalues, i.e., the zeros of s(·, 1) and of s′(·, 1).

• Levinson [17] (1949): The Dirichlet-Dirichlet eigenvalues (denoted by λn) and
the Neumann data of the associated eigenfunctions, i.e., the numbers s′(λn, 1)
(recall that s′(λn, 0) = 1).

• Marchenko [18] (1950): The Dirichlet-Dirichlet eigenvalues and the norming
constants

∫ 1

0
s(λn, t)2dt of the associated eigenfunctions.

Since the 1980s spectral problems on graphs and trees have also been in-
vestigated (we are interested here solely in so-called metric trees where edges are
homeomorphic to real intervals and may support potentials). We refer the reader
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to the excellent surveys [13] and [14] by Kuchment for an overview of these devel-
opments and their applications. Investigation of inverse problems on such graphs
and trees are not quite so numerous. Without a claim to completeness we list
here the works of Gerasimenko [11]; Curtis and Morrow [9], [10]; Carlson [7]; Pivo-
varchik [21], [20]; Kurasov and Stenberg [15]; Belishev [2]; Brown and Weikard [6];
Harmer [12]; Kurasov and Nowaczyk [16]; Yurko [22]; Belishev and Vakulenko [3];
and Avdonin and Kurasov [1]. We emphasize that the results in [2], [22], and [1]
are particularly close to ours.

In this paper we address generalizations of the above mentioned results of
Levinson and Marchenko to the case of finite trees with r edges and n0 boundary
vertices. The generalization of Borg’s result has been established recently by Yurko
[22]: spectra for n0 (specific) boundary conditions are sufficient to determine the
potential on the tree.

In this paper we focus for simplicity on real and bounded potentials on trees
whose edge lengths are one. Our methods generalize to the case of integrable
complex potentials on trees with varying edge lengths. We plan to address such
generalizations in a subsequent paper.

Under the given circumstances the Dirichlet eigenvalues, which we denote by
λ1, λ2, . . . , are real and discrete since they are zeros of an entire function which
can not vanish away from the real axis. We use the letter Σ to signify the set of
all Dirichlet eigenvalues. Geometric multiplicities of Dirichlet eigenvalues may be
larger than one. The multiplicity of the eigenvalue E is denoted µ(E).

The generalization of Levinson’s result reads as follows.

Theorem 1.1. Let q be a real-valued bounded potential supported on a finite metric
tree whose edge lengths are one. Then the Dirichlet eigenvalues, their multiplicities,
and the Neumann data of an orthonormal set of Dirichlet eigenfunctions uniquely
determine the potential almost everywhere on the tree.

We remark here that eigenfunctions are not automatically orthonormal since
eigenspaces may have dimensions larger than one. Theorem 1.1 will be proved in
Section 6.

A particularly important role is played in this paper by the Weyl solu-
tions. They are uniquely defined away from the Dirichlet eigenvalues by requir-
ing that they satisfy homogeneous Dirichlet boundary conditions at all but one
boundary vertex where they assume the value 1. At the Dirichlet eigenvalues the
Weyl solutions cease to exist but multiplying them with the “minimal function”
χ(λ) =

∏∞
E∈Σ(1 − λ/E) (as opposed to the characteristic function which takes

the multiplicities of the eigenvalues into account) gives globally defined functions
ω(k, λ, ·) where k ∈ {1, . . . , n0} signifies the boundary vertex at which the function
value is prescribed to be χ(λ). If E is a Dirichlet eigenvalue of multiplicity µ(E)
then there will be µ(E) of the functions ω(k, λ, ·) which are linearly independent.
Let K(E) ⊂ {1, . . . , n0} be a maximal set such that {ω(k, λ, ·) : k ∈ K(E)} is lin-
early independent. We also introduce the quantities Nj,k(E) which are the inner
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products of the functions ω(j, E, ·) and ω(k,E, ·). For j = k these are norming
constants of eigenfunctions.

We can now formulate the generalization of Marchenko’s result.

Theorem 1.2. Let q be a real-valued bounded potential supported on a finite metric
tree whose edge lengths are one. Then the Dirichlet eigenvalues, their multiplicities,
and the quantities Nj,k(E), j ∈ {1, . . . , n0}, k ∈ K(E), E ∈ Σ uniquely determine
the potential almost everywhere on the tree.

This theorem will be proved in Section 7.
The paper is organized as follows. Section 2 gives formal definitions of trees,

interface conditions, and operators under consideration. It also provides basic re-
sults on initial value and Dirichlet boundary value problems. Weyl solutions and
Green’s function play (as is to be expected) an important role. They are studied in
Section 3 and Section 4, respectively. The Dirichlet-to-Neumann map is introduced
in Section 5. Sections 6 and 7 are devoted to the proofs of Theorems 1.1 and 1.2,
respectively.

2. Preliminaries

2.1. Trees

A finite tree is given by a Hausdorff space T and a set of r homeomorphisms
εj : [0, 1] → T , j = 1, . . . , r, such that the following conditions are met:

1. T =
⋃r

j=1{εj(t) : t ∈ [0, 1]}.
2. If εj(t) = εk(s) and j �= k then t, s ∈ {0, 1}.
3. T is simply connected.

In this paper we will be concerned only with finite trees and we will always mean
a finite tree when we speak of a tree.

The set V = {ε1(0), ε1(1), . . . , εr(0), εr(1)} has precisely r+1 elements called
vertices of the tree. The homeomorphisms εj are called edges of the tree. We say
a vertex v belongs to an edge εj or that edge εj is attached to v if v = εj(0),
the initial vertex of εj, or v = εj(1), the terminal vertex of εj. A vertex is called
a boundary vertex if it belongs to only one edge. Such an edge will be called a
boundary edge. A vertex which belongs to several edges is called an internal vertex.
An edge both of whose endpoints are internal vertices is called an internal edge.

The fact that edges are homeomorphic to the metric space [0, 1] turns the
space T in a natural way into a metric space.

Since the interval [0, 1] has an orientation associated with it, so does each
of the edges. However, we are not interested in the orientations of the edges, but
only in the metric structure provided by the homeomorphisms εj . Thus, given
a finite tree we obtain another tree by replacing the homeomorphism t �→ εj(t)
by t �→ εj(1 − t) for some (or none or all) of the indices j. The new tree is, of
course, still associated with the Hausdorff space T and the trees, so related, are
called equivalent. This is an equivalence relation and we will henceforth choose
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the labels and orientations for the edges as convenience suggests. Often times we
will call the Hausdorff space T a tree, assuming a tacit understanding of its metric
structure.

We take here (for the most part) the point of view that all boundary vertices
play identical roles. Assuming there are n0 boundary vertices we will then assign
labels 1, . . . , n0 to the boundary vertices and the corresponding boundary edges.
We assume also that the boundary edges are oriented so that vj = εj(0) for
j = 1, . . . , n0.

However, in some intermediate results one boundary vertex of the tree is
singled out. In this case it is convenient to assign labels and orientations in the
following way. The special boundary vertex is called the root and is designated
as v0. All other boundary vertices are called branch tips. The edge attached to
the root, denoted by ε0, will be called the trunk. All edges are oriented so that
their initial vertex is closer to the root than their terminal vertex. In particular,
ε0(0) = v0, the root of the tree. The edges other than the trunk attached to the
terminal vertex of the trunk v1 = ε0(1) are called limbs. Each one of them is the
trunk of a subtree with root v1. A tree labeled and oriented this way will be called
a rooted tree.

We emphasize that all results obtained are independent of the particular way
in which edges and vertices are labeled and in which edges are oriented; these
designations only serve to communicate proofs more easily.

2.2. The interface conditions

A function y defined on T may be represented as �y = (y1, . . . , yr)� where yj(t) =
y(εj(t)). We say that y is integrable on T (or square integrable on T or y ∈ Lp(T ))
if the yj are integrable on [0, 1] (or square integrable on [0, 1] or yj ∈ Lp([0, 1]))
for j = 1, . . . , r.

We define C to be the set of all functions y defined on T which satisfy the
following conditions:

1. For each j the functions yj and y′j are absolutely continuous on [0, 1].
2. y is continuous on T .
3. For each internal vertex v the Kirchhoff condition

∑

εj(1)=v

y′j(1) −
∑

εj(0)=v

y′j(0) = 0

holds.

Conditions 2 and 3 are called interface conditions. Note that C is independent of
the orientation or the labeling of the edges.

In order to deal conveniently with the interface conditions we introduce1 the
operator

I = E0E0 + E1E1 +D0D0 +D1D1,

1This notation is different from the one we used in [6]



On Inverse Problems for Finite Trees 35

where E0, E1, D0 and D1 are certain (2r − n0) × r matrices whose entries are 0
or ±1 and E0, etc. are evaluation operators defined by E0�y = �y(0), E1�y = �y(1),
D0�y = �y ′(0), and D1�y = �y ′(1). Thus y satisfies the interface conditions if and
only if I�y = 0.

2.3. The differential equations

If q is an integrable function on T define Q = diag(q1, . . . , qr). We will consider the
differential expression �y �→ −�y ′′+Q�y and the differential equation −�y ′′+Q�y = λ�y.
Define

D = {y ∈ C : −y′′j + qjyj ∈ L2([0, 1])}.
We now define the operator L : D → L2(T ) by (Ly)(εj(t)) = −y′′j (t) + qj(t)yj(t).
Again, this definition is independent of the orientation or the labeling of the edges.

If y ∈ D satisfies Ly = λy we will call it a solution of Ly = λy signifying that
both the differential equations and the interface conditions are satisfied. Functions
solving the differential equations form a 2r-dimensional vector space. Since there
are 2r−n0 interface conditions it is reasonable to expect that the space of solutions
of Ly = λy is n0-dimensional. This fact will be proved below.

Denote by cj(λ, ·) and sj(λ, ·) the basis of solutions of −y′′j + qjyj = λyj

defined by initial conditions cj(λ, 0) = s′j(λ, 0) = 1 and c′j(λ, 0) = sj(λ, 0) = 0. We
collect these functions in the r×r-matrices C(λ, t) = diag(c1(λ, t), . . . , cr(λ, t)) and
S(λ, t) = diag(s1(λ, t), . . . , sr(λ, t)). A function y satisfying the differential equa-
tions may now be expressed as �y = (C(λ, ·), S(λ, ·))ξ for an appropriate ξ ∈ C2r.

In particular, the function �y = (C(λ, ·), S(λ, ·))ξ satisfies the interface con-
ditions (and hence is a solution of Ly = λy) precisely if ξ is in the kernel of the
(2r − n0) × 2r-matrix

J(λ) = I(C(λ, ·), S(λ, ·)).
2.4. Initial value problems

Initial value problems do, in general, not have unique solutions on trees. This causes
the main differences in the treatment of inverse problems on trees when compared
to intervals. However, it is still useful to investigate the set of all solutions for the
initial value problem.

One of the boundary vertices is being singled out as the “initial point”. Thus,
it is now convenient to treat the tree as a rooted tree.

Lemma 2.1. The initial value problem Ly = λy, y0(0) = a, and y′0(0) = b has a
solution for any choice of a, b ∈ C.

Proof. This is obvious when the tree has only one internal vertex and follows by
induction over the number of internal vertices for general trees. In fact, if there are
k limbs attached to v1 (i.e., k + 1 edges), then there are k subtrees for which we
know the existence of solutions of the initial value problem by induction hypothesis.
For subtree j, where 1 ≤ j ≤ k, we use initial conditions aj = ac0(λ, 1) + bs0(λ, 1)
and some value for bj . These provide then for a solution on the full tree provided
that b1 + · · · + bk = ac′0(λ, 1) + bs′0(λ, 1). �
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Corollary 2.2. Suppose T has n0 boundary vertices. The vector space of solutions
of Ly = λy satisfying homogeneous initial conditions y0(0) = 0 and y′0(0) = 0 has
dimension n0 − 2.

Proof. Again, this holds obviously for a tree with one internal vertex. Suppose it
is true for trees with less than � internal vertices and consider a tree with exactly
� internal vertices. Suppose the tree has k limbs. On each of the k subtrees which
start at the end of the trunk there is a solution of the initial value problem for
function value 0 and derivative 1. These give rise to k − 1 linearly independent
solutions of the homogeneous initial value problem on the full tree. Now, given
any solution of the homogeneous initial value problem, one can subtract a suitable
linear combination of the k−1 basis functions just constructed to obtain a solution
on the full tree which is identically zero on the trunk and on the k limbs. It is thus
a linear combination of all possible basis functions for each of the homogeneous
initial value problems on the subtrees. If subtree j has nj + 1 boundary vertices
then we have, by the induction hypothesis, nj − 1 such basis functions. Since
n0 = 1 +

∑k
j=1 nj we get for the total number of basis functions on the full tree

k − 1 +
∑k

j=1(nj − 1) = n0 − 2. �
These observations give us now immediately the following theorem.

Theorem 2.3. Suppose T has r edges and n0 boundary vertices. Then the vector
space of solutions of Ly = λy has dimension n0. Moreover, the matrix J(λ) has
full rank 2r − n0 for every complex λ.

Proof. There are linearly independent solutions which are equal to c0(λ, ·) and
s0(λ, ·), respectively, when restricted to the trunk of the tree. Let y be any solu-
tion and subtract a suitable combination of the functions just mentioned so that
the resulting function satisfies homogeneous initial conditions. That function may
expressed as a linear combination of the n0 − 2 basis functions constructed in the
previous corollary.

The last statement follows now from the fundamental theorem of linear alge-
bra. �
2.5. The Dirichlet boundary value problem

Given a vector f = (f1, . . . , fn0)� in Cn0 we are looking for a solution of Ly = λy
satisfying the nonhomogeneous Dirichlet boundary conditions y(vj) = fj when
v1, . . . , vn0 denote the boundary vertices. These conditions are expressed as A�y = f
where A = A0E0 and A0 = (In0×n0 , 0n0×(r−n0)) assuming that the boundary edges
are oriented such that vj = εj(0) for j = 1, . . . , n0. Here In×n and 0n×m denote the
identity matrix and the zero matrix of the given dimensions, respectively. We might
subsequently drop the subscripts if the dimensions are clear from the context. We
also note that the n0 × 2r-matrix A(C(λ, ·), S(λ, ·)) = (In0×n0 , 0n0×(2r−n0)).

Finally, we introduce the 2r × 2r matrix

M(λ) =
(

A
I

)

(C(λ, ·), S(λ, ·)) =
(

I 0
R(λ) P (λ)

)
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where R represents the first n0 columns and P the last 2r − n0 columns of the
matrix J introduced in Section 2.3. Thus solutions of the equationM(λ)ξ = (f, 0)�

provide solutions of Ly = λy satisfying the given boundary conditions.
The entries of M are entire functions. Therefore the zeros of the determinant

of M are isolated unless it is identically equal to zero.
This latter possibility can be ruled out most easily under our assumption of

a real potential since the zeros of the determinant are eigenvalues of the Dirichlet
operator LD, the restriction of L to the set of all y ∈ D which satisfy homogeneous
Dirichlet conditions at the boundary vertices. An integration by parts, using the
interface and boundary conditions, shows, that the operator LD is self-adjoint so
that its eigenvalues are real.

Thus, the equation Ly = λy has a unique solution satisfying given (possibly
nonhomogeneous) Dirichlet boundary conditions unless λ is one of the countably
many real eigenvalues of LD.

The geometric multiplicity of a Dirichlet eigenvalue is strictly less than n0

for there is at least one solution of Ly = λy which does not satisfy homogeneous
Dirichlet conditions. Since the problem is self-adjoint the geometric multiplicity of
a Dirichlet eigenvalue equals its algebraic multiplicity. The algebraic multiplicity
in turn equals the order of the eigenvalue as a zero of detM . This may be seen
by a generalization of Naimark’s argument for a differential equation with scalar
coefficients to one with matrix coefficients.

3. Weyl solutions

A solution ψ of Ly = λy is called a Weyl solution if ψ assumes the value one at
precisely one of the boundary vertices and the value zero at each of the others.
With one of the boundary vertices singled out it is convenient, in this section, to
treat the tree as a rooted tree (see Section 2.1). If x and x′ are two points in T
we denote their distance by d(x, x′) (recall that T is a metric space). The number
h = max{d(x, v0) : x ∈ T } is called the height of the tree with respect to the root
v0. (The height of a tree depends on which boundary vertex is designated as root).

Lemma 3.1. Let ψ(λ, ·) be the Weyl solution for a tree T which assumes the value
one at the root and the value zero at each of the branch tips. Then

ψ′
0(λ, 0) = −√−λ+ o(1)

as λ tends to infinity on the negative real axis. Furthermore, if s is the label of a
boundary edge leading to branch tip εs(1), then

ψ′
s(λ, 1) = −2

√−λ exp(−d(v0, εs(1))
√−λ)(1 + o(1))

again as λ tends to infinity on the negative real axis.

Proof. The proof is by induction on the height of the tree. If the tree has height
one, then ψ′

0(λ, 0) = m(λ) is the Titchmarsh-Weyl m-function for the problem
(recall that ψ0(λ, 0) = 1). It is well known that m(λ) = iz + o(1) as z = i

√−λ
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tends to infinity on the positive imaginary axis. Also for the branch tip ε0(1) we
have ψ′

0(λ, 1) = −1/s0(λ, 1) = 2izeiz +O(eiz + ze3iz).
Next assume the validity of our claim for all trees of height at most n and

let T be a tree of height n+ 1. Let v1 = ε0(1). Then v1 is the root of several, say
k, subtrees, whose height is at most n. These will be labeled T1, . . . , Tk and their
trunks, viewed as limbs of the full tree, are correspondingly labeled ε1, . . . , εk. The
Weyl solution for the tree Tj is denoted by ψ(j, λ, ·). Note that the Weyl solution
ψ(λ, ·) for the full tree, restricted to Tj, is a multiple of ψ(j, λ, ·), in fact

ψσ(λ, ·) = ψ(λ, v1)ψs(j, λ, ·) (3.1)

when s denotes the label of an edge of Tj and σ denotes the label of the same edge
when viewed as an edge of T . In particular,

ψj(λ, ·) = ψ(λ, v1)ψ0(j, λ, ·).
Now we will determine ψ0(λ, ·), the Weyl solution for T on its trunk, by

solving a Riccati equation. To this end we define

µ(λ, ·) =
ψ′

0(λ, ·)
ψ0(λ, ·) .

Then µ(λ, ·) satisfies the differential equation

µ′(λ, x) + µ(λ, x)2 + λ− q0(x) = 0

and the initial condition

µ(λ, 1) =

∑k
j=1 ψ

′
j(λ, 0)

ψ(λ, v1)
=

k∑

j=1

ψ′
0(j, λ, 0) = ikz + o(1).

This problem will be solved by emulating Bennewitz’s approach in [4]. The
first step is to find the solution µ0(λ, ·) for vanishing q0 but with the correct initial
condition. Thus

µ0(λ, x) = iz +
2iz(µ(λ, 1) − iz)

(iz + µ(λ, 1)) exp(2iz(x− 1)) + iz − µ(λ, 1)
.

Now recall that q0 ∈ L1([0, 1]) and define

µ1(λ, x) = −
∫ 1

x

e2
∫

t
x

µ0(λ,u)duq0(t)dt

and

µn(λ, x) =
∫ 1

x

e2
∫ t

x

∑ n−1
j=0 µj(λ,u)duµn−1(λ, t)2dt, n = 2, 3, . . . .

Then

µ′
1(λ, x) = q0(x) − 2µ0(λ, x)µ1(λ, x),

µ′
n(λ, x) = −µn−1(λ, x)2 − 2µn(λ, x)

n−1∑

j=0

µj(λ, x), n = 2, 3, . . . ,

and µn(λ, 1) = 0 for all n ∈ N.
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Thus, assuming uniform convergence of
∑∞

n=0 µn and
∑∞

n=0 µ
′
n, we have (af-

ter some algebra) that the series
∑∞

n=0 µn(λ, ·) satisfies the same initial value
problem (the Riccati equation and the initial condition at x = 1) as µ(λ, ·) and
hence is equal to it, i.e.,

µ(λ, x) =
∞∑

n=0

µn(λ, x). (3.2)

In order to investigate convergence we first realize that

µ0(λ, x)
iz

= 1 + o(1/z)

for k = 1 and

µ0(λ, x)
iz

= 1 +
2e2iz(1−x)(k − 1)

k + 1 − (k − 1)e2iz(1−x)
(1 + o(1/z))

for k > 1. Since iz is negative we may estimate in either case that

Re(µ0(λ, x)) ≤ 3iz/4 = −3 Im(z)/4

for sufficiently large z. Thus

|µ1(λ, x)| ≤
∫ 1

x

e−3 Im(z)(t−x)/2|q0(t)|dt.

Given ε > 0, there are complex numbers α1, . . . , αN and intervals I1, . . . , IN such
that q̃0 =

∑N
j=1 αjχIj is a step function on [0, 1] with ‖q0 − q̃0‖ ≤ ε. Then

|µ1(λ, x)| ≤ ε+
N∑

j=1

|αj |
∫ 1

x

e−3 Im(z)(t−x)/2χIj (t)dt ≤ ε+
N∑

j=1

2|αj |
3 Im(z)

.

This estimate holds regardless of x and proves that |µ1(λ, x)| tends to zero uni-
formly in x as Im(z) tends to infinity.

Now let
a(λ, x) = sup{|µ1(λ, t)| : x ≤ t ≤ 1}

and assume that z is large enough so that Im(z) ≥ 1 and a(λ, x)/ Im z ≤ 1/2.
One then shows by induction that

|µn(λ, x)| ≤
(
a(λ, x)
Im(z)

)2n−1

Im(z)

using that a(λ, ·) is non-increasing and that

n−1∑

j=1

|µj(λ, x)| ≤ Im(z)
n−1∑

j=1

(
a(λ, x)
Im(z)

)2j−1

≤ Im(z)
∞∑

j=1

(
a(λ, x)
Im(z)

)j

≤ 2a(λ, 0).

These estimates show also that
∑∞

n=0 µn(λ, ·) may be differentiated term by term,
thus proving the validity of equation (3.2).
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The Weyl solution on the trunk of T is now given as

ψ0(λ, x) = exp
(∫ x

0

µ(λ, t)dt
)

.

In particular,
ψ′

0(λ, 0) = µ(λ, 0) = iz + o(1) (3.3)
and

ψ(λ, v1) = ψ0(λ, 1) = exp
(∫ 1

0

µ(λ, t)dt
)

= eiz(1 + o(1)).

Finally, consider a boundary edge s on tree Tj, different from the trunk of Tj , and
denote the distance of the corresponding boundary vertex from the root of Tj by
N . Then, according to our induction hypothesis,

ψ′
s(j, λ, 1) = 2izeizN (1 + o(1)).

This edge is also a boundary edge of T with label σ, say. Using (3.1) we find

ψ′
σ(λ, 1) = ψ(λ, v1)ψ′

s(j, λ, 1) = 2izeiz(N+1)(1 + o(1)).

This and equation (3.3) complete our proof. �

4. Green’s function

In Section 2.5 we introduced the matrix M(λ) to describe both boundary and
interface conditions. Now we introduce also the operators I0 = E0E0 +D0D0 and
A0 = A0E0 as well as the matrix

M0(λ) =
(

A0

I0

)

(C(λ, ·), S(λ, ·)).

The solution of the nonhomogeneous system of equations (L−λ)u = h where
h ∈ L2(T ) and where u is subject to the homogeneous boundary conditions A�u = 0
as well as the interface conditions I�u = 0 is given by (see [6])

�u(t) =
∫ 1

0

Γ(λ, t, t′)�h(t′)dt′

where

Γ(λ, t, t′) = (C(λ, t), S(λ, t)) (M(λ)−1M0(λ) −H(t′ − t))
(
S(λ, t′)
−C(λ, t′)

)

with H being the Heaviside function, i.e., H(t) equals zero or one depending on
whether t is negative or positive.

We remark that Γ(λ, ·, ·) represents a scalar function G(λ, ·, ·) on T × T via
G(λ, x, y) = Γj,k(t, t′) when x = εj(t) and y = εk(t′).

Lemma 4.1. The function Γ has the following properties:
1. For any t, t′ ∈ [0, 1] the function Γ(·, t, t′) is analytic away from the eigenval-

ues associated with the Dirichlet problem for T .
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2. If λ is not an eigenvalue associated with the Dirichlet problem for T then the
function Γ(λ, ·, ·) has the following properties:
(a) Γ(λ, ·, ·) is continuous on [0, 1]2.
(b) Γ(0,0,1)(λ, ·, ·) is continuous in either of the triangles {(t, t′) ∈ [0, 1]2 :

t < t′} and {(t, t′) ∈ [0, 1]2 : t > t′}. On the line t = t′ there is a jump
discontinuity:

lim
τ↓0

(Γ(0,0,1)(λ, t, t+ τ) − Γ(0,0,1)(λ, t, t− τ)) = −I.

(c) For fixed t′ ∈ [0, 1] the function Γ(λ, ·, t′) satisfies the equation

−Γ(λ, ·, t′)′′ + (Q− λ)Γ(λ, ·, t′) = 0

on (0, t′) as well as (t′, 1).
(d) For fixed t ∈ [0, 1] the function Γ(λ, x, ·) satisfies the equation

−Γ(λ, t, ·)′′ + Γ(λ, t, ·)(Q− λ) = 0

on (0, t) as well as (t, 1).
(e) If k ≤ n0 then Γk,j(λ, 0, t′) = 0.
(f) If j ≤ n0 then Γk,j(λ, t, 0) = 0.

Proof. Statements (a) through (d) follow easily from the properties of the Heavi-
side function and the functions cj and sj .

To see the validity of statement (e) note first that M and M0 are both of the
form (

In0×n0 0n0×(2r−n0)

∗ ∗∗
)

where ∗ indicates an appropriate (2r − n0) × n0-matrix and ∗∗ indicates an ap-
propriate (2r − n0) × (2r − n0)-matrix. This implies that M−1M0 is also of that
same form. Hence, when t′ > 0, the first n0 rows of M−1M0 −H(t′) are all zero
proving (e) in that case. By continuity this is also true when t′ = 0.

To prove (f) note that, if t > 0, we have H(−t) = 0. For this case we need
to know more about the structure of M0. Since the bottom 2r − n0 rows contain
only information about interior vertices we know that the entries in the first n0

columns and the last 2r − n0 rows of (A0, I0)� are zero. Hence M0 has the form
(

In0×n0 0n0×(r−n0) 0n0×n0 0n0×(r−n0)

0(2r−n0)×n0 ∗ 0(2r−n0)×n0 ∗∗
)

where ∗ and ∗∗ indicate appropriate (2r − n0) × (r − n0)-matrices. Thus

M0

(
S(λ, t′)
−C(λ, t′)

)

=
(

Se(λ, t′) 0n0×(r−n0)

0(2r−n0)×n0 ∗ ∗ ∗
)

where ∗∗∗ indicates a (2r−n0)×(r−n0)-matrix and where Se(λ, t′) = diag(s1(λ, t′),
. . . , sn0(λ, t′)). The first n0 columns, corresponding to the requirement j ≤ n0 are
zero when t′ = 0. �
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We now express the Weyl solutions in terms of Green’s function. Let h be a
function in D, the domain of L satisfying the boundary conditions Ah = e�. Next
let y be the unique solution of the following inhomogeneous problem

(L − λ)y = (λ− L)h, y ∈ D, Ay = 0.

Then ψ(�, λ, t) = (y + h)(t). We proceed to compute y. By partial integration

�y(t) =
∫ 1

0

Γ(λ, t, t′)(λ−Q(t′))�h(t′)dt′ +
∫ 1

0

Γ(λ, t, t′)�h′′(t′)dt′

= −
∫ t

0

Γ(0,0,2)(λ, t, t′)�h(t′)dt′ −
∫ 1

t

Γ(0,0,2)(λ, t, t′)�h(t′)dt′

+
∫ 1

0

Γ(λ, t, t′)�h′′(t′)dt′

= −Γ(0,0,1)(λ, t, ·)�h|t0 − Γ(0,0,1)(λ, t, ·)�h|1t + Γ(λ, t, ·)�h′|t0 + Γ(λ, t, ·)�h′|1t .
In particular, for h�(t′) = (1 − t′)2 and hj(t′) = 0 for j �= � we get

�y(t) = lim
τ→0

[Γ(0,0,1)(λ, t, t+ τ)�h(t+ τ) − Γ(0,0,1)(λ, t, t− τ)�h(t− τ)]

+ Γ(0,0,1)(λ, t, 0)�h(0) − Γ(λ, t, 0)�h′(0).

Since �h(0) = e�, since column � of Γ(λ, t, 0) is a zero column, and since the term
in brackets tends to −�h(t) we obtain

ψj(k, λ, t) = Γ(0,0,1)
j,k (λ, t, 0). (4.1)

4.1. Eigenfunction expansion of Green’s function

Let LD be the Dirichlet operator introduced in Section 2.5. The eigenvalues λk

of LD may have geometric multiplicity larger than one. We will label them in
such a way that they are repeated according to their multiplicity and such that
λ1 ≤ λ2 ≤ · · · . The corresponding orthonormalized eigenfunctions are denoted
by ϕ1, ϕ2 etc. Then (see Coddington and Levinson [8], pp. 298/299 for a similar
situation)

G(λ, x, y) =
∞∑

n=1

ϕn(x)ϕn(y)
λn − λ

or, equivalently,

Γj,�(λ, t, s) =
∞∑

n=1

ϕn;j(t)ϕn;�(s)
λn − λ

.

Integration by parts shows that

λn = λn

∫

T

|ϕn|2 =
r∑

j=1

∫ 1

0

(−ϕ′′
n;j + qjϕn;j)ϕn;j =

r∑

j=1

∫ 1

0

(|ϕ′
n;j |2 + qj |ϕn;j |2)
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since
∑r

j=1(ϕ
′
n;jϕn;j)|10 = 0 due to the boundary and interface conditions satisfied

by ϕn. Because q is real and bounded by a constant C this gives
r∑

j=1

∫ 1

0

|ϕ′
n;j |2 ≤ C + λn.

Also
r∑

j=1

∫ 1

0

|ϕ′′
n;j |2 ≤

r∑

j=1

∫ 1

0

|(qj − λn)ϕn;j |2 ≤ (C + |λn|)2

again using the boundedness of q. The elementary estimate

|f(x)|2 ≤ 4
∫ 1

0

(|f |2 + |f ′|2),

which holds for an absolutely continuous function defined on [0, 1], shows then the
existence of a constant C′ such that

|ϕ′
n;j(t)| ≤ C′|λn|

for all sufficiently large n. Thus the series
∑∞

n=1 ϕ
′
n;j(t)ϕ

′
n;�(s)(λn − λ)−m−1 is

absolutely and uniformly convergent for m ≥ 2, since the λn, as zeros of an entire
function of growth order 1/2 satisfy

∑∞
n=1 |λn|−1 <∞. Therefore

Γ(m,1,1)
j,� (λ, t, s) = m!

∞∑

n=1

ϕ′
n;j(t)ϕ

′
n;�(s)

(λn − λ)m+1
(4.2)

if m ≥ 2.

5. The Dirichlet to Neumann Map

Recall that there is a unique solution of Ly = λy satisfying the nonhomogeneous
Dirichlet boundary conditions yj(0) = fj for j = 1, . . . , n0 unless λ is one of the
isolated Dirichlet eigenvalues. One may then compute the values gj = −y′j(0),
j = 1, . . . , n0, (Neumann data). The relationship between the fj and the gj is
linear and is called the Dirichlet-to-Neumann map. We denote this map by Λ.
Recall that ψ(k, λ, ·) denotes the Weyl solution which assumes the value one at
the boundary vertex vk (and zero at every other boundary vertex). Thus we have

Λj,k = −ψ′
j(k, λ, 0)

and, using equation (4.1),

Λj,k = −Γ(0,1,1)
j,k (λ, 0, 0). (5.1)

In [6] the following theorem was proved.

Theorem 5.1. Let q be a complex-valued integrable potential supported on a finite
metric tree whose edge lengths are one. Then the associated Dirichlet-to-Neumann
map uniquely determines the potential almost everywhere on the tree.
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This theorem is the analogue for trees of a result of Nachman, Sylvester, and
Uhlmann [19] who consider a Schrödinger equation on a bounded domain in Rn.

Our proof, given in [6], proceeds in two steps. First, we show that the di-
agonal elements of the Dirichlet-to-Neumann map determine the potential on the
boundary edges. Then we show that the Dirichlet-to-Neumann map of the tree
determines the Dirichlet-to-Neumann map for a smaller tree with some of the
boundary edges pruned off.

As the case of a finite interval can be considered a tree with two boundary ver-
tices, it is clear that not all the information provided by the Dirichlet-to-Neumann
map is necessarily needed. In that case it is sufficient to know one of the diagonal
entries. Indeed, as Yurko proves in [22], this generalizes to the present case: know-
ing n0 − 1 of the diagonal elements of the Dirichlet-to-Neumann map is already
sufficient to determine the potential almost everywhere on the tree. Yurko shows
this by a more careful investigation of the tree pruning procedure than we had
performed.

6. A Levinson-type theorem

In this section we prove Theorem 1.1. The proof is divided in two lemmas following
the idea of Nachman, Sylvester, and Uhlmann [19]. Assume two potentials q and q̃
are given both satisfying the hypotheses of the theorem, that is to be real-valued
and bounded. To each is associated a Dirichlet-to-Neumann map, denoted by Λ
and Λ̃, respectively. Both problems have the same Dirichlet eigenvalues and the
same Neumann data for an orthonormal set of Dirichlet eigenfunctions. We prove
in Lemma 6.1 that, under these circumstances, Λ−Λ̃ is a polynomial and in Lemma
6.2 that this polynomial must be zero. The conclusion of the theorem follows then
by applying Theorem 5.1, i.e., that the Dirichlet-to-Neumann map determines the
potential almost everywhere on the tree.

Lemma 6.1. Λ − Λ̃ is a polynomial of degree at most one.

Proof. By equation (5.1) we have Λj,k(λ) = −Γ(0,1,1)
j,k (λ, 0, 0). Hence, employing

equation (4.2),

Λ(m)
j,k (λ) = −Γ(m,1,1)

j,k (λ, 0, 0) = −m!
∞∑

n=1

ϕ′
n;j(0)ϕ′

n;k(0)
(λn − λ)m+1

provided m ≥ 2. The right-hand side is determined by the information provided,
i.e., the Dirichlet eigenvalues and the Neumann data of the Dirichlet eigenfunc-
tions. Therefore the exact same expression is obtained for Λ̃(m)

j,k . �

Lemma 6.2. As λ tends to negative infinity Λ − Λ̃ tends to zero.

Proof. By Lemma 3.1 the quantities Λj,k = −ψ′
j(k, λ, 0) are exponentially small

except for j = k in which case we have Λk,k = ψ′
k(k, λ, 0) = −√−λ + o(1). But

since also Λ̃k,k = −√−λ+ o(1), we have that (Λ − Λ̃)k,k = o(1). �
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7. A Marchenko-type theorem

In this section we prove Theorem 1.2. The proof relies on establishing a relationship
between the eigenfunctions associated with a Dirichlet eigenvalue E and the Weyl
solutions for λ near E.

We denote the set of eigenvalues by Σ, i.e., Σ = {λn : n ∈ N}. If E ∈ Σ we
denote its geometric multiplicity by µ(E). Recall that the solution of a Dirichlet
boundary value problem is determined by an equation of the form Mξ = f . The
characteristic function associated with the operator LD is (a multiple of) the
determinant of M , an entire function of growth order 1/2. Hence, by Hadamard’s
factorization theorem2

det(M(λ)) = C

∞∏

n=1

(1 − λ/λn) = C
∏

E∈Σ

(1 − λ/E)µ(E)

where C is an appropriate constant. Since our problem is self-adjoint geometric
and algebraic multiplicities coincide. In particular, every eigenvalue has index one3.
Therefore we define

χ(λ) =
∏

E∈Σ

(1 − λ/E)

the “minimal function” associated with the operator LD.

Lemma 7.1. Suppose that E is a Dirichlet eigenvalue. Let

ξ(j, λ) = (a1(j, λ), . . . , ar(j, λ), b1(j, λ), . . . , br(j, λ))�

be the unique solution of M(λ)ξ = χ(λ)ej for λ near E and 1 ≤ j ≤ n0. Then the
ξ(j, λ) have a nonzero limit as λ tends to E and the functions

(C(E, ·), S(E, ·))ξ(j, E), j = 1, . . . , n0

span the space of Dirichlet eigenfunctions for E.

Proof. We know that µ(E), the multiplicity of the Dirichlet eigenvalue E, is also
the multiplicity of E as a zero of detM . Because of the structure of M this means
that the lower right (2r−n0)×(2r−n0) block P (E) ofM(E) has rank 2r−n0−µ(E).
Without loss of generality, employing elementary row operations, we may assume
that the top 2r−n0−µ(E) rows of P (E) are independent and, consequently, that
all entries in the bottom µ(E) rows of P (λ) tend to zero as λ tends to E. This
structure is exhibited if we write M in the following way:

M =




I 0 0
R1 P1 P2

R2 P3 P4





where the blocks in the diagonal are of size n0 ×n0, (2r−n0 −µ(E))× (2r−n0 −
µ(E)), and µ(E)×µ(E), respectively. As we just pointed out we know that P3(λ)

2We are assuming here that zero is not an eigenvalue. This is without loss of generality since a

zero eigenvalue would only change the notation but not the essence of the argument.
3The index of an eigenvalue is the length of the longest possible Jordan chain.
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and P4(λ) tend to zero as λ tends to E. Moreover, R2(E) has full rank (equal to
µ(E)) since, by Theorem 2.3, this is true for

J =
(
R1 P1 P2

R2 P3 P4

)

regardless of λ.
We now multiply the equation M(λ)ξ = χ(λ)ej from the left with the invert-

ible matrix

T =




I 0 0

−P−1
1 R1 P−1

1 0
P3P

−1
1 R1 −R2 P3P

−1
1 I





(suppressing the dependence on λ wherever it is convenient). Thereby we obtain



I 0 0
0 I P−1

1 P2

0 0 P4 − P3P
−1
1 P2



 ξ = χ(λ)Tej .

Writing ξ = (x, y, z)� with appropriately sized columns x and y, and z, we will
first consider the equation (P4 − P3P

−1
1 P2)z = χgj where gj is the jth column of

P3P
−1
1 R1 − R2. Since all entries of the matrix P4 − P3P

−1
1 P2 tend to zero as λ

tends to E we may write (P4 −P3P
−1
1 P2)(λ) = (λ−E)F (λ) and Fz = χ̃gj where

χ̃(λ) = χ(λ)/(λ − E). Since det(T ) = 1/ det(P1) assumes a finite nonzero value
at E we obtain that det(TM) = det(P4 − P3P

−1
1 P2) has a zero at E of the same

order as detM , i.e., µ(E). This implies that detF (E) �= 0. Also, since χ̃(E) �= 0
and gj(E) �= 0 we obtain that z(j, λ) tends to a nontrivial vector z(j, E). We now
may determine also x(j, E) (which will always be zero) and y(j, E). This proves
the first statement of the lemma.

The second statement follows from the observation that (P3P
−1
1 R1−R2)(E)=

−R2(E) has rank µ(E) and hence µ(E) linearly independent columns j1, . . . , jµ(E),
giving rise to linearly independent vectors ξ(j1, E), . . . , ξ(jµ(E), E) which in turn
provide µ(E) linearly independent Dirichlet eigenfunctions. �

Corollary 7.2. The functions ω(k, λ, ·) = χ(λ)ψ(k, λ, ·), k = 1, . . . , n0 are defined
for all values of λ ∈ C. If λ is not a Dirichlet eigenvalue these functions are
linearly independent and span the space of all solutions of Ly = λy. If λ = E is
a Dirichlet eigenvalue they span the space of all solutions of LDy = Ey, i.e., the
eigenspace associated with the Dirichlet eigenvalue E.

In the following we denote derivatives with respect to the spectral parameter
by a dot and (as before) derivatives with respect to the spatial variable with a
prime. It is easy to check that uv = (u′v̇ − uv̇′)′ if u(λ, ·) and v(λ, ·) both satisfy
the equation −y′′ + qy = λy for all λ. Hence we get

∫

T

ω(k, λ, ·)ω(�, λ, ·) =
r∑

j=1

(ω′
j(k, λ, ·)ω̇j(�, λ, ·) − ωj(k, λ, ·)ω̇′

j(�, λ, ·))
∣
∣1
0
.
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Note that both ω(k, λ, ·) and ω̇(�, λ, ·) satisfy the interface conditions. Moreover,
the boundary conditions, ωj(k, λ, 0) = χ(λ)δj,k and ω̇j(�, λ, 0) = χ̇(λ)δj,� also hold.
Hence we get

∫

T

ω(k, λ, ·)ω(�, λ, ·) = χ(λ)ω̇k
′(�, λ, 0) − χ̇(λ)ω′

�(k, λ, 0)

and, in particular,
∫

T

ω(k,E, ·)ω(�, E, ·) = −χ̇(E)ω′
�(k,E, 0). (7.1)

We introduce the symmetric matrix N(E) by setting

Nk,�(E) =
∫

T

ω(k,E, ·)ω(�, E, ·).

Proof of Theorem 1.2. We will prove this theorem by computing the Neumann
data of an orthonormal basis of Dirichlet eigenfunctions from the given data. Let
E be a Dirichlet eigenvalue of multiplicity µ(E). Since the naming of the boundary
vertices is unimportant we assume now that K(E) = {1, . . . , µ(E)}. We may
introduce an orthonormal basis ϕ(k,E, ·), k = 1, . . . , µ(E) of the eigenspace of E
by writing 




ω(1, E, ·)
...

ω(µ(E), E, ·)




 = C






ϕ(1, E, ·)
...

ϕ(µ(E), E, ·)






with a lower triangular matrix whose diagonal elements are non-zero. In fact, CC�

is the LU-factorization of the upper left µ(E) × µ(E) block of N(E). Thus, this
block determines the matrices C and C−1 uniquely.

Now, the Neumann data of the orthonormal Dirichlet eigenfunctions ϕ(k,E, ·)
are given as linear combinations (in terms of the matrix C) of the Neumann data of
the ω(k,E, ·), k = 1, . . . , µ(E) which in turn are uniquely determined, according to
equation (7.1) by the first µ(E) columns of N(E) and the known function χ. �
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